scheduling_heun_discrete.py 20.3 KB
Newer Older
1
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
from typing import List, Optional, Tuple, Union
17
18
19
20
21

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
22
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
23
24


25
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
26
27
28
29
30
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
31
32
33
34
35
36
37
38
39
40
41
42
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
43
44
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
45
46
47
48

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
49
    if alpha_transform_type == "cosine":
50

YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
56
57
58
59
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
60
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
61
62
63
64
65

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
66
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
67
68
69
    return torch.tensor(betas, dtype=torch.float32)


70
71
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
72
    Scheduler with Heun steps for discrete beta schedules.
73

74
75
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
76
77

    Args:
78
79
80
81
82
83
84
85
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
86
            `linear` or `scaled_linear`.
87
88
89
90
91
92
93
94
95
96
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
97
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
98
99
100
101
102
103
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
104
            An offset added to the inference steps, as required by some model families.
105
106
    """

Kashif Rasul's avatar
Kashif Rasul committed
107
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
108
109
110
111
112
113
114
115
116
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
117
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
118
        prediction_type: str = "epsilon",
119
        use_karras_sigmas: Optional[bool] = False,
YiYi Xu's avatar
YiYi Xu committed
120
121
        clip_sample: Optional[bool] = False,
        clip_sample_range: float = 1.0,
122
123
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
124
125
    ):
        if trained_betas is not None:
126
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
127
128
129
130
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
131
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
132
133
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
YiYi Xu's avatar
YiYi Xu committed
134
135
136
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
        elif beta_schedule == "exp":
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
137
138
139
140
141
142
143
144
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
145
        self.use_karras_sigmas = use_karras_sigmas
146

YiYi Xu's avatar
YiYi Xu committed
147
        self._step_index = None
148
        self._begin_index = None
149
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
150

151
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
152
153
154
155
156
157
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
158
159
160
161
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
162
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
163

164
165
        return indices[pos].item()

166
167
168
169
170
171
172
173
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
174
175
176
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
177
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
178
179
180
        """
        return self._step_index

181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

199
200
201
202
203
204
205
206
    def scale_model_input(
        self,
        sample: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
    ) -> torch.FloatTensor:
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
207
208
209
210
211
212
213

        Args:
            sample (`torch.FloatTensor`):
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

214
        Returns:
215
216
            `torch.FloatTensor`:
                A scaled input sample.
217
        """
YiYi Xu's avatar
YiYi Xu committed
218
219
        if self.step_index is None:
            self._init_step_index(timestep)
220

YiYi Xu's avatar
YiYi Xu committed
221
        sigma = self.sigmas[self.step_index]
222
223
224
225
226
227
228
229
230
231
        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
232
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
233
234
235

        Args:
            num_inference_steps (`int`):
236
237
238
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
239
240
241
242
243
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

244
245
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
YiYi Xu's avatar
YiYi Xu committed
246
            timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
247
248
249
250
        elif self.config.timestep_spacing == "leading":
            step_ratio = num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
251
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
252
253
254
255
256
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
YiYi Xu's avatar
YiYi Xu committed
257
            timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
258
259
260
261
262
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
263
264

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
265
        log_sigmas = np.log(sigmas)
266
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
267

YiYi Xu's avatar
YiYi Xu committed
268
        if self.config.use_karras_sigmas:
269
270
271
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

272
273
274
275
276
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
277
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
278

YiYi Xu's avatar
YiYi Xu committed
279
        self.timesteps = timesteps.to(device=device)
280
281
282
283
284

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

YiYi Xu's avatar
YiYi Xu committed
285
        self._step_index = None
286
        self._begin_index = None
287
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
288

289
290
291
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
292
        log_sigma = np.log(np.maximum(sigma, 1e-10))
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor, num_inference_steps) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
331
332
333
334
335
336
337
338

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

339
340
341
342
    @property
    def state_in_first_order(self):
        return self.dt is None

YiYi Xu's avatar
YiYi Xu committed
343
344
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
345
346
347
348
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
YiYi Xu's avatar
YiYi Xu committed
349
        else:
350
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
351

352
353
354
355
356
357
358
359
    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: Union[float, torch.FloatTensor],
        sample: Union[torch.FloatTensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
360
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
361
        process from the learned model outputs (most often the predicted noise).
362
363
364
365
366
367
368
369
370
371
372

        Args:
            model_output (`torch.FloatTensor`):
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
            sample (`torch.FloatTensor`):
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
                Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or tuple.

373
374
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
375
376
                If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
                tuple is returned where the first element is the sample tensor.
377
        """
YiYi Xu's avatar
YiYi Xu committed
378
379
        if self.step_index is None:
            self._init_step_index(timestep)
380
381

        if self.state_in_first_order:
YiYi Xu's avatar
YiYi Xu committed
382
383
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
384
385
        else:
            # 2nd order / Heun's method
YiYi Xu's avatar
YiYi Xu committed
386
387
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
388
389
390
391
392
393
394
395

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
396
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
397
398
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = sample - sigma_input * model_output
399
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
400
401
402
403
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
404
        elif self.config.prediction_type == "sample":
YiYi Xu's avatar
YiYi Xu committed
405
            pred_original_sample = model_output
406
407
408
409
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
410

YiYi Xu's avatar
YiYi Xu committed
411
412
413
414
415
        if self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

416
        if self.state_in_first_order:
417
            # 2. Convert to an ODE derivative for 1st order
418
            derivative = (sample - pred_original_sample) / sigma_hat
419
            # 3. delta timestep
420
421
422
423
424
425
426
427
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
Suraj Patil's avatar
Suraj Patil committed
428
            derivative = (sample - pred_original_sample) / sigma_next
429
430
            derivative = (self.prev_derivative + derivative) / 2

431
            # 3. take prev timestep & sample
432
433
434
435
436
437
438
439
440
441
442
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

YiYi Xu's avatar
YiYi Xu committed
443
444
445
        # upon completion increase step index by one
        self._step_index += 1

446
447
448
449
450
        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

451
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
452
453
454
455
456
457
458
    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
459
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
460
461
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
462
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
463
464
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
465
            schedule_timesteps = self.timesteps.to(original_samples.device)
466
467
            timesteps = timesteps.to(original_samples.device)

468
469
470
471
472
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
        else:
            step_indices = [self.begin_index] * timesteps.shape[0]
473

474
        sigma = sigmas[step_indices].flatten()
475
476
477
478
479
480
481
482
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps