scheduling_heun_discrete.py 12.9 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson, The HuggingFace Team and hlky. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
16
from typing import List, Optional, Tuple, Union
17
18
19
20
21

import numpy as np
import torch

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
22
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin, SchedulerOutput
23
24


25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999) -> torch.Tensor:
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


55
56
57
58
59
class HeunDiscreteScheduler(SchedulerMixin, ConfigMixin):
    """
    Implements Algorithm 2 (Heun steps) from Karras et al. (2022). for discrete beta schedules. Based on the original
    k-diffusion implementation by Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L90
60

61
62
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
63
64
65
66
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.

    Args:
67
68
69
70
71
72
73
74
        num_train_timesteps (`int`): number of diffusion steps used to train the model. beta_start (`float`): the
        starting `beta` value of inference. beta_end (`float`): the final `beta` value. beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
            options to clip the variance used when adding noise to the denoised sample. Choose from `fixed_small`,
            `fixed_small_log`, `fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
75
76
77
78
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
79
80
    """

Kashif Rasul's avatar
Kashif Rasul committed
81
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
82
83
84
85
86
87
88
89
90
    order = 2

    @register_to_config
    def __init__(
        self,
        num_train_timesteps: int = 1000,
        beta_start: float = 0.00085,  # sensible defaults
        beta_end: float = 0.012,
        beta_schedule: str = "linear",
91
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
92
        prediction_type: str = "epsilon",
93
94
    ):
        if trained_betas is not None:
95
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
96
97
98
99
100
101
102
        elif beta_schedule == "linear":
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
103
104
105
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
106
107
108
109
110
111
112
113
114
115
116
117
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)

        #  set all values
        self.set_timesteps(num_train_timesteps, None, num_train_timesteps)

    def index_for_timestep(self, timestep):
        indices = (self.timesteps == timestep).nonzero()
        if self.state_in_first_order:
118
            pos = -1
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
        else:
            pos = 0
        return indices[pos].item()

    def scale_model_input(
        self,
        sample: torch.FloatTensor,
        timestep: Union[float, torch.FloatTensor],
    ) -> torch.FloatTensor:
        """
        Args:
        Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
        current timestep.
            sample (`torch.FloatTensor`): input sample timestep (`int`, optional): current timestep
        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        step_index = self.index_for_timestep(timestep)

        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        return sample

    def set_timesteps(
        self,
        num_inference_steps: int,
        device: Union[str, torch.device] = None,
        num_train_timesteps: Optional[int] = None,
    ):
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
        """
        self.num_inference_steps = num_inference_steps

        num_train_timesteps = num_train_timesteps or self.config.num_train_timesteps

        timesteps = np.linspace(0, num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()

        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
        sigmas = torch.from_numpy(sigmas).to(device=device)
        self.sigmas = torch.cat([sigmas[:1], sigmas[1:-1].repeat_interleave(2), sigmas[-1:]])

        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

        timesteps = torch.from_numpy(timesteps)
173
        timesteps = torch.cat([timesteps[:1], timesteps[1:].repeat_interleave(2)])
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225

        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = timesteps.to(device, dtype=torch.float32)
        else:
            self.timesteps = timesteps.to(device=device)

        # empty dt and derivative
        self.prev_derivative = None
        self.dt = None

    @property
    def state_in_first_order(self):
        return self.dt is None

    def step(
        self,
        model_output: Union[torch.FloatTensor, np.ndarray],
        timestep: Union[float, torch.FloatTensor],
        sample: Union[torch.FloatTensor, np.ndarray],
        return_dict: bool = True,
    ) -> Union[SchedulerOutput, Tuple]:
        """
        Args:
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).
            model_output (`torch.FloatTensor` or `np.ndarray`): direct output from learned diffusion model. timestep
            (`int`): current discrete timestep in the diffusion chain. sample (`torch.FloatTensor` or `np.ndarray`):
                current instance of sample being created by diffusion process.
            return_dict (`bool`): option for returning tuple rather than SchedulerOutput class
        Returns:
            [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.SchedulerOutput`] if `return_dict` is True, otherwise a `tuple`. When
            returning a tuple, the first element is the sample tensor.
        """
        step_index = self.index_for_timestep(timestep)

        if self.state_in_first_order:
            sigma = self.sigmas[step_index]
            sigma_next = self.sigmas[step_index + 1]
        else:
            # 2nd order / Heun's method
            sigma = self.sigmas[step_index - 1]
            sigma_next = self.sigmas[step_index]

        # currently only gamma=0 is supported. This usually works best anyways.
        # We can support gamma in the future but then need to scale the timestep before
        # passing it to the model which requires a change in API
        gamma = 0
        sigma_hat = sigma * (gamma + 1)  # Note: sigma_hat == sigma for now

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
226
        if self.config.prediction_type == "epsilon":
Suraj Patil's avatar
Suraj Patil committed
227
228
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = sample - sigma_input * model_output
229
        elif self.config.prediction_type == "v_prediction":
Suraj Patil's avatar
Suraj Patil committed
230
231
232
233
            sigma_input = sigma_hat if self.state_in_first_order else sigma_next
            pred_original_sample = model_output * (-sigma_input / (sigma_input**2 + 1) ** 0.5) + (
                sample / (sigma_input**2 + 1)
            )
234
235
        elif self.config.prediction_type == "sample":
            raise NotImplementedError("prediction_type not implemented yet: sample")
236
237
238
239
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
240
241

        if self.state_in_first_order:
242
            # 2. Convert to an ODE derivative for 1st order
243
            derivative = (sample - pred_original_sample) / sigma_hat
244
            # 3. delta timestep
245
246
247
248
249
250
251
252
            dt = sigma_next - sigma_hat

            # store for 2nd order step
            self.prev_derivative = derivative
            self.dt = dt
            self.sample = sample
        else:
            # 2. 2nd order / Heun's method
Suraj Patil's avatar
Suraj Patil committed
253
            derivative = (sample - pred_original_sample) / sigma_next
254
255
            derivative = (self.prev_derivative + derivative) / 2

256
            # 3. take prev timestep & sample
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
            dt = self.dt
            sample = self.sample

            # free dt and derivative
            # Note, this puts the scheduler in "first order mode"
            self.prev_derivative = None
            self.dt = None
            self.sample = None

        prev_sample = sample + derivative * dt

        if not return_dict:
            return (prev_sample,)

        return SchedulerOutput(prev_sample=prev_sample)

    def add_noise(
        self,
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
        timesteps: torch.FloatTensor,
    ) -> torch.FloatTensor:
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            self.timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)

        step_indices = [self.index_for_timestep(t) for t in timesteps]

        sigma = self.sigmas[step_indices].flatten()
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps