scheduling_heun_discrete.py 27.1 KB
Newer Older
1
# Copyright 2024 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
23
24
from ..utils import BaseOutput, is_scipy_available
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
25
26


27
28
29
30
if is_scipy_available():
    import scipy.stats


31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->HeunDiscrete
class HeunDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's `step` function output.

    Args:
        prev_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample `(x_{0})` based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.Tensor
    pred_original_sample: Optional[torch.Tensor] = None


50
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
YiYi Xu's avatar
YiYi Xu committed
51
52
53
54
55
def betas_for_alpha_bar(
    num_diffusion_timesteps,
    max_beta=0.999,
    alpha_transform_type="cosine",
):
56
57
58
59
60
61
62
63
64
65
66
67
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.
YiYi Xu's avatar
YiYi Xu committed
68
69
        alpha_transform_type (`str`, *optional*, default to `cosine`): the type of noise schedule for alpha_bar.
                     Choose from `cosine` or `exp`
70
71
72
73

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """
YiYi Xu's avatar
YiYi Xu committed
74
    if alpha_transform_type == "cosine":
75

YiYi Xu's avatar
YiYi Xu committed
76
77
78
79
80
81
82
83
84
        def alpha_bar_fn(t):
            return math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2

    elif alpha_transform_type == "exp":

        def alpha_bar_fn(t):
            return math.exp(t * -12.0)

    else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
85
        raise ValueError(f"Unsupported alpha_transform_type: {alpha_transform_type}")
86
87
88
89
90

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
YiYi Xu's avatar
YiYi Xu committed
91
        betas.append(min(1 - alpha_bar_fn(t2) / alpha_bar_fn(t1), max_beta))
92
93
94
    return torch.tensor(betas, dtype=torch.float32)


95
96
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
97
    Scheduler with Heun steps for discrete beta schedules.
98

99
100
    This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
    methods the library implements for all schedulers such as loading and saving.
101
102

    Args:
103
104
105
106
107
108
109
110
        num_train_timesteps (`int`, defaults to 1000):
            The number of diffusion steps to train the model.
        beta_start (`float`, defaults to 0.0001):
            The starting `beta` value of inference.
        beta_end (`float`, defaults to 0.02):
            The final `beta` value.
        beta_schedule (`str`, defaults to `"linear"`):
            The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
111
            `linear` or `scaled_linear`.
112
113
114
115
116
117
118
119
120
121
        trained_betas (`np.ndarray`, *optional*):
            Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
        prediction_type (`str`, defaults to `epsilon`, *optional*):
            Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
            `sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
            Video](https://imagen.research.google/video/paper.pdf) paper).
        clip_sample (`bool`, defaults to `True`):
            Clip the predicted sample for numerical stability.
        clip_sample_range (`float`, defaults to 1.0):
            The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
122
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
123
124
            Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
            the sigmas are determined according to a sequence of noise levels {σi}.
125
126
        use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
127
128
129
        use_beta_sigmas (`bool`, *optional*, defaults to `False`):
            Whether to use beta sigmas for step sizes in the noise schedule during the sampling process. Refer to [Beta
            Sampling is All You Need](https://huggingface.co/papers/2407.12173) for more information.
130
131
132
133
        timestep_spacing (`str`, defaults to `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
            Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
        steps_offset (`int`, defaults to 0):
134
            An offset added to the inference steps, as required by some model families.
135
136
    """

Kashif Rasul's avatar
Kashif Rasul committed
137
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
138
139
140
141
142
143
144
145
146
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
147
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
148
        prediction_type: str = "epsilon",
149
        use_karras_sigmas: Optional[bool] = False,
150
        use_exponential_sigmas: Optional[bool] = False,
151
        use_beta_sigmas: Optional[bool] = False,
YiYi Xu's avatar
YiYi Xu committed
152
153
        clip_sample: Optional[bool] = False,
        clip_sample_range: float = 1.0,
154
155
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
156
    ):
157
158
159
160
161
162
        if self.config.use_beta_sigmas and not is_scipy_available():
            raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
        if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
            raise ValueError(
                "Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
            )
163
        if trained_betas is not None:
164
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
165
166
167
168
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
169
            self.betas = torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
170
171
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
YiYi Xu's avatar
YiYi Xu committed
172
173
174
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="cosine")
        elif beta_schedule == "exp":
            self.betas = betas_for_alpha_bar(num_train_timesteps, alpha_transform_type="exp")
175
        else:
176
            raise NotImplementedError(f"{beta_schedule} is not implemented for {self.__class__}")
177
178
179
180
181
182

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)
183
        self.use_karras_sigmas = use_karras_sigmas
184

YiYi Xu's avatar
YiYi Xu committed
185
        self._step_index = None
186
        self._begin_index = None
187
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
188

189
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.index_for_timestep
190
191
192
193
194
195
    def index_for_timestep(self, timestep, schedule_timesteps=None):
        if schedule_timesteps is None:
            schedule_timesteps = self.timesteps

        indices = (schedule_timesteps == timestep).nonzero()

YiYi Xu's avatar
YiYi Xu committed
196
197
198
199
        # The sigma index that is taken for the **very** first `step`
        # is always the second index (or the last index if there is only 1)
        # This way we can ensure we don't accidentally skip a sigma in
        # case we start in the middle of the denoising schedule (e.g. for image-to-image)
200
        pos = 1 if len(indices) > 1 else 0
YiYi Xu's avatar
YiYi Xu committed
201

202
203
        return indices[pos].item()

204
205
206
207
208
209
210
211
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

YiYi Xu's avatar
YiYi Xu committed
212
213
214
    @property
    def step_index(self):
        """
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
215
        The index counter for current timestep. It will increase 1 after each scheduler step.
YiYi Xu's avatar
YiYi Xu committed
216
217
218
        """
        return self._step_index

219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    @property
    def begin_index(self):
        """
        The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
        """
        return self._begin_index

    # Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
    def set_begin_index(self, begin_index: int = 0):
        """
        Sets the begin index for the scheduler. This function should be run from pipeline before the inference.

        Args:
            begin_index (`int`):
                The begin index for the scheduler.
        """
        self._begin_index = begin_index

237
238
    def scale_model_input(
        self,
239
240
241
        sample: torch.Tensor,
        timestep: Union[float, torch.Tensor],
    ) -> torch.Tensor:
242
243
244
        """
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
245
246

        Args:
247
            sample (`torch.Tensor`):
248
249
250
251
                The input sample.
            timestep (`int`, *optional*):
                The current timestep in the diffusion chain.

252
        Returns:
253
            `torch.Tensor`:
254
                A scaled input sample.
255
        """
YiYi Xu's avatar
YiYi Xu committed
256
257
        if self.step_index is None:
            self._init_step_index(timestep)
258

YiYi Xu's avatar
YiYi Xu committed
259
        sigma = self.sigmas[self.step_index]
260
261
262
263
264
        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
265
        num_inference_steps: Optional[int] = None,
266
267
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
268
        timesteps: Optional[List[int]] = None,
269
270
    ):
        """
271
        Sets the discrete timesteps used for the diffusion chain (to be run before inference).
272
273
274

        Args:
            num_inference_steps (`int`):
275
276
277
                The number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, *optional*):
                The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
278
279
280
281
282
283
284
            num_train_timesteps (`int`, *optional*):
                The number of diffusion steps used when training the model. If `None`, the default
                `num_train_timesteps` attribute is used.
            timesteps (`List[int]`, *optional*):
                Custom timesteps used to support arbitrary spacing between timesteps. If `None`, timesteps will be
                generated based on the `timestep_spacing` attribute. If `timesteps` is passed, `num_inference_steps`
                must be `None`, and `timestep_spacing` attribute will be ignored.
285
        """
286
287
288
289
290
291
        if num_inference_steps is None and timesteps is None:
            raise ValueError("Must pass exactly one of `num_inference_steps` or `custom_timesteps`.")
        if num_inference_steps is not None and timesteps is not None:
            raise ValueError("Can only pass one of `num_inference_steps` or `custom_timesteps`.")
        if timesteps is not None and self.config.use_karras_sigmas:
            raise ValueError("Cannot use `timesteps` with `config.use_karras_sigmas = True`")
292
293
        if timesteps is not None and self.config.use_exponential_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_exponential_sigmas = True`.")
294
295
        if timesteps is not None and self.config.use_beta_sigmas:
            raise ValueError("Cannot set `timesteps` with `config.use_beta_sigmas = True`.")
296
297

        num_inference_steps = num_inference_steps or len(timesteps)
298
299
300
        self.num_inference_steps = num_inference_steps
        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

301
302
        if timesteps is not None:
            timesteps = np.array(timesteps, dtype=np.float32)
303
        else:
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
            # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
            if self.config.timestep_spacing == "linspace":
                timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=np.float32)[::-1].copy()
            elif self.config.timestep_spacing == "leading":
                step_ratio = num_train_timesteps // self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(np.float32)
                timesteps += self.config.steps_offset
            elif self.config.timestep_spacing == "trailing":
                step_ratio = num_train_timesteps / self.num_inference_steps
                # creates integer timesteps by multiplying by ratio
                # casting to int to avoid issues when num_inference_step is power of 3
                timesteps = (np.arange(num_train_timesteps, 0, -step_ratio)).round().copy().astype(np.float32)
                timesteps -= 1
            else:
                raise ValueError(
                    f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
                )
323
324

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
325
        log_sigmas = np.log(sigmas)
326
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
327

YiYi Xu's avatar
YiYi Xu committed
328
        if self.config.use_karras_sigmas:
329
330
            sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=self.num_inference_steps)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
331
        elif self.config.use_exponential_sigmas:
332
            sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
333
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
334
        elif self.config.use_beta_sigmas:
335
            sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
336
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])
337

338
339
340
341
342
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        timesteps = torch.from_numpy(timesteps)
343
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
344

hlky's avatar
hlky committed
345
        self.timesteps = timesteps.to(device=device, dtype=torch.float32)
346
347
348
349
350

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

YiYi Xu's avatar
YiYi Xu committed
351
        self._step_index = None
352
        self._begin_index = None
353
        self.sigmas = self.sigmas.to("cpu")  # to avoid too much CPU/GPU communication
YiYi Xu's avatar
YiYi Xu committed
354

355
356
357
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
358
        log_sigma = np.log(np.maximum(sigma, 1e-10))
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
380
    def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
381
382
        """Constructs the noise schedule of Karras et al. (2022)."""

Suraj Patil's avatar
Suraj Patil committed
383
384
385
386
387
388
389
390
391
392
393
394
395
396
        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
397
398
399
400
401
402
403
404

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
    def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
        """Constructs an exponential noise schedule."""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

424
        sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
425
426
        return sigmas

427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
    def _convert_to_beta(
        self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
    ) -> torch.Tensor:
        """From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""

        # Hack to make sure that other schedulers which copy this function don't break
        # TODO: Add this logic to the other schedulers
        if hasattr(self.config, "sigma_min"):
            sigma_min = self.config.sigma_min
        else:
            sigma_min = None

        if hasattr(self.config, "sigma_max"):
            sigma_max = self.config.sigma_max
        else:
            sigma_max = None

        sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
        sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()

448
        sigmas = np.array(
449
450
451
452
453
454
455
456
457
458
            [
                sigma_min + (ppf * (sigma_max - sigma_min))
                for ppf in [
                    scipy.stats.beta.ppf(timestep, alpha, beta)
                    for timestep in 1 - np.linspace(0, 1, num_inference_steps)
                ]
            ]
        )
        return sigmas

459
460
461
462
    @property
    def state_in_first_order(self):
        return self.dt is None

YiYi Xu's avatar
YiYi Xu committed
463
464
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
    def _init_step_index(self, timestep):
465
466
467
468
        if self.begin_index is None:
            if isinstance(timestep, torch.Tensor):
                timestep = timestep.to(self.timesteps.device)
            self._step_index = self.index_for_timestep(timestep)
YiYi Xu's avatar
YiYi Xu committed
469
        else:
470
            self._step_index = self._begin_index
YiYi Xu's avatar
YiYi Xu committed
471

472
473
    def step(
        self,
474
475
476
        model_output: Union[torch.Tensor, np.ndarray],
        timestep: Union[float, torch.Tensor],
        sample: Union[torch.Tensor, np.ndarray],
477
        return_dict: bool = True,
478
    ) -> Union[HeunDiscreteSchedulerOutput, Tuple]:
479
        """
480
        Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
481
        process from the learned model outputs (most often the predicted noise).
482
483

        Args:
484
            model_output (`torch.Tensor`):
485
486
487
                The direct output from learned diffusion model.
            timestep (`float`):
                The current discrete timestep in the diffusion chain.
488
            sample (`torch.Tensor`):
489
490
                A current instance of a sample created by the diffusion process.
            return_dict (`bool`):
491
492
                Whether or not to return a [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or
                tuple.
493

494
        Returns:
495
496
497
            [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] or `tuple`:
                If return_dict is `True`, [`~schedulers.scheduling_heun_discrete.HeunDiscreteSchedulerOutput`] is
                returned, otherwise a tuple is returned where the first element is the sample tensor.
498
        """
YiYi Xu's avatar
YiYi Xu committed
499
500
        if self.step_index is None:
            self._init_step_index(timestep)
501
502

        if self.state_in_first_order:
YiYi Xu's avatar
YiYi Xu committed
503
504
            sigma = self.sigmas[self.step_index]
            sigma_next = self.sigmas[self.step_index + 1]
505
506
        else:
            # 2nd order / Heun's method
YiYi Xu's avatar
YiYi Xu committed
507
508
            sigma = self.sigmas[self.step_index - 1]
            sigma_next = self.sigmas[self.step_index]
509
510
511
512
513
514
515
516

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
517
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
518
519
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = sample - sigma_input * model_output
520
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
521
522
523
524
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
525
        elif self.config.prediction_type == "sample":
YiYi Xu's avatar
YiYi Xu committed
526
            pred_original_sample = model_output
527
528
529
530
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
531

YiYi Xu's avatar
YiYi Xu committed
532
533
534
535
536
        if self.config.clip_sample:
            pred_original_sample = pred_original_sample.clamp(
                -self.config.clip_sample_range, self.config.clip_sample_range
            )

537
        if self.state_in_first_order:
538
            # 2. Convert to an ODE derivative for 1st order
539
            derivative = (sample - pred_original_sample) / sigma_hat
540
            # 3. delta timestep
541
542
543
544
545
546
547
548
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
Suraj Patil's avatar
Suraj Patil committed
549
            derivative = (sample - pred_original_sample) / sigma_next
550
551
            derivative = (self.prev_derivative + derivative) / 2

552
            # 3. take prev timestep & sample
553
554
555
556
557
558
559
560
561
562
563
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

YiYi Xu's avatar
YiYi Xu committed
564
565
566
        # upon completion increase step index by one
        self._step_index += 1

567
        if not return_dict:
568
569
570
571
            return (
                prev_sample,
                pred_original_sample,
            )
572

573
        return HeunDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
574

575
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
576
577
    def add_noise(
        self,
578
579
580
581
        original_samples: torch.Tensor,
        noise: torch.Tensor,
        timesteps: torch.Tensor,
    ) -> torch.Tensor:
582
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
583
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
584
585
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
586
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
587
588
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
589
            schedule_timesteps = self.timesteps.to(original_samples.device)
590
591
            timesteps = timesteps.to(original_samples.device)

592
593
594
        # self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
        if self.begin_index is None:
            step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timesteps]
595
596
597
        elif self.step_index is not None:
            # add_noise is called after first denoising step (for inpainting)
            step_indices = [self.step_index] * timesteps.shape[0]
598
        else:
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
599
            # add noise is called before first denoising step to create initial latent(img2img)
600
            step_indices = [self.begin_index] * timesteps.shape[0]
601

602
        sigma = sigmas[step_indices].flatten()
603
604
605
606
607
608
609
610
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps