scheduling_heun_discrete.py 30.7 KB
Newer Older
Aryan's avatar
Aryan committed
1
# Copyright 2025 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
from dataclasses import dataclass
17
from typing import List, Literal, Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
24
from ..utils import BaseOutput, is_scipy_available
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
25
26


27
28
29
30
if is_scipy_available():
    import scipy.stats


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->HeunDiscrete
class HeunDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
def betas_for_alpha_bar(
52
53
54
55
    num_diffusion_timesteps: int,
    max_beta: float = 0.999,
    alpha_transform_type: Literal["cosine", "exp"] = "cosine",
) -> torch.Tensor:
56
57
58
59
60
61
62
63
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.

    Args:
64
65
66
67
68
69
        num_diffusion_timesteps (`int`):
            The number of betas to produce.
        max_beta (`float`, defaults to `0.999`):
            The maximum beta to use; use values lower than 1 to avoid numerical instability.
        alpha_transform_type (`"cosine"` or `"exp"`, defaults to `"cosine"`):
            The type of noise schedule for `alpha_bar`. Choose from `cosine` or `exp`.
70
71

    Returns:
72
73
        `torch.Tensor`:
            The betas used by the scheduler to step the model outputs.
74
    """
YiYi Xu's avatar
YiYi Xu committed
75
    if alpha_transform_type == "cosine":
76

YiYi Xu's avatar
YiYi Xu committed
77
78
79
80
81
82
83
84
85
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
86
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
87
88
89
90
91

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
92
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
93
94
95
    return torch.tensor(betas, dtype=torch.float32)


96
97
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
98
    Scheduler with Heun steps for discrete beta schedules.
99

100
101
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
102
103

    Args:
104
105
106
107
108
109
110
111
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
112
            `linear` or `scaled_linear`.
113
114
115
116
117
118
119
120
121
122
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
123
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
124
125
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
126
127
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
128
129
130
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
131
132
133
134
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
135
            An offset added to the inference steps, as required by some model families.
136
137
    """

Kashif Rasul's avatar
Kashif Rasul committed
138
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
139
140
141
142
143
144
145
146
147
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
148
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
149
        prediction_type: str = "epsilon",
150
        use_karras_sigmas: Optional[bool] = False,
151
        use_exponential_sigmas: Optional[bool] = False,
152
        use_beta_sigmas: Optional[bool] = False,
YiYi Xu's avatar
YiYi Xu committed
153
154
        clip_sample: Optional[bool] = False,
        clip_sample_range: float = 1.0,
155
156
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
157
    ):
158
159
160
161
162
163
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
164
        if trained_betas is not None:
165
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
166
167
168
169
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
170
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
171
172
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
YiYi Xu's avatar
YiYi Xu committed
173
174
175
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
        elif beta_schedule == "exp":
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
176
        else:
177
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
178
179
180
181
182
183

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
184
        self.use_karras_sigmas = use_karras_sigmas
185

YiYi Xu's avatar
YiYi Xu committed
186
        self._step_index = None
187
        self._begin_index = None
188
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
189

190
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def index_for_timestep(
        self, timestep: Union[float, torch.Tensor], schedule_timesteps: Optional[torch.Tensor] = None
    ) -> int:
        """
        Find the index of a given timestep in the timestep schedule.

        Args:
            timestep (`float` or `torch.Tensor`):
                The timestep value to find in the schedule.
            schedule_timesteps (`torch.Tensor`, *optional*):
                The timestep schedule to search in. If `None`, uses `self.timesteps`.

        Returns:
            `int`:
                The index of the timestep in the schedule. For the very first step, returns the second index if
                multiple matches exist to avoid skipping a sigma when starting mid-schedule (e.g., for image-to-image).
        """
208
209
210
211
212
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
213
214
215
216
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
217
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
218

219
220
        return indices[pos].item()

221
222
223
224
225
226
227
228
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
229
230
231
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
232
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
233
234
235
        """
        return self._step_index

236
237
238
239
240
241
242
243
244
245
246
247
248
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
249
            begin_index (`int`, defaults to `0`):
250
251
252
253
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

254
255
    def scale_model_input(
        self,
256
257
258
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
259
260
261
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
262
263

        Args:
264
            sample (`torch.Tensor`):
265
266
267
268
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

269
        Returns:
270
            `torch.Tensor`:
271
                A scaled input sample.
272
        """
YiYi Xu's avatar
YiYi Xu committed
273
274
        if self.step_index is None:
            self._init_step_index(timestep)
275

YiYi Xu's avatar
YiYi Xu committed
276
        sigma = self.sigmas[self.step_index]
277
278
279
280
281
        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
282
        num_inference_steps: Optional[int] = None,
283
284
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
285
        timesteps: Optional[List[int]] = None,
286
287
    ):
        """
288
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
289
290
291

        Args:
            num_inference_steps (`int`):
292
293
294
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
295
296
297
298
299
300
301
            num_train_timesteps (`int`, *optional*):
                The number of diffusion steps used when training the model. If `None`, the default
                `num_train_timesteps` attribute is used.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, timesteps will be
                generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps`
                must be `None`, and `timestep_spacing` attribute will be ignored.
302
        """
303
304
305
306
307
308
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
309
310
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
311
312
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
313
314

        num_inference_steps = num_inference_steps or len(timesteps)
315
316
317
        self.num_inference_steps = num_inference_steps
        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

318
319
        if timesteps is not None:
            timesteps = np.array(timesteps, dtype=np.float32)
320
        else:
Quentin Gallouédec's avatar
Quentin Gallouédec committed
321
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://huggingface.co/papers/2305.08891
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
            if self.config.timestep_spacing == "linspace":
                timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
            elif self.config.timestep_spacing == "leading":
                step_ratio = num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )
340
341

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
342
        log_sigmas = np.log(sigmas)
343
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
344

YiYi Xu's avatar
YiYi Xu committed
345
        if self.config.use_karras_sigmas:
346
347
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
348
        elif self.config.use_exponential_sigmas:
349
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
350
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
351
        elif self.config.use_beta_sigmas:
352
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
353
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
354

355
356
357
358
359
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
360
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
361

hlky's avatar
hlky committed
362
        self.timesteps = timesteps.to(device=device, dtype=torch.float32)
363
364
365
366
367

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

YiYi Xu's avatar
YiYi Xu committed
368
        self._step_index = None
369
        self._begin_index = None
370
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
371

372
373
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
374
375
376
377
378
379
380
381
382
383
384
385
386
        """
        Convert sigma values to corresponding timestep values through interpolation.

        Args:
            sigma (`np.ndarray`):
                The sigma value(s) to convert to timestep(s).
            log_sigmas (`np.ndarray`):
                The logarithm of the sigma schedule used for interpolation.

        Returns:
            `np.ndarray`:
                The interpolated timestep value(s) corresponding to the input sigma(s).
        """
387
        # get log sigma
388
        log_sigma = np.log(np.maximum(sigma, 1e-10))
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
410
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
411
412
413
414
415
416
417
418
419
420
421
422
423
424
        """
        Construct the noise schedule as proposed in [Elucidating the Design Space of Diffusion-Based Generative
        Models](https://huggingface.co/papers/2206.00364).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following the Karras noise schedule.
        """
425

Suraj Patil's avatar
Suraj Patil committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
440
441
442
443
444
445
446
447

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

448
449
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
450
451
452
453
454
455
456
457
458
459
460
461
462
        """
        Construct an exponential noise schedule.

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.

        Returns:
            `torch.Tensor`:
                The converted sigma values following an exponential schedule.
        """
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

479
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
480
481
        return sigmas

482
483
484
485
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
        """
        Construct a beta noise schedule as proposed in [Beta Sampling is All You
        Need](https://huggingface.co/papers/2407.12173).

        Args:
            in_sigmas (`torch.Tensor`):
                The input sigma values to be converted.
            num_inference_steps (`int`):
                The number of inference steps to generate the noise schedule for.
            alpha (`float`, *optional*, defaults to `0.6`):
                The alpha parameter for the beta distribution.
            beta (`float`, *optional*, defaults to `0.6`):
                The beta parameter for the beta distribution.

        Returns:
            `torch.Tensor`:
                The converted sigma values following a beta distribution schedule.
        """
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

520
        sigmas = np.array(
521
522
523
524
525
526
527
528
529
530
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

531
532
533
534
    @property
    def state_in_first_order(self):
        return self.dt is None

YiYi Xu's avatar
YiYi Xu committed
535
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
536
537
538
539
540
541
542
543
    def _init_step_index(self, timestep: Union[float, torch.Tensor]) -> None:
        """
        Initialize the step index for the scheduler based on the given timestep.

        Args:
            timestep (`float` or `torch.Tensor`):
                The current timestep to initialize the step index from.
        """
544
545
546
547
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
YiYi Xu's avatar
YiYi Xu committed
548
        else:
549
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
550

551
552
    def step(
        self,
553
554
555
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
556
        return_dict: bool = True,
557
    ) -> Union[HeunDiscreteSchedulerOutput, Tuple]:
558
        """
559
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
560
        process from the learned model outputs (most often the predicted noise).
561
562

        Args:
563
            model_output (`torch.Tensor`):
564
565
566
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
567
            sample (`torch.Tensor`):
568
569
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
570
571
                Whether or not to return a [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or
                tuple.
572

573
        Returns:
574
575
576
            [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
577
        """
YiYi Xu's avatar
YiYi Xu committed
578
579
        if self.step_index is None:
            self._init_step_index(timestep)
580
581

        if self.state_in_first_order:
YiYi Xu's avatar
YiYi Xu committed
582
583
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
584
585
        else:
            # 2nd order / Heun's method
YiYi Xu's avatar
YiYi Xu committed
586
587
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
588
589
590
591
592
593
594
595

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
596
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
597
598
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = sample - sigma_input * model_output
599
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
600
601
602
603
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
604
        elif self.config.prediction_type == "sample":
YiYi Xu's avatar
YiYi Xu committed
605
            pred_original_sample = model_output
606
607
608
609
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
610

YiYi Xu's avatar
YiYi Xu committed
611
612
613
614
615
        if self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

616
        if self.state_in_first_order:
617
            # 2. Convert to an ODE derivative for 1st order
618
            derivative = (sample - pred_original_sample) / sigma_hat
619
            # 3. delta timestep
620
621
622
623
624
625
626
627
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
Suraj Patil's avatar
Suraj Patil committed
628
            derivative = (sample - pred_original_sample) / sigma_next
629
630
            derivative = (self.prev_derivative + derivative) / 2

631
            # 3. take prev timestep & sample
632
633
634
635
636
637
638
639
640
641
642
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

YiYi Xu's avatar
YiYi Xu committed
643
644
645
        # upon completion increase step index by one
        self._step_index += 1

646
        if not return_dict:
647
648
649
650
            return (
                prev_sample,
                pred_original_sample,
            )
651

652
        return HeunDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
653

654
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
655
656
    def add_noise(
        self,
657
658
659
660
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
        """
        Add noise to the original samples according to the noise schedule at the specified timesteps.

        Args:
            original_samples (`torch.Tensor`):
                The original samples to which noise will be added.
            noise (`torch.Tensor`):
                The noise tensor to add to the original samples.
            timesteps (`torch.Tensor`):
                The timesteps at which to add noise, determining the noise level from the schedule.

        Returns:
            `torch.Tensor`:
                The noisy samples with added noise scaled according to the timestep schedule.
        """
676
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
677
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
678
679
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
680
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
681
682
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
683
            schedule_timesteps = self.timesteps.to(original_samples.device)
684
685
            timesteps = timesteps.to(original_samples.device)

686
687
688
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
689
690
691
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
692
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
693
            # add noise is called before first denoising step to create initial latent(img2img)
694
            step_indices = [self.begin_index] * timesteps.shape[0]
695

696
        sigma = sigmas[step_indices].flatten()
697
698
699
700
701
702
703
704
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps