scheduling_euler_discrete.py 31.9 KB
Newer Older
1
# Copyright 2024 Katherine Crowson and The HuggingFace Team. All rights reserved.
hlky's avatar
hlky committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
hlky's avatar
hlky committed
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
hlky's avatar
hlky committed
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Dhruv Nair's avatar
Dhruv Nair committed
23
24
from ..utils import BaseOutput, logging
from ..utils.torch_utils import randn_tensor
Kashif Rasul's avatar
Kashif Rasul committed
25
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
hlky's avatar
hlky committed
26
27
28
29
30
31
32
33
34


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->EulerDiscrete
class EulerDiscreteSchedulerOutput(BaseOutput):
    """
35
    Output class for the scheduler's `step` function output.
hlky's avatar
hlky committed
36
37

    Args:
38
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
39
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
hlky's avatar
hlky committed
40
            denoising loop.
41
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
42
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
hlky's avatar
hlky committed
43
44
45
            `pred_original_sample` can be used to preview progress or for guidance.
    """

46
47
    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None
hlky's avatar
hlky committed
48
49


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
57
58
59
60
61
62
63
64
65
66
67
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72
73

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
85
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
87
88
89
90

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
93
94
    return torch.tensor(betas, dtype=torch.float32)


95
96
97
98
99
100
101
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
def rescale_zero_terminal_snr(betas):
    """
    Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)


    Args:
102
        betas (`torch.Tensor`):
103
104
105
            the betas that the scheduler is being initialized with.

    Returns:
106
        `torch.Tensor`: rescaled betas with zero terminal SNR
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    """
    # Convert betas to alphas_bar_sqrt
    alphas = 1.0 - betas
    alphas_cumprod = torch.cumprod(alphas, dim=0)
    alphas_bar_sqrt = alphas_cumprod.sqrt()

    # Store old values.
    alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
    alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()

    # Shift so the last timestep is zero.
    alphas_bar_sqrt -= alphas_bar_sqrt_T

    # Scale so the first timestep is back to the old value.
    alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)

    # Convert alphas_bar_sqrt to betas
    alphas_bar = alphas_bar_sqrt**2  # Revert sqrt
    alphas = alphas_bar[1:] / alphas_bar[:-1]  # Revert cumprod
    alphas = torch.cat([alphas_bar[0:1], alphas])
    betas = 1 - alphas

    return betas


hlky's avatar
hlky committed
132
133
class EulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
134
    Euler scheduler.
hlky's avatar
hlky committed
135

136
137
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
hlky's avatar
hlky committed
138
139

    Args:
140
141
142
143
144
145
146
147
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
hlky's avatar
hlky committed
148
            `linear` or `scaled_linear`.
149
150
151
152
153
154
155
156
157
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        interpolation_type(`str`, defaults to `"linear"`, *optional*):
            The interpolation type to compute intermediate sigmas for the scheduler denoising steps. Should be on of
            `"linear"` or `"log_linear"`.
158
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
159
160
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
161
162
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
163
164
165
166
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
167
            An offset added to the inference steps, as required by some model families.
168
169
170
171
        rescale_betas_zero_snr (`bool`, defaults to `False`):
            Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
            dark samples instead of limiting it to samples with medium brightness. Loosely related to
            [`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
172
173
174
        final_sigmas_type (`str`, defaults to `"zero"`):
            The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
            sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
hlky's avatar
hlky committed
175
176
    """

Kashif Rasul's avatar
Kashif Rasul committed
177
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
178
    order = 1
179

hlky's avatar
hlky committed
180
181
182
183
184
185
186
    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
187
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
Suraj Patil's avatar
Suraj Patil committed
188
        prediction_type: str = "epsilon",
189
        interpolation_type: str = "linear",
190
        use_karras_sigmas: Optional[bool] = False,
191
        use_exponential_sigmas: Optional[bool] = False,
Suraj Patil's avatar
Suraj Patil committed
192
193
        sigma_min: Optional[float] = None,
        sigma_max: Optional[float] = None,
194
        timestep_spacing: str = "linspace",
Suraj Patil's avatar
Suraj Patil committed
195
        timestep_type: str = "discrete",  # can be "discrete" or "continuous"
196
        steps_offset: int = 0,
197
        rescale_betas_zero_snr: bool = False,
198
        final_sigmas_type: str = "zero",  # can be "zero" or "sigma_min"
hlky's avatar
hlky committed
199
200
    ):
        if trained_betas is not None:
201
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
hlky's avatar
hlky committed
202
203
204
205
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
206
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
207
208
209
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
hlky's avatar
hlky committed
210
        else:
211
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
hlky's avatar
hlky committed
212

213
214
215
        if rescale_betas_zero_snr:
            self.betas = rescale_zero_terminal_snr(self.betas)

hlky's avatar
hlky committed
216
217
218
        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

219
220
221
222
223
        if rescale_betas_zero_snr:
            # Close to 0 without being 0 so first sigma is not inf
            # FP16 smallest positive subnormal works well here
            self.alphas_cumprod[-1] = 2**-24

224
        sigmas = (((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5).flip(0)
Suraj Patil's avatar
Suraj Patil committed
225
226
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
hlky's avatar
hlky committed
227
228
229

        # setable values
        self.num_inference_steps = None
Suraj Patil's avatar
Suraj Patil committed
230
231
232
233
234
235
236
237
238

        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if timestep_type == "continuous" and prediction_type == "v_prediction":
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas])
        else:
            self.timesteps = timesteps

        self.sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])

hlky's avatar
hlky committed
239
        self.is_scale_input_called = False
240
        self.use_karras_sigmas = use_karras_sigmas
241
        self.use_exponential_sigmas = use_exponential_sigmas
hlky's avatar
hlky committed
242

YiYi Xu's avatar
YiYi Xu committed
243
        self._step_index = None
244
        self._begin_index = None
245
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
246

247
248
249
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
250
        max_sigma = max(self.sigmas) if isinstance(self.sigmas, list) else self.sigmas.max()
251
        if self.config.timestep_spacing in ["linspace", "trailing"]:
252
            return max_sigma
253

254
        return (max_sigma**2 + 1) ** 0.5
255

YiYi Xu's avatar
YiYi Xu committed
256
257
258
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
259
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
260
261
262
        """
        return self._step_index

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

281
    def scale_model_input(self, sample: torch.Tensor, timestep: Union[float, torch.Tensor]) -> torch.Tensor:
hlky's avatar
hlky committed
282
        """
283
284
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep. Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the Euler algorithm.
hlky's avatar
hlky committed
285
286

        Args:
287
            sample (`torch.Tensor`):
288
289
290
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.
hlky's avatar
hlky committed
291
292

        Returns:
293
            `torch.Tensor`:
294
                A scaled input sample.
hlky's avatar
hlky committed
295
        """
YiYi Xu's avatar
YiYi Xu committed
296
297
        if self.step_index is None:
            self._init_step_index(timestep)
298

YiYi Xu's avatar
YiYi Xu committed
299
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
300
        sample = sample / ((sigma**2 + 1) ** 0.5)
301

hlky's avatar
hlky committed
302
303
304
        self.is_scale_input_called = True
        return sample

305
306
307
308
309
310
311
    def set_timesteps(
        self,
        num_inference_steps: int = None,
        device: Union[str, torch.device] = None,
        timesteps: Optional[List[int]] = None,
        sigmas: Optional[List[float]] = None,
    ):
hlky's avatar
hlky committed
312
        """
313
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
hlky's avatar
hlky committed
314
315
316

        Args:
            num_inference_steps (`int`):
317
318
319
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
320
321
322
323
324
325
326
327
328
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary timesteps schedule. If `None`, timesteps will be generated
                based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps` and `sigmas`
                must be `None`, and `timestep_spacing` attribute will be ignored.
            sigmas (`List[float]`, *optional*):
                Custom sigmas used to support arbitrary timesteps schedule schedule. If `None`, timesteps and sigmas
                will be generated based on the relevant scheduler attributes. If `sigmas` is passed,
                `num_inference_steps` and `timesteps` must be `None`, and the timesteps will be generated based on the
                custom sigmas schedule.
hlky's avatar
hlky committed
329
330
        """

331
332
333
334
335
336
337
338
        if timesteps is not None and sigmas is not None:
            raise ValueError("Only one of `timesteps` or `sigmas` should be set.")
        if num_inference_steps is None and timesteps is None and sigmas is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `timesteps` or `sigmas.")
        if num_inference_steps is not None and (timesteps is not None or sigmas is not None):
            raise ValueError("Can only pass one of `num_inference_steps` or `timesteps` or `sigmas`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_karras_sigmas = True`.")
339
340
341
342
343
344
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
        if self.config.use_exponential_sigmas and self.config.use_karras_sigmas:
            raise ValueError(
                "Cannot set both `config.use_exponential_sigmas = True` and config.use_karras_sigmas = True`"
            )
345
346
347
348
349
        if (
            timesteps is not None
            and self.config.timestep_type == "continuous"
            and self.config.prediction_type == "v_prediction"
        ):
350
            raise ValueError(
351
                "Cannot set `timesteps` with `config.timestep_type = 'continuous'` and `config.prediction_type = 'v_prediction'`."
352
353
            )

354
355
356
        if num_inference_steps is None:
            num_inference_steps = len(timesteps) if timesteps is not None else len(sigmas) - 1
        self.num_inference_steps = num_inference_steps
357

358
359
360
361
        if sigmas is not None:
            log_sigmas = np.log(np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5))
            sigmas = np.array(sigmas).astype(np.float32)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas[:-1]])
362

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
        else:
            if timesteps is not None:
                timesteps = np.array(timesteps).astype(np.float32)
            else:
                # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
                if self.config.timestep_spacing == "linspace":
                    timesteps = np.linspace(
                        0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=np.float32
                    )[::-1].copy()
                elif self.config.timestep_spacing == "leading":
                    step_ratio = self.config.num_train_timesteps // self.num_inference_steps
                    # creates integer timesteps by multiplying by ratio
                    # casting to int to avoid issues when num_inference_step is power of 3
                    timesteps = (
                        (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
                    )
                    timesteps += self.config.steps_offset
                elif self.config.timestep_spacing == "trailing":
                    step_ratio = self.config.num_train_timesteps / self.num_inference_steps
                    # creates integer timesteps by multiplying by ratio
                    # casting to int to avoid issues when num_inference_step is power of 3
                    timesteps = (
                        (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
                    )
                    timesteps -= 1
                else:
                    raise ValueError(
                        f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                    )

            sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
            log_sigmas = np.log(sigmas)
            if self.config.interpolation_type == "linear":
                sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
            elif self.config.interpolation_type == "log_linear":
                sigmas = torch.linspace(np.log(sigmas[-1]), np.log(sigmas[0]), num_inference_steps + 1).exp().numpy()
            else:
                raise ValueError(
                    f"{self.config.interpolation_type} is not implemented. Please specify interpolation_type to either"
                    " 'linear' or 'log_linear'"
                )

            if self.config.use_karras_sigmas:
                sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

409
410
411
412
            elif self.config.use_exponential_sigmas:
                sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
                timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

413
414
415
416
417
418
419
420
421
422
            if self.config.final_sigmas_type == "sigma_min":
                sigma_last = ((1 - self.alphas_cumprod[0]) / self.alphas_cumprod[0]) ** 0.5
            elif self.config.final_sigmas_type == "zero":
                sigma_last = 0
            else:
                raise ValueError(
                    f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
                )

            sigmas = np.concatenate([sigmas, [sigma_last]]).astype(np.float32)
423

Suraj Patil's avatar
Suraj Patil committed
424
        sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
YiYi Xu's avatar
YiYi Xu committed
425

Suraj Patil's avatar
Suraj Patil committed
426
427
        # TODO: Support the full EDM scalings for all prediction types and timestep types
        if self.config.timestep_type == "continuous" and self.config.prediction_type == "v_prediction":
428
            self.timesteps = torch.Tensor([0.25 * sigma.log() for sigma in sigmas[:-1]]).to(device=device)
Suraj Patil's avatar
Suraj Patil committed
429
430
431
        else:
            self.timesteps = torch.from_numpy(timesteps.astype(np.float32)).to(device=device)

YiYi Xu's avatar
YiYi Xu committed
432
        self._step_index = None
433
        self._begin_index = None
434
        self.sigmas = sigmas.to("cpu")  # to avoid too much CPU/GPU communication
hlky's avatar
hlky committed
435

436
437
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
438
        log_sigma = np.log(np.maximum(sigma, 1e-10))
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L17
460
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
461
462
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
463
464
465
466
467
468
469
470
471
472
473
474
475
476
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
477
478

        rho = 7.0  # 7.0 is the value used in the paper
479
        ramp = np.linspace(0, 1, num_inference_steps)
480
481
482
483
484
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    # Copied from https://github.com/crowsonkb/k-diffusion/blob/686dbad0f39640ea25c8a8c6a6e56bb40eacefa2/k_diffusion/sampling.py#L26
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

        sigmas = torch.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps).exp()
        return sigmas

507
508
509
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps
YiYi Xu's avatar
YiYi Xu committed
510

511
        indices = (schedule_timesteps == timestep).nonzero()
YiYi Xu's avatar
YiYi Xu committed
512
513
514
515
516

        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
517
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
518

519
520
521
522
523
524
525
526
527
        return indices[pos].item()

    def _init_step_index(self, timestep):
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
        else:
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
528

hlky's avatar
hlky committed
529
530
    def step(
        self,
531
532
533
        model_output: torch.Tensor,
        timestep: Union[float, torch.Tensor],
        sample: torch.Tensor,
hlky's avatar
hlky committed
534
535
536
537
538
539
540
541
        s_churn: float = 0.0,
        s_tmin: float = 0.0,
        s_tmax: float = float("inf"),
        s_noise: float = 1.0,
        generator: Optional[torch.Generator] = None,
        return_dict: bool = True,
    ) -> Union[EulerDiscreteSchedulerOutput, Tuple]:
        """
542
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
hlky's avatar
hlky committed
543
544
545
        process from the learned model outputs (most often the predicted noise).

        Args:
546
            model_output (`torch.Tensor`):
547
548
549
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
550
            sample (`torch.Tensor`):
551
552
553
554
555
556
557
558
559
560
561
                A current instance of a sample created by the diffusion process.
            s_churn (`float`):
            s_tmin  (`float`):
            s_tmax  (`float`):
            s_noise (`float`, defaults to 1.0):
                Scaling factor for noise added to the sample.
            generator (`torch.Generator`, *optional*):
                A random number generator.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
                tuple.
hlky's avatar
hlky committed
562
563

        Returns:
564
565
566
            [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
hlky's avatar
hlky committed
567
568
        """

569
        if isinstance(timestep, (int, torch.IntTensor, torch.LongTensor)):
hlky's avatar
hlky committed
570
            raise ValueError(
Patrick von Platen's avatar
Patrick von Platen committed
571
572
573
574
575
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
hlky's avatar
hlky committed
576
577
578
            )

        if not self.is_scale_input_called:
579
            logger.warning(
hlky's avatar
hlky committed
580
581
582
583
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

YiYi Xu's avatar
YiYi Xu committed
584
585
        if self.step_index is None:
            self._init_step_index(timestep)
hlky's avatar
hlky committed
586

587
588
589
        # Upcast to avoid precision issues when computing prev_sample
        sample = sample.to(torch.float32)

YiYi Xu's avatar
YiYi Xu committed
590
        sigma = self.sigmas[self.step_index]
hlky's avatar
hlky committed
591
592
593

        gamma = min(s_churn / (len(self.sigmas) - 1), 2**0.5 - 1) if s_tmin <= sigma <= s_tmax else 0.0

594
595
596
        noise = randn_tensor(
            model_output.shape, dtype=model_output.dtype, device=model_output.device, generator=generator
        )
597

hlky's avatar
hlky committed
598
599
600
601
602
603
604
        eps = noise * s_noise
        sigma_hat = sigma * (gamma + 1)

        if gamma > 0:
            sample = sample + eps * (sigma_hat**2 - sigma**2) ** 0.5

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
605
606
607
        # NOTE: "original_sample" should not be an expected prediction_type but is left in for
        # backwards compatibility
        if self.config.prediction_type == "original_sample" or self.config.prediction_type == "sample":
608
609
            pred_original_sample = model_output
        elif self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
610
            pred_original_sample = sample - sigma_hat * model_output
611
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
612
            # denoised = model_output * c_out + input * c_skip
Suraj Patil's avatar
Suraj Patil committed
613
614
615
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
        else:
            raise ValueError(
616
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
Suraj Patil's avatar
Suraj Patil committed
617
            )
hlky's avatar
hlky committed
618
619
620
621

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma_hat

YiYi Xu's avatar
YiYi Xu committed
622
        dt = self.sigmas[self.step_index + 1] - sigma_hat
hlky's avatar
hlky committed
623
624
625

        prev_sample = sample + derivative * dt

626
627
628
        # Cast sample back to model compatible dtype
        prev_sample = prev_sample.to(model_output.dtype)

YiYi Xu's avatar
YiYi Xu committed
629
630
631
        # upon completion increase step index by one
        self._step_index += 1

hlky's avatar
hlky committed
632
633
634
635
636
637
638
        if not return_dict:
            return (prev_sample,)

        return EulerDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)

    def add_noise(
        self,
639
640
641
642
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
hlky's avatar
hlky committed
643
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
644
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
hlky's avatar
hlky committed
645
646
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
647
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
hlky's avatar
hlky committed
648
649
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
650
            schedule_timesteps = self.timesteps.to(original_samples.device)
hlky's avatar
hlky committed
651
652
            timesteps = timesteps.to(original_samples.device)

653
654
655
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
656
657
658
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
659
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
660
            # add noise is called before first denoising step to create initial latent(img2img)
661
            step_indices = [self.begin_index] * timesteps.shape[0]
hlky's avatar
hlky committed
662

663
        sigma = sigmas[step_indices].flatten()
hlky's avatar
hlky committed
664
665
666
667
668
669
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

670
    def get_velocity(self, sample: torch.Tensor, noise: torch.Tensor, timesteps: torch.Tensor) -> torch.Tensor:
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
        if (
            isinstance(timesteps, int)
            or isinstance(timesteps, torch.IntTensor)
            or isinstance(timesteps, torch.LongTensor)
        ):
            raise ValueError(
                (
                    "Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
                    " `EulerDiscreteScheduler.get_velocity()` is not supported. Make sure to pass"
                    " one of the `scheduler.timesteps` as a timestep."
                ),
            )

        if sample.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
            timesteps = timesteps.to(sample.device, dtype=torch.float32)
        else:
            schedule_timesteps = self.timesteps.to(sample.device)
            timesteps = timesteps.to(sample.device)

        step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        alphas_cumprod = self.alphas_cumprod.to(sample)
        sqrt_alpha_prod = alphas_cumprod[step_indices] ** 0.5
        sqrt_alpha_prod = sqrt_alpha_prod.flatten()
        while len(sqrt_alpha_prod.shape) < len(sample.shape):
            sqrt_alpha_prod = sqrt_alpha_prod.unsqueeze(-1)

        sqrt_one_minus_alpha_prod = (1 - alphas_cumprod[step_indices]) ** 0.5
        sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten()
        while len(sqrt_one_minus_alpha_prod.shape) < len(sample.shape):
            sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.unsqueeze(-1)

        velocity = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample
        return velocity

hlky's avatar
hlky committed
707
708
    def __len__(self):
        return self.config.num_train_timesteps