scheduling_euler_discrete.py 34.1 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
from ..utils import BaseOutput, is_scipy_available, logging
Dhruv Nair's avatar
Dhruv Nair committed
24
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27


28
29
30
if is_scipy_available():
    import scipy.stats

hlky's avatar
hlky committed
31
32
33
34
35
36
37
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EulerDiscreteSchedulerOutput(BaseOutput):
    """
38
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
39
40

    Args:
41
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
43
            denoising loop.
44
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
45
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
46
47
48
            `pred_original_sample` can be used to preview progress or for guidance.
    """

49
50
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
hlky's avatar
hlky committed
51
52


53
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
54
55
56
57
58
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
59
60
61
62
63
64
65
66
67
68
69
70
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
71
72
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
73
74
75
76

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
77
    if alpha_transform_type == "cosine":
78

YiYi Xu's avatar
YiYi Xu committed
79
80
81
82
83
84
85
86
87
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
88
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
89
90
91
92
93

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
94
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
95
96
97
    return torch.tensor(betas, dtype=torch.float32)


98
99
100
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
Quentin Gallouédec's avatar
Quentin Gallouédec committed
101
    Rescales betas to have zero terminal SNR Based on https://huggingface.co/papers/2305.08891 (Algorithm 1)
102
103

    Args:
104
        betas (`torch.Tensor`):
105
106
107
            the betas that the scheduler is being initialized with.

    Returns:
108
        `torch.Tensor`: rescaled betas with zero terminal SNR
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


hlky's avatar
hlky committed
134
135
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
136
    Euler scheduler.
hlky's avatar
hlky committed
137

138
139
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
140
141

    Args:
142
143
144
145
146
147
148
149
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
150
            `linear` or `scaled_linear`.
151
152
153
154
155
156
157
158
159
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        interpolation_type(`str`, defaults to `"linear"`, *optional*):
            The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of
            `"linear"` or `"log_linear"`.
160
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
161
162
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
163
164
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
165
166
167
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
168
169
170
171
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
172
            An offset added to the inference steps, as required by some model families.
173
174
175
176
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
177
178
179
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
hlky's avatar
hlky committed
180
181
    """

Kashif Rasul's avatar
Kashif Rasul committed
182
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
183
    order = 1
184

hlky's avatar
hlky committed
185
186
187
188
189
190
191
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
192
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Suraj Patil's avatar
Suraj Patil committed
193
        prediction_type: str = "epsilon",
194
        interpolation_type: str = "linear",
195
        use_karras_sigmas: Optional[bool] = False,
196
        use_exponential_sigmas: Optional[bool] = False,
197
        use_beta_sigmas: Optional[bool] = False,
Suraj Patil's avatar
Suraj Patil committed
198
199
        sigma_min: Optional[float] = None,
        sigma_max: Optional[float] = None,
200
        timestep_spacing: str = "linspace",
Suraj Patil's avatar
Suraj Patil committed
201
        timestep_type: str = "discrete",  # can be "discrete" or "continuous"
202
        steps_offset: int = 0,
203
        rescale_betas_zero_snr: bool = False,
204
        final_sigmas_type: str = "zero",  # can be "zero" or "sigma_min"
hlky's avatar
hlky committed
205
    ):
206
207
208
209
210
211
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
hlky's avatar
hlky committed
212
        if trained_betas is not None:
213
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
214
215
216
217
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
218
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
219
220
221
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
222
        else:
223
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
hlky's avatar
hlky committed
224

225
226
227
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

hlky's avatar
hlky committed
228
229
230
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

231
232
233
234
235
        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

236
        sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0)
Suraj Patil's avatar
Suraj Patil committed
237
238
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
hlky's avatar
hlky committed
239
240
241

        # setable values
        self.num_inference_steps = None
Suraj Patil's avatar
Suraj Patil committed
242
243
244
245
246
247
248
249
250

        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if timestep_type == "continuous" and prediction_type == "v_prediction":
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas])
        else:
            self.timesteps = timesteps

        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

hlky's avatar
hlky committed
251
        self.is_scale_input_called = False
252
        self.use_karras_sigmas = use_karras_sigmas
253
        self.use_exponential_sigmas = use_exponential_sigmas
254
        self.use_beta_sigmas = use_beta_sigmas
hlky's avatar
hlky committed
255

YiYi Xu's avatar
YiYi Xu committed
256
        self._step_index = None
257
        self._begin_index = None
258
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
259

260
261
262
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
263
        max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max()
264
        if self.config.timestep_spacing in ["linspace", "trailing"]:
265
            return max_sigma
266

267
        return (max_sigma**2 + 1) ** 0.5
268

YiYi Xu's avatar
YiYi Xu committed
269
270
271
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
272
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
273
274
275
        """
        return self._step_index

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

294
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
hlky's avatar
hlky committed
295
        """
296
297
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
298
299

        Args:
300
            sample (`torch.Tensor`):
301
302
303
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
304
305

        Returns:
306
            `torch.Tensor`:
307
                A scaled input sample.
hlky's avatar
hlky committed
308
        """
YiYi Xu's avatar
YiYi Xu committed
309
310
        if self.step_index is None:
            self._init_step_index(timestep)
311

YiYi Xu's avatar
YiYi Xu committed
312
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
313
        sample = sample / ((sigma**2 + 1) ** 0.5)
314

hlky's avatar
hlky committed
315
316
317
        self.is_scale_input_called = True
        return sample

318
319
320
321
322
323
324
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
        sigmas: Optional[List[float]] = None,
    ):
hlky's avatar
hlky committed
325
        """
326
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
327
328
329

        Args:
            num_inference_steps (`int`):
330
331
332
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
333
334
335
336
337
338
339
340
341
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
                based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
                must be `None`, and `timestep_spacing` attribute will be ignored.
            sigmas (`List[float]`, *optional*):
                Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas
                will be generated based on the relevant scheduler attributes. If `sigmas` is passed,
                `num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the
                custom sigmas schedule.
hlky's avatar
hlky committed
342
343
        """

344
345
346
347
348
349
350
351
        if timesteps is not None and sigmas is not None:
            raise ValueError("Only one of `timesteps` or `sigmas` should be set.")
        if num_inference_steps is None and timesteps is None and sigmas is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.")
        if num_inference_steps is not None and (timesteps is not None or sigmas is not None):
            raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
352
353
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
354
355
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
356
357
358
359
360
        if (
            timesteps is not None
            and self.config.timestep_type == "continuous"
            and self.config.prediction_type == "v_prediction"
        ):
361
            raise ValueError(
362
                "Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`."
363
364
            )

365
366
367
        if num_inference_steps is None:
            num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1
        self.num_inference_steps = num_inference_steps
368

369
370
371
372
        if sigmas is not None:
            log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5))
            sigmas = np.array(sigmas).astype(np.float32)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]])
373

374
375
376
377
        else:
            if timesteps is not None:
                timesteps = np.array(timesteps).astype(np.float32)
            else:
Quentin Gallouédec's avatar
Quentin Gallouédec committed
378
                # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
                if self.config.timestep_spacing == "linspace":
                    timesteps = np.linspace(
                        0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32
                    )[::-1].copy()
                elif self.config.timestep_spacing == "leading":
                    step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                    # creates integer timesteps by multiplying by ratio
                    # casting to int to avoid issues when num_inference_step is power of 3
                    timesteps = (
                        (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
                    )
                    timesteps += self.config.steps_offset
                elif self.config.timestep_spacing == "trailing":
                    step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                    # creates integer timesteps by multiplying by ratio
                    # casting to int to avoid issues when num_inference_step is power of 3
                    timesteps = (
                        (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
                    )
                    timesteps -= 1
                else:
                    raise ValueError(
                        f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                    )

            sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
            log_sigmas = np.log(sigmas)
            if self.config.interpolation_type == "linear":
                sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            elif self.config.interpolation_type == "log_linear":
                sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
            else:
                raise ValueError(
                    f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
                    " 'linear' or 'log_linear'"
                )

            if self.config.use_karras_sigmas:
                sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

420
            elif self.config.use_exponential_sigmas:
421
                sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
422
423
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

424
            elif self.config.use_beta_sigmas:
425
                sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
426
427
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

428
429
430
431
432
433
434
435
436
437
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )

            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
438

Suraj Patil's avatar
Suraj Patil committed
439
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
YiYi Xu's avatar
YiYi Xu committed
440

Suraj Patil's avatar
Suraj Patil committed
441
442
        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
443
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device)
Suraj Patil's avatar
Suraj Patil committed
444
445
446
        else:
            self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)

YiYi Xu's avatar
YiYi Xu committed
447
        self._step_index = None
448
        self._begin_index = None
449
        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
hlky's avatar
hlky committed
450

451
452
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
453
        log_sigma = np.log(np.maximum(sigma, 1e-10))
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
475
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
476
477
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
492
493

        rho = 7.0  # 7.0 is the value used in the paper
494
        ramp = np.linspace(0, 1, num_inference_steps)
495
496
497
498
499
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

519
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
520
521
        return sigmas

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

542
        sigmas = np.array(
543
544
545
546
547
548
549
550
551
552
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

553
554
555
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
556

557
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
558
559
560
561
562

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
563
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
564

565
566
567
568
569
570
571
572
573
        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
574

hlky's avatar
hlky committed
575
576
    def step(
        self,
577
578
579
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
hlky's avatar
hlky committed
580
581
582
583
584
585
586
587
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
        """
588
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
589
590
591
        process from the learned model outputs (most often the predicted noise).

        Args:
592
            model_output (`torch.Tensor`):
593
594
595
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
596
            sample (`torch.Tensor`):
597
598
599
600
601
602
603
604
605
606
607
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.
hlky's avatar
hlky committed
608
609

        Returns:
610
611
612
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
613
614
        """

615
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
hlky's avatar
hlky committed
616
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
617
618
619
620
621
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
622
623
624
            )

        if not self.is_scale_input_called:
625
            logger.warning(
hlky's avatar
hlky committed
626
627
628
629
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
630
631
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
632

633
634
635
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

YiYi Xu's avatar
YiYi Xu committed
636
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
637
638
639
640
641
642

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
643
644
645
646
            noise = randn_tensor(
                model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
            )
            eps = noise * s_noise
hlky's avatar
hlky committed
647
648
649
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
650
651
652
        # NOTE: "original_sample" should not be an expected prediction_type but is left in for
        # backwards compatibility
        if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample":
653
654
            pred_original_sample = model_output
        elif self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
655
            pred_original_sample = sample - sigma_hat * model_output
656
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
657
            # denoised = model_output * c_out + input * c_skip
Suraj Patil's avatar
Suraj Patil committed
658
659
660
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
661
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
Suraj Patil's avatar
Suraj Patil committed
662
            )
hlky's avatar
hlky committed
663
664
665
666

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

YiYi Xu's avatar
YiYi Xu committed
667
        dt = self.sigmas[self.step_index + 1] - sigma_hat
hlky's avatar
hlky committed
668
669
670

        prev_sample = sample + derivative * dt

671
672
673
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

YiYi Xu's avatar
YiYi Xu committed
674
675
676
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
677
        if not return_dict:
678
679
680
681
            return (
                prev_sample,
                pred_original_sample,
            )
hlky's avatar
hlky committed
682
683
684
685
686

        return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
687
688
689
690
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
hlky's avatar
hlky committed
691
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
692
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
693
694
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
695
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
696
697
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
698
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
699
700
            timesteps = timesteps.to(original_samples.device)

701
702
703
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
704
705
706
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
707
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
708
            # add noise is called before first denoising step to create initial latent(img2img)
709
            step_indices = [self.begin_index] * timesteps.shape[0]
hlky's avatar
hlky committed
710

711
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
712
713
714
715
716
717
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

718
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
        if (
            isinstance(timesteps, int)
            or isinstance(timesteps, torch.IntTensor)
            or isinstance(timesteps, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if sample.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
            timesteps = timesteps.to(sample.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(sample.device)
            timesteps = timesteps.to(sample.device)

        step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        alphas_cumprod = self.alphas_cumprod.to(sample)
        sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

hlky's avatar
hlky committed
755
756
    def __len__(self):
        return self.config.num_train_timesteps