pipeline_utils.py 92.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25
26

import numpy as np
Anh71me's avatar
Anh71me committed
27
import PIL.Image
28
import requests
29
import torch
30
31
32
33
34
35
36
from huggingface_hub import (
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
    snapshot_download,
)
37
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
38
from packaging import version
39
from requests.exceptions import HTTPError
40
41
from tqdm.auto import tqdm

42
from .. import __version__
43
from ..configuration_utils import ConfigMixin
44
45
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
46
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
47
48
49
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
50
    DEPRECATED_REVISION_ARGS,
51
    BaseOutput,
52
    PushToHubMixin,
53
54
    deprecate,
    is_accelerate_available,
55
    is_accelerate_version,
Mengqing Cao's avatar
Mengqing Cao committed
56
    is_torch_npu_available,
57
58
    is_torch_version,
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
59
    numpy_to_pil,
60
)
61
from ..utils.hub_utils import load_or_create_model_card, populate_model_card
Dhruv Nair's avatar
Dhruv Nair committed
62
from ..utils.torch_utils import is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
63
64
65
66
67
68


if is_torch_npu_available():
    import torch_npu  # noqa: F401


69
70
71
72
73
74
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
    _fetch_class_library_tuple,
75
    _get_custom_pipeline_class,
76
77
78
79
80
81
82
83
    _get_pipeline_class,
    _unwrap_model,
    is_safetensors_compatible,
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
84
85


86
87
88
89
if is_accelerate_available():
    import accelerate


90
91
92
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
93
94
95
96
97
98
99
100
101
102
103

logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
104
105
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
106
107
108
109
110
111
112
113
114
115
116
117
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
118
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
119
120
121
122
123
    """

    audios: np.ndarray


124
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
125
    r"""
Steven Liu's avatar
Steven Liu committed
126
    Base class for all pipelines.
127

Steven Liu's avatar
Steven Liu committed
128
129
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
130
131

        - move all PyTorch modules to the device of your choice
132
        - enable/disable the progress bar for the denoising iteration
133
134
135

    Class attributes:

Steven Liu's avatar
Steven Liu committed
136
137
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
138
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
139
          pipeline to function (should be overridden by subclasses).
140
    """
141

142
    config_name = "model_index.json"
143
    model_cpu_offload_seq = None
144
    _optional_components = []
145
    _exclude_from_cpu_offload = []
146
    _load_connected_pipes = False
147
    _is_onnx = False
148
149
150
151

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
152
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
153
154
                register_dict = {name: (None, None)}
            else:
155
                library, class_name = _fetch_class_library_tuple(module)
156
157
158
159
160
161
162
163
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

164
    def __setattr__(self, name: str, value: Any):
165
        if name in self.__dict__ and hasattr(self.config, name):
166
167
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
168
                if value is not None and self.config[name][0] is not None:
169
                    class_library_tuple = _fetch_class_library_tuple(value)
170
171
172
173
174
175
176
177
178
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

179
180
181
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
182
        safe_serialization: bool = True,
183
        variant: Optional[str] = None,
184
185
        push_to_hub: bool = False,
        **kwargs,
186
187
    ):
        """
Steven Liu's avatar
Steven Liu committed
188
189
190
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
191
192
193

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
194
                Directory to save a pipeline to. Will be created if it doesn't exist.
195
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
196
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
197
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
198
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
199
200
201
202
203
204
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
205
206
        """
        model_index_dict = dict(self.config)
207
208
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
209
        model_index_dict.pop("_module", None)
210
        model_index_dict.pop("_name_or_path", None)
211

212
213
214
215
216
217
218
219
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

220
221
222
223
224
225
226
227
228
229
230
231
232
233
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

234
235
236
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
237
                sub_model = _unwrap_model(sub_model)
238
239
                model_cls = sub_model.__class__

240
241
242
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
243
244
245
246
247
248
249
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

250
251
252
253
254
255
256
257
258
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

259
            if save_method_name is None:
260
261
262
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
263
264
265
266
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

267
268
269
270
271
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
272
273
274
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
275
            if save_method_accept_safe:
276
277
278
279
280
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
281

282
283
284
        # finally save the config
        self.save_config(save_directory)

285
        if push_to_hub:
286
287
288
289
290
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

291
292
293
294
295
296
297
298
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
    def to(self, *args, **kwargs):
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
335
336
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
369

370
371
372
373
374
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

375
            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
376
377
378
379
380
381
382
383
384
385
386

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
387
        if pipeline_is_sequentially_offloaded and device and torch.device(device).type == "cuda":
388
389
390
391
392
393
            raise ValueError(
                "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
            )

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
394
        if pipeline_is_offloaded and device and torch.device(device).type == "cuda":
395
396
397
398
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

399
        module_names, _ = self._get_signature_keys(self)
400
401
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
402

403
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
404
        for module in modules:
Patrick von Platen's avatar
Patrick von Platen committed
405
406
            is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit

407
            if is_loaded_in_8bit and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
408
                logger.warning(
409
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {dtype} is not yet supported. Module is still in 8bit precision."
Patrick von Platen's avatar
Patrick von Platen committed
410
411
                )

412
            if is_loaded_in_8bit and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
413
                logger.warning(
414
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {dtype} via `.to()` is not yet supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
415
416
                )
            else:
417
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
418

419
420
            if (
                module.dtype == torch.float16
421
                and str(device) in ["cpu"]
422
423
424
425
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
426
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
427
428
429
430
431
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
432
433
434
435
436
437
438
439
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
440
        module_names, _ = self._get_signature_keys(self)
441
442
443
444
445
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
446

447
448
        return torch.device("cpu")

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

464
    @classmethod
465
    @validate_hf_hub_args
466
467
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
468
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
469

Steven Liu's avatar
Steven Liu committed
470
        The pipeline is set in evaluation mode (`model.eval()`) by default.
471

Steven Liu's avatar
Steven Liu committed
472
        If you get the error message below, you need to finetune the weights for your downstream task:
473

Steven Liu's avatar
Steven Liu committed
474
475
476
477
478
        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
479
480
481
482
483

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
484
485
486
487
488
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
489
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
490
491
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
492
493
494
495
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
496
                🧪 This is an experimental feature and may change in the future.
497
498
499
500
501

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
502
503
504
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
505
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
506
507
508
509
510
511
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
512
513
514
515
516
517
518

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
519
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
520
521
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
522
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
523
524
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
525
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
526
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
527
528
529
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
530
531
532
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
533
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
534
535
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
536
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
537
538
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
539
            custom_revision (`str`, *optional*):
540
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
541
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers version.
542
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
543
544
545
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
546
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
547
548
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
549
550
                same device.

Steven Liu's avatar
Steven Liu committed
551
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
552
553
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
554
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
555
556
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
557
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
558
                The path to offload weights if device_map contains the value `"disk"`.
559
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
560
561
562
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
563
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
564
565
566
567
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
568
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
569
570
571
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
572
573
574
575
576
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
577
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
578
579
580
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
581
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
582
583
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
584
585
586

        <Tip>

Steven Liu's avatar
Steven Liu committed
587
588
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
612
        cache_dir = kwargs.pop("cache_dir", None)
613
614
615
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
616
617
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
618
        revision = kwargs.pop("revision", None)
619
        from_flax = kwargs.pop("from_flax", False)
620
621
622
623
624
625
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
626
627
628
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
629
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
630
        variant = kwargs.pop("variant", None)
631
        use_safetensors = kwargs.pop("use_safetensors", None)
632
        use_onnx = kwargs.pop("use_onnx", None)
633
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
634

635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

662
663
664
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
665
666
667
668
669
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
670
            cached_folder = cls.download(
671
672
673
674
675
676
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
677
                token=token,
678
                revision=revision,
679
                from_flax=from_flax,
680
                use_safetensors=use_safetensors,
681
                use_onnx=use_onnx,
682
                custom_pipeline=custom_pipeline,
683
                custom_revision=custom_revision,
684
                variant=variant,
685
                load_connected_pipeline=load_connected_pipeline,
686
                **kwargs,
687
688
689
690
            )
        else:
            cached_folder = pretrained_model_name_or_path

691
692
        config_dict = cls.load_config(cached_folder)

Patrick von Platen's avatar
Patrick von Platen committed
693
694
695
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

696
697
698
        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
699
700
701
702
703
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
704
705
706
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
707
708
709
                if variant_exists:
                    model_variants[folder] = variant

710
        # 3. Load the pipeline class, if using custom module then load it from the hub
711
        # if we load from explicit class, let's use it
712
713
714
715
716
717
718
719
720
        custom_class_name = None
        if os.path.isfile(os.path.join(cached_folder, f"{custom_pipeline}.py")):
            custom_pipeline = os.path.join(cached_folder, f"{custom_pipeline}.py")
        elif isinstance(config_dict["_class_name"], (list, tuple)) and os.path.isfile(
            os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
        ):
            custom_pipeline = os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
            custom_class_name = config_dict["_class_name"][1]

721
        pipeline_class = _get_pipeline_class(
722
723
724
725
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
726
            class_name=custom_class_name,
727
728
            cache_dir=cache_dir,
            revision=custom_revision,
729
        )
730

731
        # DEPRECATED: To be removed in 1.0.0
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

750
751
752
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

753
754
755
756
757
758
759
760
761
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

762
763
764
765
766
767
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
768
769
770
771
772
773
774
775
776
777
778
779
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

780
781
782
783
784
785
786
787
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

788
        # 5. Throw nice warnings / errors for fast accelerate loading
789
790
791
792
793
794
795
796
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

797
        # 6. Load each module in the pipeline
798
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
799
            # 6.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
800
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
801

802
            # 6.2 Define all importable classes
803
            is_pipeline_module = hasattr(pipelines, library_name)
804
            importable_classes = ALL_IMPORTABLE_CLASSES
805
806
            loaded_sub_model = None

807
            # 6.3 Use passed sub model or load class_name from library_name
808
            if name in passed_class_obj:
809
810
811
812
813
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
814
815
816

                loaded_sub_model = passed_class_obj[name]
            else:
817
818
819
820
821
822
823
824
825
826
827
828
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
                    device_map=device_map,
829
830
831
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
832
833
834
835
836
837
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
838
                )
839
840
841
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
842
843
844

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

845
846
847
848
849
850
851
852
853
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "resume_download": resume_download,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
854
                "token": token,
855
856
857
858
859
860
861
862
863
864
865
866
867
868
                "revision": revision,
                "torch_dtype": torch_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "provider": provider,
                "sess_options": sess_options,
                "device_map": device_map,
                "max_memory": max_memory,
                "offload_folder": offload_folder,
                "offload_state_dict": offload_state_dict,
                "low_cpu_mem_usage": low_cpu_mem_usage,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }
869
870
871
872
873
874
875
876
877
878
879
880

            def get_connected_passed_kwargs(prefix):
                connected_passed_class_obj = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
                }
                connected_passed_pipe_kwargs = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
                }

                connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
                return connected_passed_kwargs

881
            connected_pipes = {
882
883
884
                prefix: DiffusionPipeline.from_pretrained(
                    repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
                )
885
886
887
888
889
890
891
892
893
894
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

895
        # 7. Potentially add passed objects if expected
896
897
898
899
900
901
902
903
904
905
906
907
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

908
        # 8. Instantiate the pipeline
909
        model = pipeline_class(**init_kwargs)
910
911
912

        # 9. Save where the model was instantiated from
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
913
914
        return model

915
916
917
918
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

941
942
943
944
945
946
947
948
949
950
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
                is_sequential_cpu_offload = isinstance(getattr(model, "_hf_hook"), accelerate.hooks.AlignDevicesHook)
                accelerate.hooks.remove_hook_from_module(model, recurse=is_sequential_cpu_offload)
        self._all_hooks = []

951
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
952
953
954
955
956
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
957
958
959
960
961
962
963

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
964
965
966
967
968
969
970
971
972
973
974
        """
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

975
976
        self.remove_all_hooks()

977
978
979
980
981
982
983
984
985
986
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
987
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
988
989
990

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
991
        self._offload_device = device
992

993
994
995
996
        self.to("cpu", silence_dtype_warnings=True)
        device_mod = getattr(torch, device.type, None)
        if hasattr(device_mod, "empty_cache") and device_mod.is_available():
            device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
997
998
999
1000
1001

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1002
            model = all_model_components.pop(model_str, None)
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
            if not isinstance(model, torch.nn.Module):
                continue

            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1024
1025
1026
1027
        Function that offloads all components, removes all model hooks that were added when using
        `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
        is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
        functions correctly when applying enable_model_cpu_offload.
1028
1029
1030
1031
1032
1033
        """
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1034
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1035

1036
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1037
        r"""
1038
1039
1040
1041
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
1042
        `enable_model_cpu_offload`, but performance is lower.
1043
1044
1045
1046
1047
1048
1049

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1050
1051
1052
1053
1054
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1055
        self.remove_all_hooks()
1056

1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1067
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1068
1069
1070

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1071
        self._offload_device = device
1072
1073
1074

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1075
1076
1077
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1091
    @classmethod
1092
    @validate_hf_hub_args
1093
1094
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1095
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1096
1097

        Parameters:
Steven Liu's avatar
Steven Liu committed
1098
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1099
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1100
                hosted on the Hub.
1101
1102
1103
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1104
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1105
1106
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1107
1108

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1109
1110
1111
1112
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1113

Steven Liu's avatar
Steven Liu committed
1114
1115
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1116

Steven Liu's avatar
Steven Liu committed
1117
                <Tip warning={true}>
1118

Steven Liu's avatar
Steven Liu committed
1119
                🧪 This is an experimental feature and may change in the future.
1120

Steven Liu's avatar
Steven Liu committed
1121
                </Tip>
1122

Steven Liu's avatar
Steven Liu committed
1123
1124
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1125
1126
1127
1128
1129

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1130
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
Steven Liu's avatar
Steven Liu committed
1131
                incompletely downloaded files are deleted.
1132
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1133
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1134
1135
1136
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1137
1138
1139
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1140
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1141
1142
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1143
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1144
1145
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1146
            custom_revision (`str`, *optional*, defaults to `"main"`):
1147
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1148
1149
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1150
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1151
1152
1153
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1154
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1155
1156
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
1157
1158
1159
1160
1161
1162
1163
1164
1165
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1166
1167
1168
1169
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1170
1171
1172
1173

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1174
1175
1176

        <Tip>

Steven Liu's avatar
Steven Liu committed
1177
1178
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1179
1180
1181
1182

        </Tip>

        """
1183
        cache_dir = kwargs.pop("cache_dir", None)
1184
1185
1186
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1187
1188
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1189
1190
1191
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1192
        custom_revision = kwargs.pop("custom_revision", None)
1193
        variant = kwargs.pop("variant", None)
1194
        use_safetensors = kwargs.pop("use_safetensors", None)
1195
        use_onnx = kwargs.pop("use_onnx", None)
1196
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1197
        trust_remote_code = kwargs.pop("trust_remote_code", False)
1198
1199
1200

        allow_pickle = False
        if use_safetensors is None:
1201
            use_safetensors = True
1202
            allow_pickle = True
1203
1204
1205
1206

        allow_patterns = None
        ignore_patterns = None

1207
        model_info_call_error: Optional[Exception] = None
1208
1209
        if not local_files_only:
            try:
1210
                info = model_info(pretrained_model_name, token=token, revision=revision)
1211
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1212
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1213
                local_files_only = True
1214
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1215

1216
1217
1218
1219
1220
        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1221
                revision=revision,
1222
1223
1224
                proxies=proxies,
                force_download=force_download,
                resume_download=resume_download,
1225
                token=token,
1226
1227
1228
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1229
1230
            ignore_filenames = config_dict.pop("_ignore_files", [])

1231
            # retrieve all folder_names that contain relevant files
1232
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]
1233

1234
            filenames = {sibling.rfilename for sibling in info.siblings}
1235
1236
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

1237
1238
1239
1240
1241
1242
1243
1244
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipelines = getattr(diffusers_module, "pipelines")

            # optionally create a custom component <> custom file mapping
            custom_components = {}
            for component in folder_names:
                module_candidate = config_dict[component][0]

1245
                if module_candidate is None or not isinstance(module_candidate, str):
1246
1247
                    continue

1248
1249
                # We compute candidate file path on the Hub. Do not use `os.path.join`.
                candidate_file = f"{component}/{module_candidate}.py"
1250
1251
1252
1253
1254
1255
1256
1257

                if candidate_file in filenames:
                    custom_components[component] = module_candidate
                elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
                    raise ValueError(
                        f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."
                    )

1258
1259
1260
1261
            if len(variant_filenames) == 0 and variant is not None:
                deprecation_message = (
                    f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                    f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
1262
                    "if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
1263
1264
                    "modeling files is deprecated."
                )
1265
                deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)
1266

Patrick von Platen's avatar
Patrick von Platen committed
1267
1268
1269
1270
            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1271
1272
1273
            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1274
            ) >= version.parse("0.22.0"):
1275
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames)
1276

1277
            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
1278

1279
1280
1281
1282
1283
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

1284
1285
1286
1287
1288
            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1289
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1290
1291
1292
1293
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
1294
            # also allow downloading config.json files with the model
1295
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1296
1297
1298
1299
1300
1301
1302
1303

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1321
1322
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1323
1324
1325
1326
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1327
1328
1329
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1330
1331
                cache_dir=cache_dir,
                revision=custom_revision,
1332
1333
1334
1335
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1336
1337
1338
            if (
                use_safetensors
                and not allow_pickle
1339
1340
1341
                and not is_safetensors_compatible(
                    model_filenames, variant=variant, passed_components=passed_components
                )
1342
1343
            ):
                raise EnvironmentError(
1344
                    f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
1345
                )
1346
1347
            if from_flax:
                ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
1348
1349
1350
            elif use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
1351
1352
                ignore_patterns = ["*.bin", "*.msgpack"]

1353
1354
1355
1356
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1357
1358
                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
1359
1360
1361
1362
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
1363
                    logger.warning(
1364
1365
1366
1367
1368
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

1369
1370
1371
1372
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1373
1374
                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
1375
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
1376
                    logger.warning(
1377
1378
1379
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )

1380
1381
1382
1383
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1384
1385
1386
1387

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1388
1389
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1390
1391
1392
1393
1394
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1395

1396
1397
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1398

1399
            if pipeline_is_cached and not force_download:
1400
1401
1402
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1403

1404
1405
1406
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1407
1408

        # download all allow_patterns - ignore_patterns
1409
        try:
1410
            cached_folder = snapshot_download(
1411
1412
1413
1414
1415
                pretrained_model_name,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
1416
                token=token,
1417
1418
1419
1420
1421
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1422

1423
1424
            # retrieve pipeline class from local file
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1425
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1426

1427
1428
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1429
1430

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1431
1432
1433
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1434
1435
1436
1437
1438
1439
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "resume_download": resume_download,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1440
                        "token": token,
1441
1442
1443
1444
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1445
1446
1447

            return cached_folder

1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1459
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1460
1461
1462
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1463

1464
1465
    @classmethod
    def _get_signature_keys(cls, obj):
1466
1467
1468
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1469
        expected_modules = set(required_parameters.keys()) - {"self"}
1470
1471
1472
1473
1474
1475
1476

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1477
1478
        return expected_modules, optional_parameters

1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1491
1492
1493
1494
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1495
1496
1497
1498
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1522
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1523
1524
1525
1526
1527
1528
1529
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1530
        Convert a NumPy image or a batch of images to a PIL image.
1531
        """
Patrick von Platen's avatar
Patrick von Platen committed
1532
        return numpy_to_pil(images)
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1552
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1553
        r"""
1554
1555
1556
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1557

Steven Liu's avatar
Steven Liu committed
1558
        <Tip warning={true}>
1559

Steven Liu's avatar
Steven Liu committed
1560
1561
1562
1563
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1584
        """
1585
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1586
1587
1588

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1589
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1590
1591
1592
        """
        self.set_use_memory_efficient_attention_xformers(False)

1593
1594
1595
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1596
1597
1598
1599
1600
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1601
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1602
1603
1604
1605

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1606
1607
1608
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1609

1610
1611
        for module in modules:
            fn_recursive_set_mem_eff(module)
1612
1613
1614

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1615
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1626
1627
1628
1629

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1630
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1631
1632
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5",
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1650
1651
1652
1653
1654
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1655
1656
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1657
1658
1659
1660
1661
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1662
1663
1664
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1665

1666
1667
        for module in modules:
            module.set_attention_slice(slice_size)
1668

1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing pipeline components without reallocating additional memory.

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
        torch_dtype = kwargs.pop("torch_dtype", None)

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
                    logger.warn(
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

        missing_modules = (
            set(expected_modules)
            - set(pipeline._optional_components)
            - set(pipeline_kwargs.keys())
            - set(true_optional_modules)
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query,
        key, value) are fused. For cross-attention modules, key and value projection matrices are fused.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False