resnet.py 32.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2023 The HuggingFace Team. All rights reserved.
# `TemporalConvLayer` Copyright 2023 Alibaba DAMO-VILAB, The ModelScope Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

patil-suraj's avatar
patil-suraj committed
16
from functools import partial
17
from typing import Optional
Patrick von Platen's avatar
Patrick von Platen committed
18

19
20
21
22
import torch
import torch.nn as nn
import torch.nn.functional as F

23
24
from .attention import AdaGroupNorm

25

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
class Upsample1D(nn.Module):
    """
    An upsampling layer with an optional convolution.

    Parameters:
            channels: channels in the inputs and outputs.
            use_conv: a bool determining if a convolution is applied.
            use_conv_transpose:
            out_channels:
    """

    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
        self.name = name

        self.conv = None
        if use_conv_transpose:
            self.conv = nn.ConvTranspose1d(channels, self.out_channels, 4, 2, 1)
        elif use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, padding=1)

    def forward(self, x):
        assert x.shape[1] == self.channels
        if self.use_conv_transpose:
            return self.conv(x)

        x = F.interpolate(x, scale_factor=2.0, mode="nearest")

        if self.use_conv:
            x = self.conv(x)

        return x


class Downsample1D(nn.Module):
    """
    A downsampling layer with an optional convolution.

    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
        out_channels:
        padding:
    """

    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
        stride = 2
        self.name = name

        if use_conv:
            self.conv = nn.Conv1d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
        else:
            assert self.channels == self.out_channels
            self.conv = nn.AvgPool1d(kernel_size=stride, stride=stride)

    def forward(self, x):
        assert x.shape[1] == self.channels
        return self.conv(x)


95
class Upsample2D(nn.Module):
96
97
98
    """
    An upsampling layer with an optional convolution.

99
100
101
    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
102
103
        use_conv_transpose:
        out_channels:
104
105
    """

106
    def __init__(self, channels, use_conv=False, use_conv_transpose=False, out_channels=None, name="conv"):
107
108
109
110
111
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.use_conv_transpose = use_conv_transpose
patil-suraj's avatar
patil-suraj committed
112
        self.name = name
113

patil-suraj's avatar
patil-suraj committed
114
        conv = None
115
        if use_conv_transpose:
116
            conv = nn.ConvTranspose2d(channels, self.out_channels, 4, 2, 1)
117
        elif use_conv:
118
            conv = nn.Conv2d(self.channels, self.out_channels, 3, padding=1)
patil-suraj's avatar
patil-suraj committed
119

120
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
121
122
123
124
        if name == "conv":
            self.conv = conv
        else:
            self.Conv2d_0 = conv
125

126
    def forward(self, hidden_states, output_size=None):
127
        assert hidden_states.shape[1] == self.channels
128

129
        if self.use_conv_transpose:
130
            return self.conv(hidden_states)
patil-suraj's avatar
patil-suraj committed
131

132
133
134
135
136
137
138
        # Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
        # TODO(Suraj): Remove this cast once the issue is fixed in PyTorch
        # https://github.com/pytorch/pytorch/issues/86679
        dtype = hidden_states.dtype
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(torch.float32)

139
140
141
142
        # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
        if hidden_states.shape[0] >= 64:
            hidden_states = hidden_states.contiguous()

143
144
145
146
147
148
        # if `output_size` is passed we force the interpolation output
        # size and do not make use of `scale_factor=2`
        if output_size is None:
            hidden_states = F.interpolate(hidden_states, scale_factor=2.0, mode="nearest")
        else:
            hidden_states = F.interpolate(hidden_states, size=output_size, mode="nearest")
patil-suraj's avatar
patil-suraj committed
149

150
151
152
153
        # If the input is bfloat16, we cast back to bfloat16
        if dtype == torch.bfloat16:
            hidden_states = hidden_states.to(dtype)

154
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
155
        if self.use_conv:
patil-suraj's avatar
patil-suraj committed
156
            if self.name == "conv":
157
                hidden_states = self.conv(hidden_states)
patil-suraj's avatar
patil-suraj committed
158
            else:
159
                hidden_states = self.Conv2d_0(hidden_states)
patil-suraj's avatar
patil-suraj committed
160

161
        return hidden_states
162
163


164
class Downsample2D(nn.Module):
165
166
167
    """
    A downsampling layer with an optional convolution.

168
169
170
    Parameters:
        channels: channels in the inputs and outputs.
        use_conv: a bool determining if a convolution is applied.
171
172
        out_channels:
        padding:
173
174
    """

175
    def __init__(self, channels, use_conv=False, out_channels=None, padding=1, name="conv"):
176
177
178
179
180
        super().__init__()
        self.channels = channels
        self.out_channels = out_channels or channels
        self.use_conv = use_conv
        self.padding = padding
181
        stride = 2
patil-suraj's avatar
patil-suraj committed
182
183
        self.name = name

184
        if use_conv:
185
            conv = nn.Conv2d(self.channels, self.out_channels, 3, stride=stride, padding=padding)
186
187
        else:
            assert self.channels == self.out_channels
188
            conv = nn.AvgPool2d(kernel_size=stride, stride=stride)
patil-suraj's avatar
patil-suraj committed
189

190
        # TODO(Suraj, Patrick) - clean up after weight dicts are correctly renamed
patil-suraj's avatar
patil-suraj committed
191
        if name == "conv":
Patrick von Platen's avatar
Patrick von Platen committed
192
            self.Conv2d_0 = conv
patil-suraj's avatar
patil-suraj committed
193
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
194
        elif name == "Conv2d_0":
Patrick von Platen's avatar
Patrick von Platen committed
195
            self.conv = conv
patil-suraj's avatar
patil-suraj committed
196
        else:
Patrick von Platen's avatar
Patrick von Platen committed
197
            self.conv = conv
198

199
200
    def forward(self, hidden_states):
        assert hidden_states.shape[1] == self.channels
201
        if self.use_conv and self.padding == 0:
202
            pad = (0, 1, 0, 1)
203
            hidden_states = F.pad(hidden_states, pad, mode="constant", value=0)
patil-suraj's avatar
patil-suraj committed
204

205
206
        assert hidden_states.shape[1] == self.channels
        hidden_states = self.conv(hidden_states)
207

208
        return hidden_states
209
210
211
212
213
214
215
216
217
218
219
220


class FirUpsample2D(nn.Module):
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
        self.use_conv = use_conv
        self.fir_kernel = fir_kernel
        self.out_channels = out_channels

221
    def _upsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
222
223
224
        """Fused `upsample_2d()` followed by `Conv2d()`.

        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
225
226
227
228
229
230
231
232
233
234
235
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
        arbitrary order.

        Args:
            hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
            weight: Weight tensor of the shape `[filterH, filterW, inChannels,
                outChannels]`. Grouped convolution can be performed by `inChannels = x.shape[0] // numGroups`.
            kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
                (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
            factor: Integer upsampling factor (default: 2).
            gain: Scaling factor for signal magnitude (default: 1.0).
236
237

        Returns:
238
239
            output: Tensor of the shape `[N, C, H * factor, W * factor]` or `[N, H * factor, W * factor, C]`, and same
            datatype as `hidden_states`.
240
241
242
243
244
        """

        assert isinstance(factor, int) and factor >= 1

        # Setup filter kernel.
245
246
        if kernel is None:
            kernel = [1] * factor
247
248

        # setup kernel
249
        kernel = torch.tensor(kernel, dtype=torch.float32)
250
        if kernel.ndim == 1:
251
252
            kernel = torch.outer(kernel, kernel)
        kernel /= torch.sum(kernel)
253

254
        kernel = kernel * (gain * (factor**2))
255
256

        if self.use_conv:
257
258
259
            convH = weight.shape[2]
            convW = weight.shape[3]
            inC = weight.shape[1]
260

261
            pad_value = (kernel.shape[0] - factor) - (convW - 1)
262
263
264

            stride = (factor, factor)
            # Determine data dimensions.
265
266
267
268
            output_shape = (
                (hidden_states.shape[2] - 1) * factor + convH,
                (hidden_states.shape[3] - 1) * factor + convW,
            )
269
            output_padding = (
270
271
                output_shape[0] - (hidden_states.shape[2] - 1) * stride[0] - convH,
                output_shape[1] - (hidden_states.shape[3] - 1) * stride[1] - convW,
272
273
            )
            assert output_padding[0] >= 0 and output_padding[1] >= 0
274
            num_groups = hidden_states.shape[1] // inC
275
276

            # Transpose weights.
277
            weight = torch.reshape(weight, (num_groups, -1, inC, convH, convW))
Yih-Dar's avatar
Yih-Dar committed
278
            weight = torch.flip(weight, dims=[3, 4]).permute(0, 2, 1, 3, 4)
279
            weight = torch.reshape(weight, (num_groups * inC, -1, convH, convW))
280

281
282
283
            inverse_conv = F.conv_transpose2d(
                hidden_states, weight, stride=stride, output_padding=output_padding, padding=0
            )
284

285
286
287
288
289
            output = upfirdn2d_native(
                inverse_conv,
                torch.tensor(kernel, device=inverse_conv.device),
                pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2 + 1),
            )
290
        else:
291
292
293
294
295
296
            pad_value = kernel.shape[0] - factor
            output = upfirdn2d_native(
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                up=factor,
                pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
297
298
            )

299
        return output
300

301
    def forward(self, hidden_states):
302
        if self.use_conv:
303
            height = self._upsample_2d(hidden_states, self.Conv2d_0.weight, kernel=self.fir_kernel)
304
            height = height + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
305
        else:
306
            height = self._upsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
307

308
        return height
309
310
311
312
313
314
315


class FirDownsample2D(nn.Module):
    def __init__(self, channels=None, out_channels=None, use_conv=False, fir_kernel=(1, 3, 3, 1)):
        super().__init__()
        out_channels = out_channels if out_channels else channels
        if use_conv:
316
            self.Conv2d_0 = nn.Conv2d(channels, out_channels, kernel_size=3, stride=1, padding=1)
317
318
319
320
        self.fir_kernel = fir_kernel
        self.use_conv = use_conv
        self.out_channels = out_channels

321
    def _downsample_2d(self, hidden_states, weight=None, kernel=None, factor=2, gain=1):
322
        """Fused `Conv2d()` followed by `downsample_2d()`.
323
324
325
        Padding is performed only once at the beginning, not between the operations. The fused op is considerably more
        efficient than performing the same calculation using standard TensorFlow ops. It supports gradients of
        arbitrary order.
326
327

        Args:
328
329
330
331
332
333
334
335
            hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
            weight:
                Weight tensor of the shape `[filterH, filterW, inChannels, outChannels]`. Grouped convolution can be
                performed by `inChannels = x.shape[0] // numGroups`.
            kernel: FIR filter of the shape `[firH, firW]` or `[firN]` (separable). The default is `[1] *
            factor`, which corresponds to average pooling.
            factor: Integer downsampling factor (default: 2).
            gain: Scaling factor for signal magnitude (default: 1.0).
336
337

        Returns:
338
339
            output: Tensor of the shape `[N, C, H // factor, W // factor]` or `[N, H // factor, W // factor, C]`, and
            same datatype as `x`.
340
        """
341

342
        assert isinstance(factor, int) and factor >= 1
343
344
        if kernel is None:
            kernel = [1] * factor
345

346
        # setup kernel
347
        kernel = torch.tensor(kernel, dtype=torch.float32)
348
        if kernel.ndim == 1:
349
350
            kernel = torch.outer(kernel, kernel)
        kernel /= torch.sum(kernel)
351

352
        kernel = kernel * gain
353

354
        if self.use_conv:
355
            _, _, convH, convW = weight.shape
356
357
358
359
360
361
362
            pad_value = (kernel.shape[0] - factor) + (convW - 1)
            stride_value = [factor, factor]
            upfirdn_input = upfirdn2d_native(
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                pad=((pad_value + 1) // 2, pad_value // 2),
            )
363
            output = F.conv2d(upfirdn_input, weight, stride=stride_value, padding=0)
364
        else:
365
            pad_value = kernel.shape[0] - factor
366
            output = upfirdn2d_native(
367
368
369
370
371
                hidden_states,
                torch.tensor(kernel, device=hidden_states.device),
                down=factor,
                pad=((pad_value + 1) // 2, pad_value // 2),
            )
372

373
        return output
374

375
    def forward(self, hidden_states):
376
        if self.use_conv:
377
378
            downsample_input = self._downsample_2d(hidden_states, weight=self.Conv2d_0.weight, kernel=self.fir_kernel)
            hidden_states = downsample_input + self.Conv2d_0.bias.reshape(1, -1, 1, 1)
379
        else:
380
            hidden_states = self._downsample_2d(hidden_states, kernel=self.fir_kernel, factor=2)
381

382
        return hidden_states
383
384


385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
# downsample/upsample layer used in k-upscaler, might be able to use FirDownsample2D/DirUpsample2D instead
class KDownsample2D(nn.Module):
    def __init__(self, pad_mode="reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]])
        self.pad = kernel_1d.shape[1] // 2 - 1
        self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)

    def forward(self, x):
        x = F.pad(x, (self.pad,) * 4, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
        indices = torch.arange(x.shape[1], device=x.device)
        weight[indices, indices] = self.kernel.to(weight)
        return F.conv2d(x, weight, stride=2)


class KUpsample2D(nn.Module):
    def __init__(self, pad_mode="reflect"):
        super().__init__()
        self.pad_mode = pad_mode
        kernel_1d = torch.tensor([[1 / 8, 3 / 8, 3 / 8, 1 / 8]]) * 2
        self.pad = kernel_1d.shape[1] // 2 - 1
        self.register_buffer("kernel", kernel_1d.T @ kernel_1d, persistent=False)

    def forward(self, x):
        x = F.pad(x, ((self.pad + 1) // 2,) * 4, self.pad_mode)
        weight = x.new_zeros([x.shape[1], x.shape[1], self.kernel.shape[0], self.kernel.shape[1]])
        indices = torch.arange(x.shape[1], device=x.device)
        weight[indices, indices] = self.kernel.to(weight)
        return F.conv_transpose2d(x, weight, stride=2, padding=self.pad * 2 + 1)


418
class ResnetBlock2D(nn.Module):
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
    r"""
    A Resnet block.

    Parameters:
        in_channels (`int`): The number of channels in the input.
        out_channels (`int`, *optional*, default to be `None`):
            The number of output channels for the first conv2d layer. If None, same as `in_channels`.
        dropout (`float`, *optional*, defaults to `0.0`): The dropout probability to use.
        temb_channels (`int`, *optional*, default to `512`): the number of channels in timestep embedding.
        groups (`int`, *optional*, default to `32`): The number of groups to use for the first normalization layer.
        groups_out (`int`, *optional*, default to None):
            The number of groups to use for the second normalization layer. if set to None, same as `groups`.
        eps (`float`, *optional*, defaults to `1e-6`): The epsilon to use for the normalization.
        non_linearity (`str`, *optional*, default to `"swish"`): the activation function to use.
        time_embedding_norm (`str`, *optional*, default to `"default"` ): Time scale shift config.
            By default, apply timestep embedding conditioning with a simple shift mechanism. Choose "scale_shift" or
            "ada_group" for a stronger conditioning with scale and shift.
Alexander Pivovarov's avatar
Alexander Pivovarov committed
436
        kernel (`torch.FloatTensor`, optional, default to None): FIR filter, see
437
438
439
440
441
442
443
444
445
446
447
448
            [`~models.resnet.FirUpsample2D`] and [`~models.resnet.FirDownsample2D`].
        output_scale_factor (`float`, *optional*, default to be `1.0`): the scale factor to use for the output.
        use_in_shortcut (`bool`, *optional*, default to `True`):
            If `True`, add a 1x1 nn.conv2d layer for skip-connection.
        up (`bool`, *optional*, default to `False`): If `True`, add an upsample layer.
        down (`bool`, *optional*, default to `False`): If `True`, add a downsample layer.
        conv_shortcut_bias (`bool`, *optional*, default to `True`):  If `True`, adds a learnable bias to the
            `conv_shortcut` output.
        conv_2d_out_channels (`int`, *optional*, default to `None`): the number of channels in the output.
            If None, same as `out_channels`.
    """

449
450
451
452
453
454
455
456
457
458
459
460
461
    def __init__(
        self,
        *,
        in_channels,
        out_channels=None,
        conv_shortcut=False,
        dropout=0.0,
        temb_channels=512,
        groups=32,
        groups_out=None,
        pre_norm=True,
        eps=1e-6,
        non_linearity="swish",
462
        skip_time_act=False,
463
        time_embedding_norm="default",  # default, scale_shift, ada_group
464
465
        kernel=None,
        output_scale_factor=1.0,
466
        use_in_shortcut=None,
467
468
        up=False,
        down=False,
469
470
        conv_shortcut_bias: bool = True,
        conv_2d_out_channels: Optional[int] = None,
471
472
473
474
475
476
477
478
479
480
481
    ):
        super().__init__()
        self.pre_norm = pre_norm
        self.pre_norm = True
        self.in_channels = in_channels
        out_channels = in_channels if out_channels is None else out_channels
        self.out_channels = out_channels
        self.use_conv_shortcut = conv_shortcut
        self.up = up
        self.down = down
        self.output_scale_factor = output_scale_factor
482
        self.time_embedding_norm = time_embedding_norm
483
        self.skip_time_act = skip_time_act
484
485
486
487

        if groups_out is None:
            groups_out = groups

488
489
490
491
        if self.time_embedding_norm == "ada_group":
            self.norm1 = AdaGroupNorm(temb_channels, in_channels, groups, eps=eps)
        else:
            self.norm1 = torch.nn.GroupNorm(num_groups=groups, num_channels=in_channels, eps=eps, affine=True)
492
493
494

        self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1)

495
        if temb_channels is not None:
Will Berman's avatar
Will Berman committed
496
            if self.time_embedding_norm == "default":
497
                self.time_emb_proj = torch.nn.Linear(temb_channels, out_channels)
Will Berman's avatar
Will Berman committed
498
            elif self.time_embedding_norm == "scale_shift":
499
500
501
                self.time_emb_proj = torch.nn.Linear(temb_channels, 2 * out_channels)
            elif self.time_embedding_norm == "ada_group":
                self.time_emb_proj = None
Will Berman's avatar
Will Berman committed
502
503
            else:
                raise ValueError(f"unknown time_embedding_norm : {self.time_embedding_norm} ")
504
505
        else:
            self.time_emb_proj = None
506

507
508
509
510
511
        if self.time_embedding_norm == "ada_group":
            self.norm2 = AdaGroupNorm(temb_channels, out_channels, groups_out, eps=eps)
        else:
            self.norm2 = torch.nn.GroupNorm(num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True)

512
        self.dropout = torch.nn.Dropout(dropout)
513
514
        conv_2d_out_channels = conv_2d_out_channels or out_channels
        self.conv2 = torch.nn.Conv2d(out_channels, conv_2d_out_channels, kernel_size=3, stride=1, padding=1)
515
516
517
518

        if non_linearity == "swish":
            self.nonlinearity = lambda x: F.silu(x)
        elif non_linearity == "mish":
519
            self.nonlinearity = nn.Mish()
520
521
        elif non_linearity == "silu":
            self.nonlinearity = nn.SiLU()
522
523
        elif non_linearity == "gelu":
            self.nonlinearity = nn.GELU()
524
525
526
527
528

        self.upsample = self.downsample = None
        if self.up:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
529
                self.upsample = lambda x: upsample_2d(x, kernel=fir_kernel)
530
531
532
533
534
535
536
            elif kernel == "sde_vp":
                self.upsample = partial(F.interpolate, scale_factor=2.0, mode="nearest")
            else:
                self.upsample = Upsample2D(in_channels, use_conv=False)
        elif self.down:
            if kernel == "fir":
                fir_kernel = (1, 3, 3, 1)
537
                self.downsample = lambda x: downsample_2d(x, kernel=fir_kernel)
538
539
540
541
542
            elif kernel == "sde_vp":
                self.downsample = partial(F.avg_pool2d, kernel_size=2, stride=2)
            else:
                self.downsample = Downsample2D(in_channels, use_conv=False, padding=1, name="op")

543
        self.use_in_shortcut = self.in_channels != conv_2d_out_channels if use_in_shortcut is None else use_in_shortcut
544
545

        self.conv_shortcut = None
546
        if self.use_in_shortcut:
547
548
549
            self.conv_shortcut = torch.nn.Conv2d(
                in_channels, conv_2d_out_channels, kernel_size=1, stride=1, padding=0, bias=conv_shortcut_bias
            )
550

551
552
    def forward(self, input_tensor, temb):
        hidden_states = input_tensor
553

554
555
556
557
558
        if self.time_embedding_norm == "ada_group":
            hidden_states = self.norm1(hidden_states, temb)
        else:
            hidden_states = self.norm1(hidden_states)

559
        hidden_states = self.nonlinearity(hidden_states)
560
561

        if self.upsample is not None:
562
563
564
565
            # upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
            if hidden_states.shape[0] >= 64:
                input_tensor = input_tensor.contiguous()
                hidden_states = hidden_states.contiguous()
566
            input_tensor = self.upsample(input_tensor)
567
            hidden_states = self.upsample(hidden_states)
568
        elif self.downsample is not None:
569
            input_tensor = self.downsample(input_tensor)
570
            hidden_states = self.downsample(hidden_states)
571

572
        hidden_states = self.conv1(hidden_states)
573

574
        if self.time_emb_proj is not None:
575
576
577
            if not self.skip_time_act:
                temb = self.nonlinearity(temb)
            temb = self.time_emb_proj(temb)[:, :, None, None]
Will Berman's avatar
Will Berman committed
578
579

        if temb is not None and self.time_embedding_norm == "default":
580
            hidden_states = hidden_states + temb
581

582
583
584
585
        if self.time_embedding_norm == "ada_group":
            hidden_states = self.norm2(hidden_states, temb)
        else:
            hidden_states = self.norm2(hidden_states)
Will Berman's avatar
Will Berman committed
586
587
588
589
590

        if temb is not None and self.time_embedding_norm == "scale_shift":
            scale, shift = torch.chunk(temb, 2, dim=1)
            hidden_states = hidden_states * (1 + scale) + shift

591
        hidden_states = self.nonlinearity(hidden_states)
592

593
594
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.conv2(hidden_states)
595
596

        if self.conv_shortcut is not None:
597
            input_tensor = self.conv_shortcut(input_tensor)
598

599
        output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
600

601
        return output_tensor
602

Patrick von Platen's avatar
Patrick von Platen committed
603
604

class Mish(torch.nn.Module):
605
606
    def forward(self, hidden_states):
        return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
Patrick von Platen's avatar
Patrick von Platen committed
607
608


609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
# unet_rl.py
def rearrange_dims(tensor):
    if len(tensor.shape) == 2:
        return tensor[:, :, None]
    if len(tensor.shape) == 3:
        return tensor[:, :, None, :]
    elif len(tensor.shape) == 4:
        return tensor[:, :, 0, :]
    else:
        raise ValueError(f"`len(tensor)`: {len(tensor)} has to be 2, 3 or 4.")


class Conv1dBlock(nn.Module):
    """
    Conv1d --> GroupNorm --> Mish
    """

    def __init__(self, inp_channels, out_channels, kernel_size, n_groups=8):
        super().__init__()

        self.conv1d = nn.Conv1d(inp_channels, out_channels, kernel_size, padding=kernel_size // 2)
        self.group_norm = nn.GroupNorm(n_groups, out_channels)
        self.mish = nn.Mish()

    def forward(self, x):
        x = self.conv1d(x)
        x = rearrange_dims(x)
        x = self.group_norm(x)
        x = rearrange_dims(x)
        x = self.mish(x)
        return x


# unet_rl.py
class ResidualTemporalBlock1D(nn.Module):
    def __init__(self, inp_channels, out_channels, embed_dim, kernel_size=5):
        super().__init__()
        self.conv_in = Conv1dBlock(inp_channels, out_channels, kernel_size)
        self.conv_out = Conv1dBlock(out_channels, out_channels, kernel_size)

        self.time_emb_act = nn.Mish()
        self.time_emb = nn.Linear(embed_dim, out_channels)

        self.residual_conv = (
            nn.Conv1d(inp_channels, out_channels, 1) if inp_channels != out_channels else nn.Identity()
        )

    def forward(self, x, t):
        """
        Args:
            x : [ batch_size x inp_channels x horizon ]
            t : [ batch_size x embed_dim ]

        returns:
            out : [ batch_size x out_channels x horizon ]
        """
        t = self.time_emb_act(t)
        t = self.time_emb(t)
        out = self.conv_in(x) + rearrange_dims(t)
        out = self.conv_out(out)
        return out + self.residual_conv(x)


672
def upsample_2d(hidden_states, kernel=None, factor=2, gain=1):
673
    r"""Upsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
674
675
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and upsamples each image with the given
    filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the specified
676
677
678
679
680
681
    `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its shape is
    a: multiple of the upsampling factor.

    Args:
        hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
        kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
Patrick von Platen's avatar
Patrick von Platen committed
682
          (separable). The default is `[1] * factor`, which corresponds to nearest-neighbor upsampling.
683
684
        factor: Integer upsampling factor (default: 2).
        gain: Scaling factor for signal magnitude (default: 1.0).
Patrick von Platen's avatar
Patrick von Platen committed
685
686

    Returns:
687
        output: Tensor of the shape `[N, C, H * factor, W * factor]`
Patrick von Platen's avatar
Patrick von Platen committed
688
689
    """
    assert isinstance(factor, int) and factor >= 1
690
691
    if kernel is None:
        kernel = [1] * factor
692

693
    kernel = torch.tensor(kernel, dtype=torch.float32)
694
    if kernel.ndim == 1:
695
696
        kernel = torch.outer(kernel, kernel)
    kernel /= torch.sum(kernel)
697

698
    kernel = kernel * (gain * (factor**2))
699
    pad_value = kernel.shape[0] - factor
700
    output = upfirdn2d_native(
701
702
703
704
705
        hidden_states,
        kernel.to(device=hidden_states.device),
        up=factor,
        pad=((pad_value + 1) // 2 + factor - 1, pad_value // 2),
    )
706
    return output
Patrick von Platen's avatar
Patrick von Platen committed
707
708


709
def downsample_2d(hidden_states, kernel=None, factor=2, gain=1):
710
    r"""Downsample2D a batch of 2D images with the given filter.
Patrick von Platen's avatar
Patrick von Platen committed
711
712
713
714
    Accepts a batch of 2D images of the shape `[N, C, H, W]` or `[N, H, W, C]` and downsamples each image with the
    given filter. The filter is normalized so that if the input pixels are constant, they will be scaled by the
    specified `gain`. Pixels outside the image are assumed to be zero, and the filter is padded with zeros so that its
    shape is a multiple of the downsampling factor.
715
716
717

    Args:
        hidden_states: Input tensor of the shape `[N, C, H, W]` or `[N, H, W, C]`.
718
        kernel: FIR filter of the shape `[firH, firW]` or `[firN]`
Patrick von Platen's avatar
Patrick von Platen committed
719
          (separable). The default is `[1] * factor`, which corresponds to average pooling.
720
721
        factor: Integer downsampling factor (default: 2).
        gain: Scaling factor for signal magnitude (default: 1.0).
Patrick von Platen's avatar
Patrick von Platen committed
722
723

    Returns:
724
        output: Tensor of the shape `[N, C, H // factor, W // factor]`
Patrick von Platen's avatar
Patrick von Platen committed
725
726
727
    """

    assert isinstance(factor, int) and factor >= 1
728
729
    if kernel is None:
        kernel = [1] * factor
Patrick von Platen's avatar
Patrick von Platen committed
730

731
    kernel = torch.tensor(kernel, dtype=torch.float32)
732
    if kernel.ndim == 1:
733
734
        kernel = torch.outer(kernel, kernel)
    kernel /= torch.sum(kernel)
735

736
    kernel = kernel * gain
737
    pad_value = kernel.shape[0] - factor
738
    output = upfirdn2d_native(
739
740
        hidden_states, kernel.to(device=hidden_states.device), down=factor, pad=((pad_value + 1) // 2, pad_value // 2)
    )
741
    return output
742
743


744
def upfirdn2d_native(tensor, kernel, up=1, down=1, pad=(0, 0)):
745
746
747
748
749
    up_x = up_y = up
    down_x = down_y = down
    pad_x0 = pad_y0 = pad[0]
    pad_x1 = pad_y1 = pad[1]

750
751
    _, channel, in_h, in_w = tensor.shape
    tensor = tensor.reshape(-1, in_h, in_w, 1)
752

753
    _, in_h, in_w, minor = tensor.shape
754
755
    kernel_h, kernel_w = kernel.shape

756
    out = tensor.view(-1, in_h, 1, in_w, 1, minor)
757
758
759
760
    out = F.pad(out, [0, 0, 0, up_x - 1, 0, 0, 0, up_y - 1])
    out = out.view(-1, in_h * up_y, in_w * up_x, minor)

    out = F.pad(out, [0, 0, max(pad_x0, 0), max(pad_x1, 0), max(pad_y0, 0), max(pad_y1, 0)])
761
    out = out.to(tensor.device)  # Move back to mps if necessary
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    out = out[
        :,
        max(-pad_y0, 0) : out.shape[1] - max(-pad_y1, 0),
        max(-pad_x0, 0) : out.shape[2] - max(-pad_x1, 0),
        :,
    ]

    out = out.permute(0, 3, 1, 2)
    out = out.reshape([-1, 1, in_h * up_y + pad_y0 + pad_y1, in_w * up_x + pad_x0 + pad_x1])
    w = torch.flip(kernel, [0, 1]).view(1, 1, kernel_h, kernel_w)
    out = F.conv2d(out, w)
    out = out.reshape(
        -1,
        minor,
        in_h * up_y + pad_y0 + pad_y1 - kernel_h + 1,
        in_w * up_x + pad_x0 + pad_x1 - kernel_w + 1,
    )
    out = out.permute(0, 2, 3, 1)
    out = out[:, ::down_y, ::down_x, :]

    out_h = (in_h * up_y + pad_y0 + pad_y1 - kernel_h) // down_y + 1
    out_w = (in_w * up_x + pad_x0 + pad_x1 - kernel_w) // down_x + 1

    return out.view(-1, channel, out_h, out_w)
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843


class TemporalConvLayer(nn.Module):
    """
    Temporal convolutional layer that can be used for video (sequence of images) input Code mostly copied from:
    https://github.com/modelscope/modelscope/blob/1509fdb973e5871f37148a4b5e5964cafd43e64d/modelscope/models/multi_modal/video_synthesis/unet_sd.py#L1016
    """

    def __init__(self, in_dim, out_dim=None, dropout=0.0):
        super().__init__()
        out_dim = out_dim or in_dim
        self.in_dim = in_dim
        self.out_dim = out_dim

        # conv layers
        self.conv1 = nn.Sequential(
            nn.GroupNorm(32, in_dim), nn.SiLU(), nn.Conv3d(in_dim, out_dim, (3, 1, 1), padding=(1, 0, 0))
        )
        self.conv2 = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )
        self.conv3 = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )
        self.conv4 = nn.Sequential(
            nn.GroupNorm(32, out_dim),
            nn.SiLU(),
            nn.Dropout(dropout),
            nn.Conv3d(out_dim, in_dim, (3, 1, 1), padding=(1, 0, 0)),
        )

        # zero out the last layer params,so the conv block is identity
        nn.init.zeros_(self.conv4[-1].weight)
        nn.init.zeros_(self.conv4[-1].bias)

    def forward(self, hidden_states, num_frames=1):
        hidden_states = (
            hidden_states[None, :].reshape((-1, num_frames) + hidden_states.shape[1:]).permute(0, 2, 1, 3, 4)
        )

        identity = hidden_states
        hidden_states = self.conv1(hidden_states)
        hidden_states = self.conv2(hidden_states)
        hidden_states = self.conv3(hidden_states)
        hidden_states = self.conv4(hidden_states)

        hidden_states = identity + hidden_states

        hidden_states = hidden_states.permute(0, 2, 1, 3, 4).reshape(
            (hidden_states.shape[0] * hidden_states.shape[2], -1) + hidden_states.shape[3:]
        )
        return hidden_states