"vscode:/vscode.git/clone" did not exist on "b4c9f38a76bd42dfe5bfa64ffaaa31cfca7745e2"
unet_2d_blocks.py 56.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import numpy as np
15
import torch
Patrick von Platen's avatar
Patrick von Platen committed
16
17
from torch import nn

18
from .attention import AttentionBlock, DualTransformer2DModel, Transformer2DModel
19
from .resnet import Downsample2D, FirDownsample2D, FirUpsample2D, ResnetBlock2D, Upsample2D
Patrick von Platen's avatar
Patrick von Platen committed
20
21


22
23
24
25
26
27
28
29
30
31
def get_down_block(
    down_block_type,
    num_layers,
    in_channels,
    out_channels,
    temb_channels,
    add_downsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
32
    resnet_groups=None,
33
    cross_attention_dim=None,
Patrick von Platen's avatar
Patrick von Platen committed
34
    downsample_padding=None,
35
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
36
    use_linear_projection=False,
37
    only_cross_attention=False,
38
    upcast_attention=False,
39
):
Patrick von Platen's avatar
Patrick von Platen committed
40
41
42
    down_block_type = down_block_type[7:] if down_block_type.startswith("UNetRes") else down_block_type
    if down_block_type == "DownBlock2D":
        return DownBlock2D(
43
44
45
46
47
48
49
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
50
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
51
            downsample_padding=downsample_padding,
52
        )
Patrick von Platen's avatar
Patrick von Platen committed
53
54
    elif down_block_type == "AttnDownBlock2D":
        return AttnDownBlock2D(
55
56
57
58
59
60
61
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
62
            resnet_groups=resnet_groups,
63
            downsample_padding=downsample_padding,
64
65
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
66
    elif down_block_type == "CrossAttnDownBlock2D":
67
        if cross_attention_dim is None:
68
            raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
69
        return CrossAttnDownBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
77
            resnet_groups=resnet_groups,
Patrick von Platen's avatar
Patrick von Platen committed
78
            downsample_padding=downsample_padding,
79
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
80
            attn_num_head_channels=attn_num_head_channels,
81
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
82
            use_linear_projection=use_linear_projection,
83
            only_cross_attention=only_cross_attention,
84
            upcast_attention=upcast_attention,
Patrick von Platen's avatar
Patrick von Platen committed
85
        )
Patrick von Platen's avatar
Patrick von Platen committed
86
87
    elif down_block_type == "SkipDownBlock2D":
        return SkipDownBlock2D(
88
89
90
91
92
93
94
95
96
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
        )
Patrick von Platen's avatar
Patrick von Platen committed
97
98
    elif down_block_type == "AttnSkipDownBlock2D":
        return AttnSkipDownBlock2D(
99
100
101
102
103
104
105
106
107
108
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            temb_channels=temb_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
109
110
111
112
113
114
115
116
    elif down_block_type == "DownEncoderBlock2D":
        return DownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
117
            resnet_groups=resnet_groups,
118
119
            downsample_padding=downsample_padding,
        )
Will Berman's avatar
Will Berman committed
120
121
122
123
124
125
126
127
128
129
130
131
132
    elif down_block_type == "AttnDownEncoderBlock2D":
        return AttnDownEncoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_downsample=add_downsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            downsample_padding=downsample_padding,
            attn_num_head_channels=attn_num_head_channels,
        )
    raise ValueError(f"{down_block_type} does not exist.")
133
134
135
136
137
138


def get_up_block(
    up_block_type,
    num_layers,
    in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
139
140
    out_channels,
    prev_output_channel,
141
142
143
144
145
    temb_channels,
    add_upsample,
    resnet_eps,
    resnet_act_fn,
    attn_num_head_channels,
146
    resnet_groups=None,
147
    cross_attention_dim=None,
148
    dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
149
    use_linear_projection=False,
150
    only_cross_attention=False,
151
    upcast_attention=False,
152
):
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
    up_block_type = up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
    if up_block_type == "UpBlock2D":
        return UpBlock2D(
156
157
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
158
159
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
160
161
162
163
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
164
            resnet_groups=resnet_groups,
165
        )
Patrick von Platen's avatar
Patrick von Platen committed
166
    elif up_block_type == "CrossAttnUpBlock2D":
167
168
        if cross_attention_dim is None:
            raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock2D")
Patrick von Platen's avatar
Patrick von Platen committed
169
        return CrossAttnUpBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
170
171
172
173
174
175
176
177
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
178
            resnet_groups=resnet_groups,
179
            cross_attention_dim=cross_attention_dim,
Patrick von Platen's avatar
Patrick von Platen committed
180
            attn_num_head_channels=attn_num_head_channels,
181
            dual_cross_attention=dual_cross_attention,
Suraj Patil's avatar
Suraj Patil committed
182
            use_linear_projection=use_linear_projection,
183
            only_cross_attention=only_cross_attention,
184
            upcast_attention=upcast_attention,
Patrick von Platen's avatar
Patrick von Platen committed
185
        )
Patrick von Platen's avatar
Patrick von Platen committed
186
187
    elif up_block_type == "AttnUpBlock2D":
        return AttnUpBlock2D(
188
189
            num_layers=num_layers,
            in_channels=in_channels,
Patrick von Platen's avatar
Patrick von Platen committed
190
191
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
192
193
194
195
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
196
            resnet_groups=resnet_groups,
197
198
            attn_num_head_channels=attn_num_head_channels,
        )
Patrick von Platen's avatar
Patrick von Platen committed
199
200
    elif up_block_type == "SkipUpBlock2D":
        return SkipUpBlock2D(
201
202
203
204
205
206
207
208
209
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
        )
Patrick von Platen's avatar
Patrick von Platen committed
210
211
    elif up_block_type == "AttnSkipUpBlock2D":
        return AttnSkipUpBlock2D(
212
213
214
215
216
217
218
219
220
221
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            prev_output_channel=prev_output_channel,
            temb_channels=temb_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            attn_num_head_channels=attn_num_head_channels,
        )
222
223
224
225
226
227
228
229
    elif up_block_type == "UpDecoderBlock2D":
        return UpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
230
            resnet_groups=resnet_groups,
231
        )
Will Berman's avatar
Will Berman committed
232
233
234
235
236
237
238
239
240
241
242
    elif up_block_type == "AttnUpDecoderBlock2D":
        return AttnUpDecoderBlock2D(
            num_layers=num_layers,
            in_channels=in_channels,
            out_channels=out_channels,
            add_upsample=add_upsample,
            resnet_eps=resnet_eps,
            resnet_act_fn=resnet_act_fn,
            resnet_groups=resnet_groups,
            attn_num_head_channels=attn_num_head_channels,
        )
243
    raise ValueError(f"{up_block_type} does not exist.")
244
245


Patrick von Platen's avatar
Patrick von Platen committed
246
247
248
249
250
class UNetMidBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
251
        dropout: float = 0.0,
252
        num_layers: int = 1,
Patrick von Platen's avatar
Patrick von Platen committed
253
254
255
256
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
257
        resnet_pre_norm: bool = True,
258
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
259
        attention_type="default",
Patrick von Platen's avatar
Patrick von Platen committed
260
261
262
263
        output_scale_factor=1.0,
    ):
        super().__init__()

Patrick von Platen's avatar
Patrick von Platen committed
264
        self.attention_type = attention_type
265
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
Patrick von Platen's avatar
Patrick von Platen committed
266

267
268
        # there is always at least one resnet
        resnets = [
269
            ResnetBlock2D(
270
271
272
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
273
                eps=resnet_eps,
274
275
276
277
278
279
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
Patrick von Platen's avatar
Patrick von Platen committed
280
            )
281
282
        ]
        attentions = []
Patrick von Platen's avatar
Patrick von Platen committed
283

284
285
        for _ in range(num_layers):
            attentions.append(
286
                AttentionBlock(
287
288
289
                    in_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
290
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
291
                    norm_num_groups=resnet_groups,
292
                )
293
            )
294
            resnets.append(
295
                ResnetBlock2D(
296
297
298
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
299
                    eps=resnet_eps,
300
301
302
303
304
305
306
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
Patrick von Platen's avatar
Patrick von Platen committed
307
308
            )

309
310
311
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

Patrick von Platen's avatar
Patrick von Platen committed
312
313
    def forward(self, hidden_states, temb=None, encoder_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
314
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Patrick von Platen's avatar
Patrick von Platen committed
315
316
            if self.attention_type == "default":
                hidden_states = attn(hidden_states)
317
            else:
Patrick von Platen's avatar
Patrick von Platen committed
318
319
                hidden_states = attn(hidden_states, encoder_states)
            hidden_states = resnet(hidden_states, temb)
Patrick von Platen's avatar
Patrick von Platen committed
320

321
        return hidden_states
Patrick von Platen's avatar
Patrick von Platen committed
322

323

Patrick von Platen's avatar
Patrick von Platen committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
class UNetMidBlock2DCrossAttn(nn.Module):
    def __init__(
        self,
        in_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=1.0,
        cross_attention_dim=1280,
340
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
341
        use_linear_projection=False,
342
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
343
344
345
    ):
        super().__init__()

346
        self.has_cross_attention = True
Patrick von Platen's avatar
Patrick von Platen committed
347
        self.attention_type = attention_type
348
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
349
350
351
352
        resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)

        # there is always at least one resnet
        resnets = [
353
            ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
                in_channels=in_channels,
                out_channels=in_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=resnet_groups,
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
            )
        ]
        attentions = []

        for _ in range(num_layers):
369
370
371
372
373
374
375
376
377
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
378
                        use_linear_projection=use_linear_projection,
379
                        upcast_attention=upcast_attention,
380
381
382
383
384
385
386
387
388
389
390
391
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        in_channels // attn_num_head_channels,
                        in_channels=in_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
392
393
                )
            resnets.append(
394
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
                    in_channels=in_channels,
                    out_channels=in_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        hidden_states = self.resnets[0](hidden_states, temb)
        for attn, resnet in zip(self.attentions, self.resnets[1:]):
Will Berman's avatar
Will Berman committed
414
            hidden_states = attn(hidden_states, encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
415
416
417
418
419
            hidden_states = resnet(hidden_states, temb)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
420
class AttnDownBlock2D(nn.Module):
421
422
423
424
425
426
427
428
429
430
431
432
433
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
Patrick von Platen's avatar
Patrick von Platen committed
434
        attention_type="default",
435
        output_scale_factor=1.0,
436
        downsample_padding=1,
437
438
439
440
441
442
        add_downsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
443
444
        self.attention_type = attention_type

445
446
447
        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
448
                ResnetBlock2D(
449
450
451
452
453
454
455
456
457
458
459
460
461
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
462
                AttentionBlock(
463
464
465
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
466
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
467
                    norm_num_groups=resnet_groups,
468
469
470
471
472
473
474
475
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
476
477
                [
                    Downsample2D(
478
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
479
480
                    )
                ]
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
502
class CrossAttnDownBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        downsample_padding=1,
        add_downsample=True,
521
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
522
        use_linear_projection=False,
523
        only_cross_attention=False,
524
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
525
526
527
528
529
    ):
        super().__init__()
        resnets = []
        attentions = []

530
        self.has_cross_attention = True
Patrick von Platen's avatar
Patrick von Platen committed
531
        self.attention_type = attention_type
532
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
533
534
535
536

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
537
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
538
539
540
541
542
543
544
545
546
547
548
549
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
550
551
552
553
554
555
556
557
558
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
559
                        use_linear_projection=use_linear_projection,
560
                        only_cross_attention=only_cross_attention,
561
                        upcast_attention=upcast_attention,
562
563
564
565
566
567
568
569
570
571
572
573
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
574
575
576
577
578
579
580
581
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
582
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
583
584
585
586
587
588
                    )
                ]
            )
        else:
            self.downsamplers = None

589
590
        self.gradient_checkpointing = False

Patrick von Platen's avatar
Patrick von Platen committed
591
592
593
594
    def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
595
596
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
597
                def create_custom_forward(module, return_dict=None):
598
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
599
600
601
602
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
603
604
605
606
607

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
608
609
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
610
611
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
612
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
613

Patrick von Platen's avatar
Patrick von Platen committed
614
615
616
617
618
619
620
621
622
623
624
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


Patrick von Platen's avatar
Patrick von Platen committed
625
class DownBlock2D(nn.Module):
626
627
628
629
630
631
632
633
634
635
636
637
638
639
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
Patrick von Platen's avatar
Patrick von Platen committed
640
        downsample_padding=1,
641
642
643
644
645
646
647
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
648
                ResnetBlock2D(
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
Patrick von Platen's avatar
Patrick von Platen committed
666
667
                [
                    Downsample2D(
668
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
Patrick von Platen's avatar
Patrick von Platen committed
669
670
                    )
                ]
671
672
673
674
            )
        else:
            self.downsamplers = None

675
676
        self.gradient_checkpointing = False

677
678
679
680
    def forward(self, hidden_states, temb=None):
        output_states = ()

        for resnet in self.resnets:
681
682
683
684
685
686
687
688
689
690
691
692
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)

693
694
695
696
697
698
699
700
701
702
703
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

            output_states += (hidden_states,)

        return hidden_states, output_states


704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
class DownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
726
                ResnetBlock2D(
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
746
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
class AttnDownEncoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            resnets.append(
788
                ResnetBlock2D(
789
790
791
792
793
794
795
796
797
798
799
800
801
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
802
                AttentionBlock(
803
804
805
806
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
807
                    norm_num_groups=resnet_groups,
808
809
810
811
812
813
814
815
816
817
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_downsample:
            self.downsamplers = nn.ModuleList(
                [
                    Downsample2D(
818
                        out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op"
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
                    )
                ]
            )
        else:
            self.downsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.downsamplers is not None:
            for downsampler in self.downsamplers:
                hidden_states = downsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
837
class AttnSkipDownBlock2D(nn.Module):
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        downsample_padding=1,
        add_downsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
864
                ResnetBlock2D(
865
866
867
868
869
870
871
872
873
874
875
876
877
878
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            self.attentions.append(
879
                AttentionBlock(
880
881
882
883
884
885
886
887
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
                )
            )

        if add_downsample:
888
            self.resnet_down = ResnetBlock2D(
889
890
891
892
893
894
895
896
897
898
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
899
                use_in_shortcut=True,
900
901
902
                down=True,
                kernel="fir",
            )
903
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
930
class SkipDownBlock2D(nn.Module):
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_downsample=True,
        downsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            in_channels = in_channels if i == 0 else out_channels
            self.resnets.append(
952
                ResnetBlock2D(
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
                    in_channels=in_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(in_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        if add_downsample:
968
            self.resnet_down = ResnetBlock2D(
969
970
971
972
973
974
975
976
977
978
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
979
                use_in_shortcut=True,
980
981
982
                down=True,
                kernel="fir",
            )
983
            self.downsamplers = nn.ModuleList([FirDownsample2D(out_channels, out_channels=out_channels)])
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
            self.skip_conv = nn.Conv2d(3, out_channels, kernel_size=(1, 1), stride=(1, 1))
        else:
            self.resnet_down = None
            self.downsamplers = None
            self.skip_conv = None

    def forward(self, hidden_states, temb=None, skip_sample=None):
        output_states = ()

        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb)
            output_states += (hidden_states,)

        if self.downsamplers is not None:
            hidden_states = self.resnet_down(hidden_states, temb)
            for downsampler in self.downsamplers:
                skip_sample = downsampler(skip_sample)

            hidden_states = self.skip_conv(skip_sample) + hidden_states

            output_states += (hidden_states,)

        return hidden_states, output_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1009
class AttnUpBlock2D(nn.Module):
1010
1011
1012
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1013
1014
        prev_output_channel: int,
        out_channels: int,
1015
1016
1017
1018
1019
1020
1021
1022
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
Patrick von Platen's avatar
Patrick von Platen committed
1023
        attention_type="default",
1024
1025
1026
1027
1028
1029
1030
1031
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

Patrick von Platen's avatar
Patrick von Platen committed
1032
1033
        self.attention_type = attention_type

1034
        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1035
1036
1037
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1038
            resnets.append(
1039
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1040
1041
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1053
                AttentionBlock(
Patrick von Platen's avatar
Patrick von Platen committed
1054
                    out_channels,
1055
1056
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
Patrick von Platen's avatar
Patrick von Platen committed
1057
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1058
                    norm_num_groups=resnet_groups,
1059
1060
1061
1062
1063
1064
1065
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1066
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        else:
            self.upsamplers = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None):
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1087
class CrossAttnUpBlock2D(nn.Module):
Patrick von Platen's avatar
Patrick von Platen committed
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        prev_output_channel: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        cross_attention_dim=1280,
        attention_type="default",
        output_scale_factor=1.0,
        add_upsample=True,
1106
        dual_cross_attention=False,
Suraj Patil's avatar
Suraj Patil committed
1107
        use_linear_projection=False,
1108
        only_cross_attention=False,
1109
        upcast_attention=False,
Patrick von Platen's avatar
Patrick von Platen committed
1110
1111
1112
1113
1114
    ):
        super().__init__()
        resnets = []
        attentions = []

1115
        self.has_cross_attention = True
Patrick von Platen's avatar
Patrick von Platen committed
1116
        self.attention_type = attention_type
1117
        self.attn_num_head_channels = attn_num_head_channels
Patrick von Platen's avatar
Patrick von Platen committed
1118
1119
1120
1121
1122
1123

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            resnets.append(
1124
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
1137
1138
1139
1140
1141
1142
1143
1144
1145
            if not dual_cross_attention:
                attentions.append(
                    Transformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
Suraj Patil's avatar
Suraj Patil committed
1146
                        use_linear_projection=use_linear_projection,
1147
                        only_cross_attention=only_cross_attention,
1148
                        upcast_attention=upcast_attention,
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
                    )
                )
            else:
                attentions.append(
                    DualTransformer2DModel(
                        attn_num_head_channels,
                        out_channels // attn_num_head_channels,
                        in_channels=out_channels,
                        num_layers=1,
                        cross_attention_dim=cross_attention_dim,
                        norm_num_groups=resnet_groups,
                    )
Patrick von Platen's avatar
Patrick von Platen committed
1161
1162
1163
1164
1165
1166
1167
1168
1169
                )
        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

1170
1171
1172
1173
1174
1175
1176
1177
        self.gradient_checkpointing = False

    def forward(
        self,
        hidden_states,
        res_hidden_states_tuple,
        temb=None,
        encoder_hidden_states=None,
1178
        upsample_size=None,
1179
    ):
Patrick von Platen's avatar
Patrick von Platen committed
1180
1181
1182
1183
1184
1185
        for resnet, attn in zip(self.resnets, self.attentions):
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1186
1187
            if self.training and self.gradient_checkpointing:

Will Berman's avatar
Will Berman committed
1188
                def create_custom_forward(module, return_dict=None):
1189
                    def custom_forward(*inputs):
Will Berman's avatar
Will Berman committed
1190
1191
1192
1193
                        if return_dict is not None:
                            return module(*inputs, return_dict=return_dict)
                        else:
                            return module(*inputs)
1194
1195
1196
1197
1198

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
                hidden_states = torch.utils.checkpoint.checkpoint(
Will Berman's avatar
Will Berman committed
1199
1200
                    create_custom_forward(attn, return_dict=False), hidden_states, encoder_hidden_states
                )[0]
1201
1202
            else:
                hidden_states = resnet(hidden_states, temb)
Will Berman's avatar
Will Berman committed
1203
                hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states).sample
Patrick von Platen's avatar
Patrick von Platen committed
1204
1205
1206

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1207
                hidden_states = upsampler(hidden_states, upsample_size)
Patrick von Platen's avatar
Patrick von Platen committed
1208
1209
1210
1211

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1212
class UpBlock2D(nn.Module):
1213
1214
1215
    def __init__(
        self,
        in_channels: int,
Patrick von Platen's avatar
Patrick von Platen committed
1216
1217
        prev_output_channel: int,
        out_channels: int,
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
Patrick von Platen's avatar
Patrick von Platen committed
1233
1234
1235
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

1236
            resnets.append(
1237
                ResnetBlock2D(
Patrick von Platen's avatar
Patrick von Platen committed
1238
1239
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
Patrick von Platen's avatar
Patrick von Platen committed
1254
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
1255
1256
1257
        else:
            self.upsamplers = None

1258
1259
        self.gradient_checkpointing = False

1260
    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None):
1261
1262
1263
1264
1265
1266
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
            if self.training and self.gradient_checkpointing:

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs)

                    return custom_forward

                hidden_states = torch.utils.checkpoint.checkpoint(create_custom_forward(resnet), hidden_states, temb)
            else:
                hidden_states = resnet(hidden_states, temb)
1278
1279
1280

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
1281
                hidden_states = upsampler(hidden_states, upsample_size)
1282
1283

        return hidden_states
1284
1285


1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
class UpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1308
                ResnetBlock2D(
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet in self.resnets:
            hidden_states = resnet(hidden_states, temb=None)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
class AttnUpDecoderBlock2D(nn.Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_groups: int = 32,
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        output_scale_factor=1.0,
        add_upsample=True,
    ):
        super().__init__()
        resnets = []
        attentions = []

        for i in range(num_layers):
            input_channels = in_channels if i == 0 else out_channels

            resnets.append(
1364
                ResnetBlock2D(
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
                    in_channels=input_channels,
                    out_channels=out_channels,
                    temb_channels=None,
                    eps=resnet_eps,
                    groups=resnet_groups,
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )
            attentions.append(
1378
                AttentionBlock(
1379
1380
1381
1382
                    out_channels,
                    num_head_channels=attn_num_head_channels,
                    rescale_output_factor=output_scale_factor,
                    eps=resnet_eps,
Will Berman's avatar
Will Berman committed
1383
                    norm_num_groups=resnet_groups,
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
                )
            )

        self.attentions = nn.ModuleList(attentions)
        self.resnets = nn.ModuleList(resnets)

        if add_upsample:
            self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)])
        else:
            self.upsamplers = None

    def forward(self, hidden_states):
        for resnet, attn in zip(self.resnets, self.attentions):
            hidden_states = resnet(hidden_states, temb=None)
            hidden_states = attn(hidden_states)

        if self.upsamplers is not None:
            for upsampler in self.upsamplers:
                hidden_states = upsampler(hidden_states)

        return hidden_states


Patrick von Platen's avatar
Patrick von Platen committed
1407
class AttnSkipUpBlock2D(nn.Module):
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        attn_num_head_channels=1,
        attention_type="default",
        output_scale_factor=np.sqrt(2.0),
        upsample_padding=1,
        add_upsample=True,
    ):
        super().__init__()
        self.attentions = nn.ModuleList([])
        self.resnets = nn.ModuleList([])

        self.attention_type = attention_type

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1437
                ResnetBlock2D(
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min(resnet_in_channels + res_skip_channels // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.attentions.append(
1453
            AttentionBlock(
1454
1455
1456
1457
1458
1459
1460
1461
1462
                out_channels,
                num_head_channels=attn_num_head_channels,
                rescale_output_factor=output_scale_factor,
                eps=resnet_eps,
            )
        )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1463
            self.resnet_up = ResnetBlock2D(
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1475
                use_in_shortcut=True,
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        hidden_states = self.attentions[0](hidden_states)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample


Patrick von Platen's avatar
Patrick von Platen committed
1518
class SkipUpBlock2D(nn.Module):
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
    def __init__(
        self,
        in_channels: int,
        prev_output_channel: int,
        out_channels: int,
        temb_channels: int,
        dropout: float = 0.0,
        num_layers: int = 1,
        resnet_eps: float = 1e-6,
        resnet_time_scale_shift: str = "default",
        resnet_act_fn: str = "swish",
        resnet_pre_norm: bool = True,
        output_scale_factor=np.sqrt(2.0),
        add_upsample=True,
        upsample_padding=1,
    ):
        super().__init__()
        self.resnets = nn.ModuleList([])

        for i in range(num_layers):
            res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
            resnet_in_channels = prev_output_channel if i == 0 else out_channels

            self.resnets.append(
1543
                ResnetBlock2D(
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
                    in_channels=resnet_in_channels + res_skip_channels,
                    out_channels=out_channels,
                    temb_channels=temb_channels,
                    eps=resnet_eps,
                    groups=min((resnet_in_channels + res_skip_channels) // 4, 32),
                    groups_out=min(out_channels // 4, 32),
                    dropout=dropout,
                    time_embedding_norm=resnet_time_scale_shift,
                    non_linearity=resnet_act_fn,
                    output_scale_factor=output_scale_factor,
                    pre_norm=resnet_pre_norm,
                )
            )

        self.upsampler = FirUpsample2D(in_channels, out_channels=out_channels)
        if add_upsample:
1560
            self.resnet_up = ResnetBlock2D(
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
                in_channels=out_channels,
                out_channels=out_channels,
                temb_channels=temb_channels,
                eps=resnet_eps,
                groups=min(out_channels // 4, 32),
                groups_out=min(out_channels // 4, 32),
                dropout=dropout,
                time_embedding_norm=resnet_time_scale_shift,
                non_linearity=resnet_act_fn,
                output_scale_factor=output_scale_factor,
                pre_norm=resnet_pre_norm,
1572
                use_in_shortcut=True,
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
                up=True,
                kernel="fir",
            )
            self.skip_conv = nn.Conv2d(out_channels, 3, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
            self.skip_norm = torch.nn.GroupNorm(
                num_groups=min(out_channels // 4, 32), num_channels=out_channels, eps=resnet_eps, affine=True
            )
            self.act = nn.SiLU()
        else:
            self.resnet_up = None
            self.skip_conv = None
            self.skip_norm = None
            self.act = None

    def forward(self, hidden_states, res_hidden_states_tuple, temb=None, skip_sample=None):
        for resnet in self.resnets:
            # pop res hidden states
            res_hidden_states = res_hidden_states_tuple[-1]
            res_hidden_states_tuple = res_hidden_states_tuple[:-1]
            hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)

            hidden_states = resnet(hidden_states, temb)

        if skip_sample is not None:
            skip_sample = self.upsampler(skip_sample)
        else:
            skip_sample = 0

        if self.resnet_up is not None:
            skip_sample_states = self.skip_norm(hidden_states)
            skip_sample_states = self.act(skip_sample_states)
            skip_sample_states = self.skip_conv(skip_sample_states)

            skip_sample = skip_sample + skip_sample_states

            hidden_states = self.resnet_up(hidden_states, temb)

        return hidden_states, skip_sample