"examples/hubert/vscode:/vscode.git/clone" did not exist on "576b02b19ec7b8273cc3c343a8d36272b63330ca"
train_unconditional.py 21.8 KB
Newer Older
anton-l's avatar
anton-l committed
1
import argparse
2
import copy
3
import inspect
4
import logging
5
import math
anton-l's avatar
anton-l committed
6
import os
7
8
from pathlib import Path
from typing import Optional
anton-l's avatar
anton-l committed
9
10
11
12

import torch
import torch.nn.functional as F

13
14
import datasets
import diffusers
15
from accelerate import Accelerator
16
from accelerate.logging import get_logger
anton-l's avatar
anton-l committed
17
from datasets import load_dataset
18
from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel
19
from diffusers.optimization import get_scheduler
anton-l's avatar
anton-l committed
20
from diffusers.training_utils import EMAModel
21
from diffusers.utils import check_min_version
22
from huggingface_hub import HfFolder, Repository, create_repo, whoami
anton-l's avatar
anton-l committed
23
from torchvision.transforms import (
Patrick von Platen's avatar
Patrick von Platen committed
24
    CenterCrop,
anton-l's avatar
anton-l committed
25
26
    Compose,
    InterpolationMode,
anton-l's avatar
anton-l committed
27
    Normalize,
anton-l's avatar
anton-l committed
28
29
30
31
    RandomHorizontalFlip,
    Resize,
    ToTensor,
)
anton-l's avatar
anton-l committed
32
from tqdm.auto import tqdm
anton-l's avatar
anton-l committed
33
34


35
# Will error if the minimal version of diffusers is not installed. Remove at your own risks.
36
check_min_version("0.12.0.dev0")
37
38


39
logger = get_logger(__name__, log_level="INFO")
anton-l's avatar
anton-l committed
40
41


42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def _extract_into_tensor(arr, timesteps, broadcast_shape):
    """
    Extract values from a 1-D numpy array for a batch of indices.

    :param arr: the 1-D numpy array.
    :param timesteps: a tensor of indices into the array to extract.
    :param broadcast_shape: a larger shape of K dimensions with the batch
                            dimension equal to the length of timesteps.
    :return: a tensor of shape [batch_size, 1, ...] where the shape has K dims.
    """
    if not isinstance(arr, torch.Tensor):
        arr = torch.from_numpy(arr)
    res = arr[timesteps].float().to(timesteps.device)
    while len(res.shape) < len(broadcast_shape):
        res = res[..., None]
    return res.expand(broadcast_shape)


60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
def parse_args():
    parser = argparse.ArgumentParser(description="Simple example of a training script.")
    parser.add_argument(
        "--dataset_name",
        type=str,
        default=None,
        help=(
            "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private,"
            " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem,"
            " or to a folder containing files that HF Datasets can understand."
        ),
    )
    parser.add_argument(
        "--dataset_config_name",
        type=str,
        default=None,
        help="The config of the Dataset, leave as None if there's only one config.",
    )
    parser.add_argument(
        "--train_data_dir",
        type=str,
        default=None,
        help=(
            "A folder containing the training data. Folder contents must follow the structure described in"
            " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file"
            " must exist to provide the captions for the images. Ignored if `dataset_name` is specified."
        ),
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        default="ddpm-model-64",
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument("--overwrite_output_dir", action="store_true")
    parser.add_argument(
        "--cache_dir",
        type=str,
        default=None,
        help="The directory where the downloaded models and datasets will be stored.",
    )
    parser.add_argument(
        "--resolution",
        type=int,
        default=64,
        help=(
            "The resolution for input images, all the images in the train/validation dataset will be resized to this"
            " resolution"
        ),
    )
    parser.add_argument(
        "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
    )
    parser.add_argument(
114
115
116
117
118
119
120
121
122
123
        "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation."
    )
    parser.add_argument(
        "--dataloader_num_workers",
        type=int,
        default=0,
        help=(
            "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main"
            " process."
        ),
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
    )
    parser.add_argument("--num_epochs", type=int, default=100)
    parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.")
    parser.add_argument(
        "--save_model_epochs", type=int, default=10, help="How often to save the model during training."
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass.",
    )
    parser.add_argument(
        "--learning_rate",
        type=float,
        default=1e-4,
        help="Initial learning rate (after the potential warmup period) to use.",
    )
    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="cosine",
        help=(
            'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
            ' "constant", "constant_with_warmup"]'
        ),
    )
    parser.add_argument(
        "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
    )
    parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.")
    parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
    parser.add_argument(
        "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer."
    )
    parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.")
    parser.add_argument(
        "--use_ema",
        action="store_true",
        help="Whether to use Exponential Moving Average for the final model weights.",
    )
    parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.")
    parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.")
    parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.")
    parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
    parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
    parser.add_argument(
        "--hub_model_id",
        type=str,
        default=None,
        help="The name of the repository to keep in sync with the local `output_dir`.",
    )
    parser.add_argument(
        "--hub_private_repo", action="store_true", help="Whether or not to create a private repository."
    )
179
180
181
182
183
184
185
186
187
188
    parser.add_argument(
        "--logger",
        type=str,
        default="tensorboard",
        choices=["tensorboard", "wandb"],
        help=(
            "Whether to use [tensorboard](https://www.tensorflow.org/tensorboard) or [wandb](https://www.wandb.ai)"
            " for experiment tracking and logging of model metrics and model checkpoints"
        ),
    )
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    parser.add_argument(
        "--logging_dir",
        type=str,
        default="logs",
        help=(
            "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
            " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
        ),
    )
    parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
    parser.add_argument(
        "--mixed_precision",
        type=str,
        default="no",
        choices=["no", "fp16", "bf16"],
        help=(
            "Whether to use mixed precision. Choose"
            "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
            "and an Nvidia Ampere GPU."
        ),
    )
210
    parser.add_argument(
211
212
213
214
        "--prediction_type",
        type=str,
        default="epsilon",
        choices=["epsilon", "sample"],
215
        help="Whether the model should predict the 'epsilon'/noise error or directly the reconstructed image 'x0'.",
216
217
218
    )
    parser.add_argument("--ddpm_num_steps", type=int, default=1000)
    parser.add_argument("--ddpm_beta_schedule", type=str, default="linear")
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
    parser.add_argument(
        "--checkpointing_steps",
        type=int,
        default=500,
        help=(
            "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming"
            " training using `--resume_from_checkpoint`."
        ),
    )
    parser.add_argument(
        "--resume_from_checkpoint",
        type=str,
        default=None,
        help=(
            "Whether training should be resumed from a previous checkpoint. Use a path saved by"
            ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.'
        ),
    )
237

238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
    args = parser.parse_args()
    env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
    if env_local_rank != -1 and env_local_rank != args.local_rank:
        args.local_rank = env_local_rank

    if args.dataset_name is None and args.train_data_dir is None:
        raise ValueError("You must specify either a dataset name from the hub or a train data directory.")

    return args


def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
    if token is None:
        token = HfFolder.get_token()
    if organization is None:
        username = whoami(token)["name"]
        return f"{username}/{model_id}"
    else:
        return f"{organization}/{model_id}"


anton-l's avatar
anton-l committed
259
def main(args):
260
    logging_dir = os.path.join(args.output_dir, args.logging_dir)
261

262
    accelerator = Accelerator(
263
        gradient_accumulation_steps=args.gradient_accumulation_steps,
264
        mixed_precision=args.mixed_precision,
265
        log_with=args.logger,
266
267
        logging_dir=logging_dir,
    )
anton-l's avatar
anton-l committed
268

269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
    # Make one log on every process with the configuration for debugging.
    logging.basicConfig(
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
        datefmt="%m/%d/%Y %H:%M:%S",
        level=logging.INFO,
    )
    logger.info(accelerator.state, main_process_only=False)
    if accelerator.is_local_main_process:
        datasets.utils.logging.set_verbosity_warning()
        diffusers.utils.logging.set_verbosity_info()
    else:
        datasets.utils.logging.set_verbosity_error()
        diffusers.utils.logging.set_verbosity_error()

    # Handle the repository creation
    if accelerator.is_main_process:
        if args.push_to_hub:
            if args.hub_model_id is None:
                repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
            else:
                repo_name = args.hub_model_id
290
291
            create_repo(repo_name, exist_ok=True, token=args.hub_token)
            repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token)
292
293
294
295
296
297
298
299
300
301

            with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
                if "step_*" not in gitignore:
                    gitignore.write("step_*\n")
                if "epoch_*" not in gitignore:
                    gitignore.write("epoch_*\n")
        elif args.output_dir is not None:
            os.makedirs(args.output_dir, exist_ok=True)

    # Initialize the model
anton-l's avatar
anton-l committed
302
303
    model = UNet2DModel(
        sample_size=args.resolution,
304
305
        in_channels=3,
        out_channels=3,
anton-l's avatar
anton-l committed
306
307
308
309
310
311
312
313
314
        layers_per_block=2,
        block_out_channels=(128, 128, 256, 256, 512, 512),
        down_block_types=(
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "DownBlock2D",
            "AttnDownBlock2D",
            "DownBlock2D",
315
        ),
anton-l's avatar
anton-l committed
316
317
318
319
320
321
322
        up_block_types=(
            "UpBlock2D",
            "AttnUpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
            "UpBlock2D",
323
        ),
anton-l's avatar
anton-l committed
324
    )
325

326
327
328
329
330
331
332
333
334
335
336
337
    # Create EMA for the model.
    if args.use_ema:
        ema_model = EMAModel(
            model.parameters(),
            decay=args.ema_max_decay,
            use_ema_warmup=True,
            inv_gamma=args.ema_inv_gamma,
            power=args.ema_power,
        )

    # Initialize the scheduler
    accepts_prediction_type = "prediction_type" in set(inspect.signature(DDPMScheduler.__init__).parameters.keys())
338
    if accepts_prediction_type:
339
340
341
        noise_scheduler = DDPMScheduler(
            num_train_timesteps=args.ddpm_num_steps,
            beta_schedule=args.ddpm_beta_schedule,
342
            prediction_type=args.prediction_type,
343
344
345
346
        )
    else:
        noise_scheduler = DDPMScheduler(num_train_timesteps=args.ddpm_num_steps, beta_schedule=args.ddpm_beta_schedule)

347
    # Initialize the optimizer
348
349
350
351
352
353
354
    optimizer = torch.optim.AdamW(
        model.parameters(),
        lr=args.learning_rate,
        betas=(args.adam_beta1, args.adam_beta2),
        weight_decay=args.adam_weight_decay,
        eps=args.adam_epsilon,
    )
anton-l's avatar
anton-l committed
355

356
357
    # Get the datasets: you can either provide your own training and evaluation files (see below)
    # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub).
358

359
360
    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
361
362
363
364
365
366
367
368
369
    if args.dataset_name is not None:
        dataset = load_dataset(
            args.dataset_name,
            args.dataset_config_name,
            cache_dir=args.cache_dir,
            split="train",
        )
    else:
        dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train")
370
371
372
373
374
375
376
377
378
379
380
381
382
        # See more about loading custom images at
        # https://huggingface.co/docs/datasets/v2.4.0/en/image_load#imagefolder

    # Preprocessing the datasets and DataLoaders creation.
    augmentations = Compose(
        [
            Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
            CenterCrop(args.resolution),
            RandomHorizontalFlip(),
            ToTensor(),
            Normalize([0.5], [0.5]),
        ]
    )
anton-l's avatar
anton-l committed
383
384
385
386
387

    def transforms(examples):
        images = [augmentations(image.convert("RGB")) for image in examples["image"]]
        return {"input": images}

388
389
    logger.info(f"Dataset size: {len(dataset)}")

anton-l's avatar
anton-l committed
390
    dataset.set_transform(transforms)
391
392
393
    train_dataloader = torch.utils.data.DataLoader(
        dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers
    )
anton-l's avatar
anton-l committed
394

395
    # Initialize the learning rate scheduler
anton-l's avatar
anton-l committed
396
    lr_scheduler = get_scheduler(
397
        args.lr_scheduler,
anton-l's avatar
anton-l committed
398
        optimizer=optimizer,
399
400
        num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps,
        num_training_steps=(len(train_dataloader) * args.num_epochs),
anton-l's avatar
anton-l committed
401
402
    )

403
    # Prepare everything with our `accelerator`.
anton-l's avatar
anton-l committed
404
405
406
    model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
        model, optimizer, train_dataloader, lr_scheduler
    )
407

408
409
410
    if args.use_ema:
        accelerator.register_for_checkpointing(ema_model)
        ema_model.to(accelerator.device)
anton-l's avatar
anton-l committed
411

412
413
    # We need to initialize the trackers we use, and also store our configuration.
    # The trackers initializes automatically on the main process.
414
415
416
417
    if accelerator.is_main_process:
        run = os.path.split(__file__)[-1].split(".")[0]
        accelerator.init_trackers(run)

418
419
420
421
422
423
424
425
426
427
428
429
    total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
    num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
    max_train_steps = args.num_epochs * num_update_steps_per_epoch

    logger.info("***** Running training *****")
    logger.info(f"  Num examples = {len(dataset)}")
    logger.info(f"  Num Epochs = {args.num_epochs}")
    logger.info(f"  Instantaneous batch size per device = {args.train_batch_size}")
    logger.info(f"  Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
    logger.info(f"  Gradient Accumulation steps = {args.gradient_accumulation_steps}")
    logger.info(f"  Total optimization steps = {max_train_steps}")

anton-l's avatar
anton-l committed
430
    global_step = 0
431
432
    first_epoch = 0

433
    # Potentially load in the weights and states from a previous save
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
    if args.resume_from_checkpoint:
        if args.resume_from_checkpoint != "latest":
            path = os.path.basename(args.resume_from_checkpoint)
        else:
            # Get the most recent checkpoint
            dirs = os.listdir(args.output_dir)
            dirs = [d for d in dirs if d.startswith("checkpoint")]
            dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
            path = dirs[-1]
        accelerator.print(f"Resuming from checkpoint {path}")
        accelerator.load_state(os.path.join(args.output_dir, path))
        global_step = int(path.split("-")[1])

        resume_global_step = global_step * args.gradient_accumulation_steps
        first_epoch = resume_global_step // num_update_steps_per_epoch
        resume_step = resume_global_step % num_update_steps_per_epoch

451
    # Train!
452
    for epoch in range(first_epoch, args.num_epochs):
anton-l's avatar
anton-l committed
453
        model.train()
454
        progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process)
455
456
        progress_bar.set_description(f"Epoch {epoch}")
        for step, batch in enumerate(train_dataloader):
457
458
459
460
461
462
            # Skip steps until we reach the resumed step
            if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step:
                if step % args.gradient_accumulation_steps == 0:
                    progress_bar.update(1)
                continue

463
            clean_images = batch["input"]
464
465
            # Sample noise that we'll add to the images
            noise = torch.randn(clean_images.shape).to(clean_images.device)
466
            bsz = clean_images.shape[0]
467
468
            # Sample a random timestep for each image
            timesteps = torch.randint(
469
                0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device
470
            ).long()
471

472
            # Add noise to the clean images according to the noise magnitude at each timestep
473
            # (this is the forward diffusion process)
474
475
476
477
            noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps)

            with accelerator.accumulate(model):
                # Predict the noise residual
478
479
                model_output = model(noisy_images, timesteps).sample

480
                if args.prediction_type == "epsilon":
481
                    loss = F.mse_loss(model_output, noise)  # this could have different weights!
482
                elif args.prediction_type == "sample":
483
484
485
486
487
488
489
490
                    alpha_t = _extract_into_tensor(
                        noise_scheduler.alphas_cumprod, timesteps, (clean_images.shape[0], 1, 1, 1)
                    )
                    snr_weights = alpha_t / (1 - alpha_t)
                    loss = snr_weights * F.mse_loss(
                        model_output, clean_images, reduction="none"
                    )  # use SNR weighting from distillation paper
                    loss = loss.mean()
491
492
                else:
                    raise ValueError(f"Unsupported prediction type: {args.prediction_type}")
493

494
                accelerator.backward(loss)
495

496
497
                if accelerator.sync_gradients:
                    accelerator.clip_grad_norm_(model.parameters(), 1.0)
498
499
500
                optimizer.step()
                lr_scheduler.step()
                optimizer.zero_grad()
501

502
503
            # Checks if the accelerator has performed an optimization step behind the scenes
            if accelerator.sync_gradients:
504
505
                if args.use_ema:
                    ema_model.step(model.parameters())
506
507
508
                progress_bar.update(1)
                global_step += 1

509
510
511
512
513
514
                if global_step % args.checkpointing_steps == 0:
                    if accelerator.is_main_process:
                        save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}")
                        accelerator.save_state(save_path)
                        logger.info(f"Saved state to {save_path}")

515
516
517
518
519
            logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step}
            if args.use_ema:
                logs["ema_decay"] = ema_model.decay
            progress_bar.set_postfix(**logs)
            accelerator.log(logs, step=global_step)
520
        progress_bar.close()
anton-l's avatar
anton-l committed
521

anton-l's avatar
anton-l committed
522
        accelerator.wait_for_everyone()
anton-l's avatar
anton-l committed
523

anton-l's avatar
anton-l committed
524
        # Generate sample images for visual inspection
anton-l's avatar
anton-l committed
525
        if accelerator.is_main_process:
anton-l's avatar
anton-l committed
526
            if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1:
527
528
529
                unet = copy.deepcopy(accelerator.unwrap_model(model))
                if args.use_ema:
                    ema_model.copy_to(unet.parameters())
530
                pipeline = DDPMPipeline(
531
                    unet=unet,
532
                    scheduler=noise_scheduler,
anton-l's avatar
anton-l committed
533
                )
anton-l's avatar
anton-l committed
534

535
                generator = torch.Generator(device=pipeline.device).manual_seed(0)
anton-l's avatar
anton-l committed
536
                # run pipeline in inference (sample random noise and denoise)
537
538
539
540
541
                images = pipeline(
                    generator=generator,
                    batch_size=args.eval_batch_size,
                    output_type="numpy",
                ).images
anton-l's avatar
anton-l committed
542

anton-l's avatar
anton-l committed
543
544
                # denormalize the images and save to tensorboard
                images_processed = (images * 255).round().astype("uint8")
545
546
547
548
549

                if args.logger == "tensorboard":
                    accelerator.get_tracker("tensorboard").add_images(
                        "test_samples", images_processed.transpose(0, 3, 1, 2), epoch
                    )
anton-l's avatar
anton-l committed
550

551
552
            if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1:
                # save the model
553
                pipeline.save_pretrained(args.output_dir)
554
                if args.push_to_hub:
555
                    repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False)
anton-l's avatar
anton-l committed
556

557
558
    accelerator.end_training()

anton-l's avatar
anton-l committed
559
560

if __name__ == "__main__":
561
    args = parse_args()
anton-l's avatar
anton-l committed
562
    main(args)