train_dreambooth.py 56.4 KB
Newer Older
1
2
#!/usr/bin/env python
# coding=utf-8
Patrick von Platen's avatar
Patrick von Platen committed
3
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and

16
import argparse
17
import copy
18
import gc
19
import importlib
20
import itertools
Suraj Patil's avatar
Suraj Patil committed
21
import logging
22
23
import math
import os
24
import shutil
25
import warnings
26
27
from pathlib import Path

28
import numpy as np
29
30
31
import torch
import torch.nn.functional as F
import torch.utils.checkpoint
Suraj Patil's avatar
Suraj Patil committed
32
import transformers
33
34
from accelerate import Accelerator
from accelerate.logging import get_logger
35
from accelerate.utils import ProjectConfiguration, set_seed
Patrick von Platen's avatar
Patrick von Platen committed
36
from huggingface_hub import create_repo, model_info, upload_folder
37
from huggingface_hub.utils import insecure_hashlib
Patrick von Platen's avatar
Patrick von Platen committed
38
39
40
41
42
43
44
45
46
from packaging import version
from PIL import Image
from PIL.ImageOps import exif_transpose
from torch.utils.data import Dataset
from torchvision import transforms
from tqdm.auto import tqdm
from transformers import AutoTokenizer, PretrainedConfig

import diffusers
47
48
49
50
from diffusers import (
    AutoencoderKL,
    DDPMScheduler,
    DiffusionPipeline,
51
    StableDiffusionPipeline,
52
53
    UNet2DConditionModel,
)
54
from diffusers.optimization import get_scheduler
55
from diffusers.training_utils import compute_snr
56
from diffusers.utils import check_min_version, is_wandb_available
57
from diffusers.utils.import_utils import is_xformers_available
58
from diffusers.utils.torch_utils import is_compiled_module
59

60

61
62
63
if is_wandb_available():
    import wandb

64
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
Sayak Paul's avatar
Sayak Paul committed
65
check_min_version("0.26.0.dev0")
66

67
68
69
logger = get_logger(__name__)


70
71
72
73
74
75
76
77
78
def save_model_card(
    repo_id: str,
    images=None,
    base_model=str,
    train_text_encoder=False,
    prompt=str,
    repo_folder=None,
    pipeline: DiffusionPipeline = None,
):
79
80
81
82
83
84
85
86
87
88
89
    img_str = ""
    for i, image in enumerate(images):
        image.save(os.path.join(repo_folder, f"image_{i}.png"))
        img_str += f"![img_{i}](./image_{i}.png)\n"

    yaml = f"""
---
license: creativeml-openrail-m
base_model: {base_model}
instance_prompt: {prompt}
tags:
90
91
- {'stable-diffusion' if isinstance(pipeline, StableDiffusionPipeline) else 'if'}
- {'stable-diffusion-diffusers' if isinstance(pipeline, StableDiffusionPipeline) else 'if-diffusers'}
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
- text-to-image
- diffusers
- dreambooth
inference: true
---
    """
    model_card = f"""
# DreamBooth - {repo_id}

This is a dreambooth model derived from {base_model}. The weights were trained on {prompt} using [DreamBooth](https://dreambooth.github.io/).
You can find some example images in the following. \n
{img_str}

DreamBooth for the text encoder was enabled: {train_text_encoder}.
"""
    with open(os.path.join(repo_folder, "README.md"), "w") as f:
        f.write(yaml + model_card)


111
def log_validation(
112
113
114
115
116
117
118
119
120
121
    text_encoder,
    tokenizer,
    unet,
    vae,
    args,
    accelerator,
    weight_dtype,
    global_step,
    prompt_embeds,
    negative_prompt_embeds,
122
):
123
124
125
126
    logger.info(
        f"Running validation... \n Generating {args.num_validation_images} images with prompt:"
        f" {args.validation_prompt}."
    )
127
128
129
130
131
132

    pipeline_args = {}

    if vae is not None:
        pipeline_args["vae"] = vae

133
134
135
136
    # create pipeline (note: unet and vae are loaded again in float32)
    pipeline = DiffusionPipeline.from_pretrained(
        args.pretrained_model_name_or_path,
        tokenizer=tokenizer,
137
        text_encoder=text_encoder,
138
        unet=unet,
139
        revision=args.revision,
140
        variant=args.variant,
141
        torch_dtype=weight_dtype,
142
        **pipeline_args,
143
    )
144
145
146
147
148
149
150
151
152
153
154
155

    # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
    scheduler_args = {}

    if "variance_type" in pipeline.scheduler.config:
        variance_type = pipeline.scheduler.config.variance_type

        if variance_type in ["learned", "learned_range"]:
            variance_type = "fixed_small"

        scheduler_args["variance_type"] = variance_type

156
157
158
    module = importlib.import_module("diffusers")
    scheduler_class = getattr(module, args.validation_scheduler)
    pipeline.scheduler = scheduler_class.from_config(pipeline.scheduler.config, **scheduler_args)
159
160
161
    pipeline = pipeline.to(accelerator.device)
    pipeline.set_progress_bar_config(disable=True)

162
163
164
165
166
167
168
169
    if args.pre_compute_text_embeddings:
        pipeline_args = {
            "prompt_embeds": prompt_embeds,
            "negative_prompt_embeds": negative_prompt_embeds,
        }
    else:
        pipeline_args = {"prompt": args.validation_prompt}

170
171
172
    # run inference
    generator = None if args.seed is None else torch.Generator(device=accelerator.device).manual_seed(args.seed)
    images = []
173
174
175
176
177
178
179
180
181
182
    if args.validation_images is None:
        for _ in range(args.num_validation_images):
            with torch.autocast("cuda"):
                image = pipeline(**pipeline_args, num_inference_steps=25, generator=generator).images[0]
            images.append(image)
    else:
        for image in args.validation_images:
            image = Image.open(image)
            image = pipeline(**pipeline_args, image=image, generator=generator).images[0]
            images.append(image)
183
184
185
186

    for tracker in accelerator.trackers:
        if tracker.name == "tensorboard":
            np_images = np.stack([np.asarray(img) for img in images])
187
            tracker.writer.add_images("validation", np_images, global_step, dataformats="NHWC")
188
189
190
191
192
193
194
195
196
197
198
199
        if tracker.name == "wandb":
            tracker.log(
                {
                    "validation": [
                        wandb.Image(image, caption=f"{i}: {args.validation_prompt}") for i, image in enumerate(images)
                    ]
                }
            )

    del pipeline
    torch.cuda.empty_cache()

200
201
    return images

202

203
def import_model_class_from_model_name_or_path(pretrained_model_name_or_path: str, revision: str):
204
205
206
    text_encoder_config = PretrainedConfig.from_pretrained(
        pretrained_model_name_or_path,
        subfolder="text_encoder",
207
        revision=revision,
208
209
210
211
212
213
214
215
216
217
218
    )
    model_class = text_encoder_config.architectures[0]

    if model_class == "CLIPTextModel":
        from transformers import CLIPTextModel

        return CLIPTextModel
    elif model_class == "RobertaSeriesModelWithTransformation":
        from diffusers.pipelines.alt_diffusion.modeling_roberta_series import RobertaSeriesModelWithTransformation

        return RobertaSeriesModelWithTransformation
219
220
221
222
    elif model_class == "T5EncoderModel":
        from transformers import T5EncoderModel

        return T5EncoderModel
223
224
225
226
    else:
        raise ValueError(f"{model_class} is not supported.")


Suraj Patil's avatar
Suraj Patil committed
227
def parse_args(input_args=None):
228
229
230
231
232
233
234
235
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        required=True,
        help="Path to pretrained model or model identifier from huggingface.co/models.",
    )
236
237
238
239
240
    parser.add_argument(
        "--revision",
        type=str,
        default=None,
        required=False,
241
242
243
244
245
246
247
        help="Revision of pretrained model identifier from huggingface.co/models.",
    )
    parser.add_argument(
        "--variant",
        type=str,
        default=None,
        help="Variant of the model files of the pretrained model identifier from huggingface.co/models, 'e.g.' fp16",
248
    )
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
    parser.add_argument(
        "--tokenizer_name",
        type=str,
        default=None,
        help="Pretrained tokenizer name or path if not the same as model_name",
    )
    parser.add_argument(
        "--instance_data_dir",
        type=str,
        default=None,
        required=True,
        help="A folder containing the training data of instance images.",
    )
    parser.add_argument(
        "--class_data_dir",
        type=str,
        default=None,
        required=False,
        help="A folder containing the training data of class images.",
    )
    parser.add_argument(
        "--instance_prompt",
        type=str,
        default=None,
273
        required=True,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
274
        help="The prompt with identifier specifying the instance",
275
276
277
278
279
    )
    parser.add_argument(
        "--class_prompt",
        type=str,
        default=None,
Yuta Hayashibe's avatar
Yuta Hayashibe committed
280
        help="The prompt to specify images in the same class as provided instance images.",
281
282
283
284
285
    )
    parser.add_argument(
        "--with_prior_preservation",
        default=False,
        action="store_true",
Yuta Hayashibe's avatar
Yuta Hayashibe committed
286
        help="Flag to add prior preservation loss.",
287
288
289
290
291
292
293
    )
    parser.add_argument("--prior_loss_weight", type=float, default=1.0, help="The weight of prior preservation loss.")
    parser.add_argument(
        "--num_class_images",
        type=int,
        default=100,
        help=(
294
295
            "Minimal class images for prior preservation loss. If there are not enough images already present in"
            " class_data_dir, additional images will be sampled with class_prompt."
296
297
298
299
300
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
301
        default="dreambooth-model",
302
303
304
305
306
307
308
309
310
311
312
313
314
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
    parser.add_argument(
        "--resolution",
        type=int,
        default=512,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
315
316
317
        "--center_crop",
        default=False,
        action="store_true",
patil-suraj's avatar
patil-suraj committed
318
319
320
321
        help=(
            "Whether to center crop the input images to the resolution. If not set, the images will be randomly"
            " cropped. The images will be resized to the resolution first before cropping."
        ),
322
    )
323
324
325
326
327
    parser.add_argument(
        "--train_text_encoder",
        action="store_true",
        help="Whether to train the text encoder. If set, the text encoder should be float32 precision.",
    )
328
329
330
331
332
333
334
335
336
337
338
339
340
    parser.add_argument(
        "--train_batch_size", type=int, default=4, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
        "--sample_batch_size", type=int, default=4, help="Batch size (per device) for sampling images."
    )
    parser.add_argument("--num_train_epochs", type=int, default=1)
    parser.add_argument(
        "--max_train_steps",
        type=int,
        default=None,
        help="Total number of training steps to perform.  If provided, overrides num_train_epochs.",
    )
341
342
343
344
345
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
346
347
348
349
350
            "Save a checkpoint of the training state every X updates. Checkpoints can be used for resuming training via `--resume_from_checkpoint`. "
            "In the case that the checkpoint is better than the final trained model, the checkpoint can also be used for inference."
            "Using a checkpoint for inference requires separate loading of the original pipeline and the individual checkpointed model components."
            "See https://huggingface.co/docs/diffusers/main/en/training/dreambooth#performing-inference-using-a-saved-checkpoint for step by step"
            "instructions."
351
352
        ),
    )
353
    parser.add_argument(
354
        "--checkpoints_total_limit",
355
356
357
358
359
360
361
362
        type=int,
        default=None,
        help=(
            "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`."
            " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state"
            " for more details"
        ),
    )
363
364
365
366
367
368
369
370
371
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--gradient_checkpointing",
        action="store_true",
        help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=5e-6,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--scale_lr",
        action="store_true",
        default=False,
        help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
407
408
409
410
411
412
413
    parser.add_argument(
        "--lr_num_cycles",
        type=int,
        default=1,
        help="Number of hard resets of the lr in cosine_with_restarts scheduler.",
    )
    parser.add_argument("--lr_power", type=float, default=1.0, help="Power factor of the polynomial scheduler.")
414
415
416
    parser.add_argument(
        "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes."
    )
417
418
419
420
421
422
423
424
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process."
        ),
    )
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
    parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
    parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
Suraj Patil's avatar
Suraj Patil committed
447
448
449
450
451
452
453
454
455
456
457
458
459
    parser.add_argument(
        "--allow_tf32",
        action="store_true",
        help=(
            "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see"
            " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices"
        ),
    )
    parser.add_argument(
        "--report_to",
        type=str,
        default="tensorboard",
        help=(
460
461
            'The integration to report the results and logs to. Supported platforms are `"tensorboard"`'
            ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.'
Suraj Patil's avatar
Suraj Patil committed
462
463
        ),
    )
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    parser.add_argument(
        "--validation_prompt",
        type=str,
        default=None,
        help="A prompt that is used during validation to verify that the model is learning.",
    )
    parser.add_argument(
        "--num_validation_images",
        type=int,
        default=4,
        help="Number of images that should be generated during validation with `validation_prompt`.",
    )
    parser.add_argument(
        "--validation_steps",
        type=int,
        default=100,
        help=(
            "Run validation every X steps. Validation consists of running the prompt"
            " `args.validation_prompt` multiple times: `args.num_validation_images`"
            " and logging the images."
        ),
    )
486
487
488
    parser.add_argument(
        "--mixed_precision",
        type=str,
489
        default=None,
490
491
        choices=["no", "fp16", "bf16"],
        help=(
492
493
494
            "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to the value of accelerate config of the current system or the"
            " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config."
495
496
        ),
    )
497
498
499
500
501
502
503
504
505
506
    parser.add_argument(
        "--prior_generation_precision",
        type=str,
        default=None,
        choices=["no", "fp32", "fp16", "bf16"],
        help=(
            "Choose prior generation precision between fp32, fp16 and bf16 (bfloat16). Bf16 requires PyTorch >="
            " 1.10.and an Nvidia Ampere GPU.  Default to  fp16 if a GPU is available else fp32."
        ),
    )
507
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
508
509
510
    parser.add_argument(
        "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers."
    )
511
512
513
514
515
516
517
518
519
    parser.add_argument(
        "--set_grads_to_none",
        action="store_true",
        help=(
            "Save more memory by using setting grads to None instead of zero. Be aware, that this changes certain"
            " behaviors, so disable this argument if it causes any problems. More info:"
            " https://pytorch.org/docs/stable/generated/torch.optim.Optimizer.zero_grad.html"
        ),
    )
520

521
522
523
524
525
526
527
528
529
    parser.add_argument(
        "--offset_noise",
        action="store_true",
        default=False,
        help=(
            "Fine-tuning against a modified noise"
            " See: https://www.crosslabs.org//blog/diffusion-with-offset-noise for more information."
        ),
    )
530
531
532
533
534
535
536
    parser.add_argument(
        "--snr_gamma",
        type=float,
        default=None,
        help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
        "More details here: https://arxiv.org/abs/2303.09556.",
    )
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    parser.add_argument(
        "--pre_compute_text_embeddings",
        action="store_true",
        help="Whether or not to pre-compute text embeddings. If text embeddings are pre-computed, the text encoder will not be kept in memory during training and will leave more GPU memory available for training the rest of the model. This is not compatible with `--train_text_encoder`.",
    )
    parser.add_argument(
        "--tokenizer_max_length",
        type=int,
        default=None,
        required=False,
        help="The maximum length of the tokenizer. If not set, will default to the tokenizer's max length.",
    )
    parser.add_argument(
        "--text_encoder_use_attention_mask",
        action="store_true",
        required=False,
        help="Whether to use attention mask for the text encoder",
    )
    parser.add_argument(
        "--skip_save_text_encoder", action="store_true", required=False, help="Set to not save text encoder"
    )
558
559
560
561
562
563
564
565
566
567
568
569
570
    parser.add_argument(
        "--validation_images",
        required=False,
        default=None,
        nargs="+",
        help="Optional set of images to use for validation. Used when the target pipeline takes an initial image as input such as when training image variation or superresolution.",
    )
    parser.add_argument(
        "--class_labels_conditioning",
        required=False,
        default=None,
        help="The optional `class_label` conditioning to pass to the unet, available values are `timesteps`.",
    )
571
572
573
574
575
576
577
    parser.add_argument(
        "--validation_scheduler",
        type=str,
        default="DPMSolverMultistepScheduler",
        choices=["DPMSolverMultistepScheduler", "DDPMScheduler"],
        help="Select which scheduler to use for validation. DDPMScheduler is recommended for DeepFloyd IF.",
    )
578

579
580
581
582
583
    if input_args is not None:
        args = parser.parse_args(input_args)
    else:
        args = parser.parse_args()

584
585
586
587
588
589
590
591
592
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.with_prior_preservation:
        if args.class_data_dir is None:
            raise ValueError("You must specify a data directory for class images.")
        if args.class_prompt is None:
            raise ValueError("You must specify prompt for class images.")
593
    else:
594
        # logger is not available yet
595
        if args.class_data_dir is not None:
596
            warnings.warn("You need not use --class_data_dir without --with_prior_preservation.")
597
        if args.class_prompt is not None:
598
            warnings.warn("You need not use --class_prompt without --with_prior_preservation.")
599

600
601
602
    if args.train_text_encoder and args.pre_compute_text_embeddings:
        raise ValueError("`--train_text_encoder` cannot be used with `--pre_compute_text_embeddings`")

603
604
605
606
607
    return args


class DreamBoothDataset(Dataset):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
608
    A dataset to prepare the instance and class images with the prompts for fine-tuning the model.
609
610
611
612
613
614
615
616
617
618
    It pre-processes the images and the tokenizes prompts.
    """

    def __init__(
        self,
        instance_data_root,
        instance_prompt,
        tokenizer,
        class_data_root=None,
        class_prompt=None,
619
        class_num=None,
620
621
        size=512,
        center_crop=False,
622
        encoder_hidden_states=None,
623
        class_prompt_encoder_hidden_states=None,
624
        tokenizer_max_length=None,
625
626
627
628
    ):
        self.size = size
        self.center_crop = center_crop
        self.tokenizer = tokenizer
629
        self.encoder_hidden_states = encoder_hidden_states
630
        self.class_prompt_encoder_hidden_states = class_prompt_encoder_hidden_states
631
        self.tokenizer_max_length = tokenizer_max_length
632
633
634

        self.instance_data_root = Path(instance_data_root)
        if not self.instance_data_root.exists():
635
            raise ValueError(f"Instance {self.instance_data_root} images root doesn't exists.")
636
637
638
639
640
641
642
643
644

        self.instance_images_path = list(Path(instance_data_root).iterdir())
        self.num_instance_images = len(self.instance_images_path)
        self.instance_prompt = instance_prompt
        self._length = self.num_instance_images

        if class_data_root is not None:
            self.class_data_root = Path(class_data_root)
            self.class_data_root.mkdir(parents=True, exist_ok=True)
645
            self.class_images_path = list(self.class_data_root.iterdir())
646
647
648
649
            if class_num is not None:
                self.num_class_images = min(len(self.class_images_path), class_num)
            else:
                self.num_class_images = len(self.class_images_path)
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
            self._length = max(self.num_class_images, self.num_instance_images)
            self.class_prompt = class_prompt
        else:
            self.class_data_root = None

        self.image_transforms = transforms.Compose(
            [
                transforms.Resize(size, interpolation=transforms.InterpolationMode.BILINEAR),
                transforms.CenterCrop(size) if center_crop else transforms.RandomCrop(size),
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        example = {}
        instance_image = Image.open(self.instance_images_path[index % self.num_instance_images])
670
671
        instance_image = exif_transpose(instance_image)

672
673
674
        if not instance_image.mode == "RGB":
            instance_image = instance_image.convert("RGB")
        example["instance_images"] = self.image_transforms(instance_image)
675
676
677
678
679
680
681
682
683

        if self.encoder_hidden_states is not None:
            example["instance_prompt_ids"] = self.encoder_hidden_states
        else:
            text_inputs = tokenize_prompt(
                self.tokenizer, self.instance_prompt, tokenizer_max_length=self.tokenizer_max_length
            )
            example["instance_prompt_ids"] = text_inputs.input_ids
            example["instance_attention_mask"] = text_inputs.attention_mask
684
685
686

        if self.class_data_root:
            class_image = Image.open(self.class_images_path[index % self.num_class_images])
687
688
            class_image = exif_transpose(class_image)

689
690
691
            if not class_image.mode == "RGB":
                class_image = class_image.convert("RGB")
            example["class_images"] = self.image_transforms(class_image)
692

693
694
            if self.class_prompt_encoder_hidden_states is not None:
                example["class_prompt_ids"] = self.class_prompt_encoder_hidden_states
695
696
697
698
699
700
            else:
                class_text_inputs = tokenize_prompt(
                    self.tokenizer, self.class_prompt, tokenizer_max_length=self.tokenizer_max_length
                )
                example["class_prompt_ids"] = class_text_inputs.input_ids
                example["class_attention_mask"] = class_text_inputs.attention_mask
701
702
703
704

        return example


705
def collate_fn(examples, with_prior_preservation=False):
706
707
    has_attention_mask = "instance_attention_mask" in examples[0]

708
709
710
    input_ids = [example["instance_prompt_ids"] for example in examples]
    pixel_values = [example["instance_images"] for example in examples]

711
712
713
    if has_attention_mask:
        attention_mask = [example["instance_attention_mask"] for example in examples]

714
715
716
717
718
719
    # Concat class and instance examples for prior preservation.
    # We do this to avoid doing two forward passes.
    if with_prior_preservation:
        input_ids += [example["class_prompt_ids"] for example in examples]
        pixel_values += [example["class_images"] for example in examples]

720
721
722
        if has_attention_mask:
            attention_mask += [example["class_attention_mask"] for example in examples]

723
724
725
726
727
728
729
730
731
    pixel_values = torch.stack(pixel_values)
    pixel_values = pixel_values.to(memory_format=torch.contiguous_format).float()

    input_ids = torch.cat(input_ids, dim=0)

    batch = {
        "input_ids": input_ids,
        "pixel_values": pixel_values,
    }
732
733

    if has_attention_mask:
734
        attention_mask = torch.cat(attention_mask, dim=0)
735
736
        batch["attention_mask"] = attention_mask

737
738
739
    return batch


740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
class PromptDataset(Dataset):
    "A simple dataset to prepare the prompts to generate class images on multiple GPUs."

    def __init__(self, prompt, num_samples):
        self.prompt = prompt
        self.num_samples = num_samples

    def __len__(self):
        return self.num_samples

    def __getitem__(self, index):
        example = {}
        example["prompt"] = self.prompt
        example["index"] = index
        return example


757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
def model_has_vae(args):
    config_file_name = os.path.join("vae", AutoencoderKL.config_name)
    if os.path.isdir(args.pretrained_model_name_or_path):
        config_file_name = os.path.join(args.pretrained_model_name_or_path, config_file_name)
        return os.path.isfile(config_file_name)
    else:
        files_in_repo = model_info(args.pretrained_model_name_or_path, revision=args.revision).siblings
        return any(file.rfilename == config_file_name for file in files_in_repo)


def tokenize_prompt(tokenizer, prompt, tokenizer_max_length=None):
    if tokenizer_max_length is not None:
        max_length = tokenizer_max_length
    else:
        max_length = tokenizer.model_max_length

    text_inputs = tokenizer(
        prompt,
        truncation=True,
        padding="max_length",
        max_length=max_length,
        return_tensors="pt",
    )

    return text_inputs


def encode_prompt(text_encoder, input_ids, attention_mask, text_encoder_use_attention_mask=None):
    text_input_ids = input_ids.to(text_encoder.device)

    if text_encoder_use_attention_mask:
        attention_mask = attention_mask.to(text_encoder.device)
    else:
        attention_mask = None

    prompt_embeds = text_encoder(
        text_input_ids,
        attention_mask=attention_mask,
795
        return_dict=False,
796
797
798
799
800
801
    )
    prompt_embeds = prompt_embeds[0]

    return prompt_embeds


802
def main(args):
803
804
    logging_dir = Path(args.output_dir, args.logging_dir)

805
    accelerator_project_config = ProjectConfiguration(project_dir=args.output_dir, logging_dir=logging_dir)
806

807
808
809
    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
Suraj Patil's avatar
Suraj Patil committed
810
        log_with=args.report_to,
811
        project_config=accelerator_project_config,
812
813
    )

814
815
816
817
    if args.report_to == "wandb":
        if not is_wandb_available():
            raise ImportError("Make sure to install wandb if you want to use it for logging during training.")

818
819
820
821
822
823
824
825
826
    # Currently, it's not possible to do gradient accumulation when training two models with accelerate.accumulate
    # This will be enabled soon in accelerate. For now, we don't allow gradient accumulation when training two models.
    # TODO (patil-suraj): Remove this check when gradient accumulation with two models is enabled in accelerate.
    if args.train_text_encoder and args.gradient_accumulation_steps > 1 and accelerator.num_processes > 1:
        raise ValueError(
            "Gradient accumulation is not supported when training the text encoder in distributed training. "
            "Please set gradient_accumulation_steps to 1. This feature will be supported in the future."
        )

Suraj Patil's avatar
Suraj Patil committed
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        transformers.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        transformers.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # If passed along, set the training seed now.
842
843
844
    if args.seed is not None:
        set_seed(args.seed)

Suraj Patil's avatar
Suraj Patil committed
845
    # Generate class images if prior preservation is enabled.
846
847
848
849
850
851
852
853
    if args.with_prior_preservation:
        class_images_dir = Path(args.class_data_dir)
        if not class_images_dir.exists():
            class_images_dir.mkdir(parents=True)
        cur_class_images = len(list(class_images_dir.iterdir()))

        if cur_class_images < args.num_class_images:
            torch_dtype = torch.float16 if accelerator.device.type == "cuda" else torch.float32
854
855
856
857
858
859
            if args.prior_generation_precision == "fp32":
                torch_dtype = torch.float32
            elif args.prior_generation_precision == "fp16":
                torch_dtype = torch.float16
            elif args.prior_generation_precision == "bf16":
                torch_dtype = torch.bfloat16
860
            pipeline = DiffusionPipeline.from_pretrained(
861
862
863
864
                args.pretrained_model_name_or_path,
                torch_dtype=torch_dtype,
                safety_checker=None,
                revision=args.revision,
865
                variant=args.variant,
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
            )
            pipeline.set_progress_bar_config(disable=True)

            num_new_images = args.num_class_images - cur_class_images
            logger.info(f"Number of class images to sample: {num_new_images}.")

            sample_dataset = PromptDataset(args.class_prompt, num_new_images)
            sample_dataloader = torch.utils.data.DataLoader(sample_dataset, batch_size=args.sample_batch_size)

            sample_dataloader = accelerator.prepare(sample_dataloader)
            pipeline.to(accelerator.device)

            for example in tqdm(
                sample_dataloader, desc="Generating class images", disable=not accelerator.is_local_main_process
            ):
881
                images = pipeline(example["prompt"]).images
882
883

                for i, image in enumerate(images):
884
                    hash_image = insecure_hashlib.sha1(image.tobytes()).hexdigest()
885
886
                    image_filename = class_images_dir / f"{example['index'][i] + cur_class_images}-{hash_image}.jpg"
                    image.save(image_filename)
887
888
889
890
891
892
893

            del pipeline
            if torch.cuda.is_available():
                torch.cuda.empty_cache()

    # Handle the repository creation
    if accelerator.is_main_process:
894
        if args.output_dir is not None:
895
896
            os.makedirs(args.output_dir, exist_ok=True)

897
898
899
900
901
        if args.push_to_hub:
            repo_id = create_repo(
                repo_id=args.hub_model_id or Path(args.output_dir).name, exist_ok=True, token=args.hub_token
            ).repo_id

902
903
    # Load the tokenizer
    if args.tokenizer_name:
Suraj Patil's avatar
Suraj Patil committed
904
        tokenizer = AutoTokenizer.from_pretrained(args.tokenizer_name, revision=args.revision, use_fast=False)
905
    elif args.pretrained_model_name_or_path:
906
        tokenizer = AutoTokenizer.from_pretrained(
907
908
909
            args.pretrained_model_name_or_path,
            subfolder="tokenizer",
            revision=args.revision,
910
            use_fast=False,
911
        )
912

913
    # import correct text encoder class
914
    text_encoder_cls = import_model_class_from_model_name_or_path(args.pretrained_model_name_or_path, args.revision)
915

Suraj Patil's avatar
Suraj Patil committed
916
917
    # Load scheduler and models
    noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler")
918
    text_encoder = text_encoder_cls.from_pretrained(
919
        args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision, variant=args.variant
920
    )
921
922
923

    if model_has_vae(args):
        vae = AutoencoderKL.from_pretrained(
924
            args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision, variant=args.variant
925
926
927
928
        )
    else:
        vae = None

929
    unet = UNet2DConditionModel.from_pretrained(
930
        args.pretrained_model_name_or_path, subfolder="unet", revision=args.revision, variant=args.variant
931
    )
932

933
934
935
936
937
    def unwrap_model(model):
        model = accelerator.unwrap_model(model)
        model = model._orig_mod if is_compiled_module(model) else model
        return model

938
939
    # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format
    def save_model_hook(models, weights, output_dir):
940
941
        if accelerator.is_main_process:
            for model in models:
942
                sub_dir = "unet" if isinstance(model, type(unwrap_model(unet))) else "text_encoder"
943
                model.save_pretrained(os.path.join(output_dir, sub_dir))
944

945
946
                # make sure to pop weight so that corresponding model is not saved again
                weights.pop()
947
948
949
950
951
952

    def load_model_hook(models, input_dir):
        while len(models) > 0:
            # pop models so that they are not loaded again
            model = models.pop()

953
            if isinstance(model, type(unwrap_model(text_encoder))):
954
955
956
957
958
959
960
961
962
963
964
965
966
                # load transformers style into model
                load_model = text_encoder_cls.from_pretrained(input_dir, subfolder="text_encoder")
                model.config = load_model.config
            else:
                # load diffusers style into model
                load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet")
                model.register_to_config(**load_model.config)

            model.load_state_dict(load_model.state_dict())
            del load_model

    accelerator.register_save_state_pre_hook(save_model_hook)
    accelerator.register_load_state_pre_hook(load_model_hook)
967

968
969
970
    if vae is not None:
        vae.requires_grad_(False)

Suraj Patil's avatar
Suraj Patil committed
971
972
973
    if not args.train_text_encoder:
        text_encoder.requires_grad_(False)

974
975
    if args.enable_xformers_memory_efficient_attention:
        if is_xformers_available():
976
977
978
979
980
981
982
            import xformers

            xformers_version = version.parse(xformers.__version__)
            if xformers_version == version.parse("0.0.16"):
                logger.warn(
                    "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details."
                )
983
            unet.enable_xformers_memory_efficient_attention()
984
985
        else:
            raise ValueError("xformers is not available. Make sure it is installed correctly")
986

987
988
    if args.gradient_checkpointing:
        unet.enable_gradient_checkpointing()
989
990
        if args.train_text_encoder:
            text_encoder.gradient_checkpointing_enable()
991

992
993
994
995
996
997
    # Check that all trainable models are in full precision
    low_precision_error_string = (
        "Please make sure to always have all model weights in full float32 precision when starting training - even if"
        " doing mixed precision training. copy of the weights should still be float32."
    )

998
999
    if unwrap_model(unet).dtype != torch.float32:
        raise ValueError(f"Unet loaded as datatype {unwrap_model(unet).dtype}. {low_precision_error_string}")
1000

1001
    if args.train_text_encoder and unwrap_model(text_encoder).dtype != torch.float32:
1002
        raise ValueError(
1003
            f"Text encoder loaded as datatype {unwrap_model(text_encoder).dtype}." f" {low_precision_error_string}"
1004
1005
        )

Suraj Patil's avatar
Suraj Patil committed
1006
1007
1008
1009
1010
    # Enable TF32 for faster training on Ampere GPUs,
    # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices
    if args.allow_tf32:
        torch.backends.cuda.matmul.allow_tf32 = True

1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
    if args.scale_lr:
        args.learning_rate = (
            args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes
        )

    # Use 8-bit Adam for lower memory usage or to fine-tune the model in 16GB GPUs
    if args.use_8bit_adam:
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError(
                "To use 8-bit Adam, please install the bitsandbytes library: `pip install bitsandbytes`."
            )

        optimizer_class = bnb.optim.AdamW8bit
    else:
        optimizer_class = torch.optim.AdamW

Suraj Patil's avatar
Suraj Patil committed
1029
    # Optimizer creation
1030
1031
1032
    params_to_optimize = (
        itertools.chain(unet.parameters(), text_encoder.parameters()) if args.train_text_encoder else unet.parameters()
    )
1033
    optimizer = optimizer_class(
1034
        params_to_optimize,
1035
1036
1037
1038
1039
1040
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )

1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
    if args.pre_compute_text_embeddings:

        def compute_text_embeddings(prompt):
            with torch.no_grad():
                text_inputs = tokenize_prompt(tokenizer, prompt, tokenizer_max_length=args.tokenizer_max_length)
                prompt_embeds = encode_prompt(
                    text_encoder,
                    text_inputs.input_ids,
                    text_inputs.attention_mask,
                    text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                )

            return prompt_embeds

        pre_computed_encoder_hidden_states = compute_text_embeddings(args.instance_prompt)
        validation_prompt_negative_prompt_embeds = compute_text_embeddings("")

        if args.validation_prompt is not None:
            validation_prompt_encoder_hidden_states = compute_text_embeddings(args.validation_prompt)
        else:
            validation_prompt_encoder_hidden_states = None

1063
1064
        if args.class_prompt is not None:
            pre_computed_class_prompt_encoder_hidden_states = compute_text_embeddings(args.class_prompt)
1065
        else:
1066
            pre_computed_class_prompt_encoder_hidden_states = None
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076

        text_encoder = None
        tokenizer = None

        gc.collect()
        torch.cuda.empty_cache()
    else:
        pre_computed_encoder_hidden_states = None
        validation_prompt_encoder_hidden_states = None
        validation_prompt_negative_prompt_embeds = None
1077
        pre_computed_class_prompt_encoder_hidden_states = None
1078

Suraj Patil's avatar
Suraj Patil committed
1079
    # Dataset and DataLoaders creation:
1080
1081
1082
1083
1084
    train_dataset = DreamBoothDataset(
        instance_data_root=args.instance_data_dir,
        instance_prompt=args.instance_prompt,
        class_data_root=args.class_data_dir if args.with_prior_preservation else None,
        class_prompt=args.class_prompt,
1085
        class_num=args.num_class_images,
1086
1087
1088
        tokenizer=tokenizer,
        size=args.resolution,
        center_crop=args.center_crop,
1089
        encoder_hidden_states=pre_computed_encoder_hidden_states,
1090
        class_prompt_encoder_hidden_states=pre_computed_class_prompt_encoder_hidden_states,
1091
        tokenizer_max_length=args.tokenizer_max_length,
1092
1093
1094
    )

    train_dataloader = torch.utils.data.DataLoader(
1095
1096
1097
1098
        train_dataset,
        batch_size=args.train_batch_size,
        shuffle=True,
        collate_fn=lambda examples: collate_fn(examples, args.with_prior_preservation),
1099
        num_workers=args.dataloader_num_workers,
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
    )

    # Scheduler and math around the number of training steps.
    overrode_max_train_steps = False
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if args.max_train_steps is None:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
        overrode_max_train_steps = True

    lr_scheduler = get_scheduler(
        args.lr_scheduler,
        optimizer=optimizer,
1112
1113
        num_warmup_steps=args.lr_warmup_steps * accelerator.num_processes,
        num_training_steps=args.max_train_steps * accelerator.num_processes,
1114
1115
        num_cycles=args.lr_num_cycles,
        power=args.lr_power,
1116
1117
    )

Suraj Patil's avatar
Suraj Patil committed
1118
    # Prepare everything with our `accelerator`.
1119
1120
1121
1122
1123
1124
1125
1126
    if args.train_text_encoder:
        unet, text_encoder, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, text_encoder, optimizer, train_dataloader, lr_scheduler
        )
    else:
        unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
            unet, optimizer, train_dataloader, lr_scheduler
        )
1127

1128
    # For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora unet) to half-precision
1129
    # as these weights are only used for inference, keeping weights in full precision is not required.
1130
    weight_dtype = torch.float32
1131
    if accelerator.mixed_precision == "fp16":
1132
        weight_dtype = torch.float16
1133
    elif accelerator.mixed_precision == "bf16":
1134
1135
        weight_dtype = torch.bfloat16

Suraj Patil's avatar
Suraj Patil committed
1136
    # Move vae and text_encoder to device and cast to weight_dtype
1137
1138
1139
1140
    if vae is not None:
        vae.to(accelerator.device, dtype=weight_dtype)

    if not args.train_text_encoder and text_encoder is not None:
1141
        text_encoder.to(accelerator.device, dtype=weight_dtype)
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

    # We need to recalculate our total training steps as the size of the training dataloader may have changed.
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    if overrode_max_train_steps:
        args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
    # Afterwards we recalculate our number of training epochs
    args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)

    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
    if accelerator.is_main_process:
1153
        tracker_config = vars(copy.deepcopy(args))
1154
1155
        tracker_config.pop("validation_images")
        accelerator.init_trackers("dreambooth", config=tracker_config)
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

    # Train!
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(train_dataset)}")
    logger.info(f"  Num batches each epoch = {len(train_dataloader)}")
    logger.info(f"  Num Epochs = {args.num_train_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {args.max_train_steps}")
1168
1169
1170
    global_step = 0
    first_epoch = 0

Suraj Patil's avatar
Suraj Patil committed
1171
    # Potentially load in the weights and states from a previous save
1172
1173
1174
1175
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
1176
            # Get the most recent checkpoint
1177
1178
1179
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
1180
1181
1182
1183
1184
1185
1186
            path = dirs[-1] if len(dirs) > 0 else None

        if path is None:
            accelerator.print(
                f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run."
            )
            args.resume_from_checkpoint = None
1187
            initial_global_step = 0
1188
1189
1190
1191
1192
        else:
            accelerator.print(f"Resuming from checkpoint {path}")
            accelerator.load_state(os.path.join(args.output_dir, path))
            global_step = int(path.split("-")[1])

1193
            initial_global_step = global_step
1194
            first_epoch = global_step // num_update_steps_per_epoch
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
    else:
        initial_global_step = 0

    progress_bar = tqdm(
        range(0, args.max_train_steps),
        initial=initial_global_step,
        desc="Steps",
        # Only show the progress bar once on each machine.
        disable=not accelerator.is_local_main_process,
    )
1205

1206
    for epoch in range(first_epoch, args.num_train_epochs):
1207
        unet.train()
1208
1209
        if args.train_text_encoder:
            text_encoder.train()
1210
1211
        for step, batch in enumerate(train_dataloader):
            with accelerator.accumulate(unet):
1212
                pixel_values = batch["pixel_values"].to(dtype=weight_dtype)
1213

1214
1215
1216
1217
1218
1219
1220
1221
                if vae is not None:
                    # Convert images to latent space
                    model_input = vae.encode(batch["pixel_values"].to(dtype=weight_dtype)).latent_dist.sample()
                    model_input = model_input * vae.config.scaling_factor
                else:
                    model_input = pixel_values

                # Sample noise that we'll add to the model input
1222
                if args.offset_noise:
1223
1224
                    noise = torch.randn_like(model_input) + 0.1 * torch.randn(
                        model_input.shape[0], model_input.shape[1], 1, 1, device=model_input.device
1225
1226
                    )
                else:
1227
                    noise = torch.randn_like(model_input)
1228
                bsz, channels, height, width = model_input.shape
1229
                # Sample a random timestep for each image
1230
1231
1232
                timesteps = torch.randint(
                    0, noise_scheduler.config.num_train_timesteps, (bsz,), device=model_input.device
                )
1233
1234
                timesteps = timesteps.long()

1235
                # Add noise to the model input according to the noise magnitude at each timestep
1236
                # (this is the forward diffusion process)
1237
                noisy_model_input = noise_scheduler.add_noise(model_input, noise, timesteps)
1238
1239

                # Get the text embedding for conditioning
1240
1241
1242
1243
1244
1245
1246
1247
1248
                if args.pre_compute_text_embeddings:
                    encoder_hidden_states = batch["input_ids"]
                else:
                    encoder_hidden_states = encode_prompt(
                        text_encoder,
                        batch["input_ids"],
                        batch["attention_mask"],
                        text_encoder_use_attention_mask=args.text_encoder_use_attention_mask,
                    )
1249

1250
                if unwrap_model(unet).config.in_channels == channels * 2:
1251
                    noisy_model_input = torch.cat([noisy_model_input, noisy_model_input], dim=1)
1252
1253
1254
1255
1256
1257

                if args.class_labels_conditioning == "timesteps":
                    class_labels = timesteps
                else:
                    class_labels = None

1258
                # Predict the noise residual
1259
                model_pred = unet(
1260
1261
                    noisy_model_input, timesteps, encoder_hidden_states, class_labels=class_labels, return_dict=False
                )[0]
1262
1263
1264

                if model_pred.shape[1] == 6:
                    model_pred, _ = torch.chunk(model_pred, 2, dim=1)
1265
1266
1267
1268
1269

                # Get the target for loss depending on the prediction type
                if noise_scheduler.config.prediction_type == "epsilon":
                    target = noise
                elif noise_scheduler.config.prediction_type == "v_prediction":
1270
                    target = noise_scheduler.get_velocity(model_input, noise, timesteps)
1271
1272
                else:
                    raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
1273
1274

                if args.with_prior_preservation:
1275
1276
1277
                    # Chunk the noise and model_pred into two parts and compute the loss on each part separately.
                    model_pred, model_pred_prior = torch.chunk(model_pred, 2, dim=0)
                    target, target_prior = torch.chunk(target, 2, dim=0)
1278
1279
                    # Compute prior loss
                    prior_loss = F.mse_loss(model_pred_prior.float(), target_prior.float(), reduction="mean")
1280

1281
1282
                # Compute instance loss
                if args.snr_gamma is None:
1283
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
1284
1285
1286
1287
                else:
                    # Compute loss-weights as per Section 3.4 of https://arxiv.org/abs/2303.09556.
                    # Since we predict the noise instead of x_0, the original formulation is slightly changed.
                    # This is discussed in Section 4.2 of the same paper.
1288
                    snr = compute_snr(noise_scheduler, timesteps)
1289
1290
1291
                    base_weight = (
                        torch.stack([snr, args.snr_gamma * torch.ones_like(timesteps)], dim=1).min(dim=1)[0] / snr
                    )
1292

1293
1294
1295
1296
1297
1298
1299
1300
1301
                    if noise_scheduler.config.prediction_type == "v_prediction":
                        # Velocity objective needs to be floored to an SNR weight of one.
                        mse_loss_weights = base_weight + 1
                    else:
                        # Epsilon and sample both use the same loss weights.
                        mse_loss_weights = base_weight
                    loss = F.mse_loss(model_pred.float(), target.float(), reduction="none")
                    loss = loss.mean(dim=list(range(1, len(loss.shape)))) * mse_loss_weights
                    loss = loss.mean()
1302

1303
                if args.with_prior_preservation:
1304
1305
1306
1307
                    # Add the prior loss to the instance loss.
                    loss = loss + args.prior_loss_weight * prior_loss

                accelerator.backward(loss)
1308
                if accelerator.sync_gradients:
1309
1310
1311
1312
1313
1314
                    params_to_clip = (
                        itertools.chain(unet.parameters(), text_encoder.parameters())
                        if args.train_text_encoder
                        else unet.parameters()
                    )
                    accelerator.clip_grad_norm_(params_to_clip, args.max_grad_norm)
1315
1316
                optimizer.step()
                lr_scheduler.step()
1317
                optimizer.zero_grad(set_to_none=args.set_grads_to_none)
1318
1319
1320
1321
1322
1323

            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
                progress_bar.update(1)
                global_step += 1

1324
1325
                if accelerator.is_main_process:
                    if global_step % args.checkpointing_steps == 0:
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
                        # _before_ saving state, check if this save would set us over the `checkpoints_total_limit`
                        if args.checkpoints_total_limit is not None:
                            checkpoints = os.listdir(args.output_dir)
                            checkpoints = [d for d in checkpoints if d.startswith("checkpoint")]
                            checkpoints = sorted(checkpoints, key=lambda x: int(x.split("-")[1]))

                            # before we save the new checkpoint, we need to have at _most_ `checkpoints_total_limit - 1` checkpoints
                            if len(checkpoints) >= args.checkpoints_total_limit:
                                num_to_remove = len(checkpoints) - args.checkpoints_total_limit + 1
                                removing_checkpoints = checkpoints[0:num_to_remove]

                                logger.info(
                                    f"{len(checkpoints)} checkpoints already exist, removing {len(removing_checkpoints)} checkpoints"
                                )
                                logger.info(f"removing checkpoints: {', '.join(removing_checkpoints)}")

                                for removing_checkpoint in removing_checkpoints:
                                    removing_checkpoint = os.path.join(args.output_dir, removing_checkpoint)
                                    shutil.rmtree(removing_checkpoint)

1346
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
1347
1348
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")
1349

1350
1351
                    images = []

1352
                    if args.validation_prompt is not None and global_step % args.validation_steps == 0:
1353
                        images = log_validation(
1354
                            unwrap_model(text_encoder) if text_encoder is not None else text_encoder,
1355
                            tokenizer,
1356
                            unwrap_model(unet),
1357
1358
1359
1360
                            vae,
                            args,
                            accelerator,
                            weight_dtype,
1361
                            global_step,
1362
1363
                            validation_prompt_encoder_hidden_states,
                            validation_prompt_negative_prompt_embeds,
1364
                        )
1365

1366
1367
1368
1369
1370
1371
1372
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)

            if global_step >= args.max_train_steps:
                break

1373
    # Create the pipeline using the trained modules and save it.
Suraj Patil's avatar
Suraj Patil committed
1374
    accelerator.wait_for_everyone()
1375
    if accelerator.is_main_process:
1376
1377
1378
        pipeline_args = {}

        if text_encoder is not None:
1379
            pipeline_args["text_encoder"] = unwrap_model(text_encoder)
1380
1381
1382
1383

        if args.skip_save_text_encoder:
            pipeline_args["text_encoder"] = None

1384
        pipeline = DiffusionPipeline.from_pretrained(
1385
            args.pretrained_model_name_or_path,
1386
            unet=unwrap_model(unet),
1387
            revision=args.revision,
1388
            variant=args.variant,
1389
            **pipeline_args,
1390
        )
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404

        # We train on the simplified learning objective. If we were previously predicting a variance, we need the scheduler to ignore it
        scheduler_args = {}

        if "variance_type" in pipeline.scheduler.config:
            variance_type = pipeline.scheduler.config.variance_type

            if variance_type in ["learned", "learned_range"]:
                variance_type = "fixed_small"

            scheduler_args["variance_type"] = variance_type

        pipeline.scheduler = pipeline.scheduler.from_config(pipeline.scheduler.config, **scheduler_args)

1405
1406
1407
        pipeline.save_pretrained(args.output_dir)

        if args.push_to_hub:
1408
1409
1410
1411
1412
1413
1414
            save_model_card(
                repo_id,
                images=images,
                base_model=args.pretrained_model_name_or_path,
                train_text_encoder=args.train_text_encoder,
                prompt=args.instance_prompt,
                repo_folder=args.output_dir,
1415
                pipeline=pipeline,
1416
            )
1417
1418
1419
1420
1421
1422
            upload_folder(
                repo_id=repo_id,
                folder_path=args.output_dir,
                commit_message="End of training",
                ignore_patterns=["step_*", "epoch_*"],
            )
1423
1424
1425
1426
1427

    accelerator.end_training()


if __name__ == "__main__":
1428
1429
    args = parse_args()
    main(args)