test_pipelines_common.py 131 KB
Newer Older
1
2
import gc
import inspect
3
4
import json
import os
5
6
import tempfile
import unittest
7
import uuid
Aryan's avatar
Aryan committed
8
from typing import Any, Callable, Dict, Union
9
10

import numpy as np
Anh71me's avatar
Anh71me committed
11
import PIL.Image
12
import pytest
13
import torch
14
import torch.nn as nn
15
16
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
17
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
18

19
import diffusers
20
21
22
23
24
25
26
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    DDIMScheduler,
    DiffusionPipeline,
Aryan's avatar
Aryan committed
27
    FasterCacheConfig,
Álvaro Somoza's avatar
Álvaro Somoza committed
28
    KolorsPipeline,
29
    PyramidAttentionBroadcastConfig,
30
    StableDiffusionPipeline,
31
    StableDiffusionXLPipeline,
32
    UNet2DConditionModel,
Aryan's avatar
Aryan committed
33
    apply_faster_cache,
34
)
Aryan's avatar
Aryan committed
35
from diffusers.hooks import apply_group_offloading
Aryan's avatar
Aryan committed
36
from diffusers.hooks.faster_cache import FasterCacheBlockHook, FasterCacheDenoiserHook
Aryan's avatar
Aryan committed
37
from diffusers.hooks.first_block_cache import FirstBlockCacheConfig
38
from diffusers.hooks.pyramid_attention_broadcast import PyramidAttentionBroadcastHook
39
from diffusers.image_processor import VaeImageProcessor
hlky's avatar
hlky committed
40
from diffusers.loaders import FluxIPAdapterMixin, IPAdapterMixin
41
from diffusers.models.attention import AttentionModuleMixin
42
from diffusers.models.attention_processor import AttnProcessor
43
from diffusers.models.controlnets.controlnet_xs import UNetControlNetXSModel
44
45
46
47
from diffusers.models.unets.unet_3d_condition import UNet3DConditionModel
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.models.unets.unet_motion_model import UNetMotionModel
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
48
from diffusers.schedulers import KarrasDiffusionSchedulers
49
from diffusers.utils import logging
50
from diffusers.utils.import_utils import is_xformers_available
51
from diffusers.utils.source_code_parsing_utils import ReturnNameVisitor
52

53
from ..models.autoencoders.vae import (
54
55
56
57
58
    get_asym_autoencoder_kl_config,
    get_autoencoder_kl_config,
    get_autoencoder_tiny_config,
    get_consistency_vae_config,
)
hlky's avatar
hlky committed
59
from ..models.transformers.test_models_transformer_flux import create_flux_ip_adapter_state_dict
60
61
62
63
from ..models.unets.test_models_unet_2d_condition import (
    create_ip_adapter_faceid_state_dict,
    create_ip_adapter_state_dict,
)
64
from ..others.test_utils import TOKEN, USER, is_staging_test
65
66
67
68
69
70
71
72
73
74
75
76
77
from ..testing_utils import (
    CaptureLogger,
    backend_empty_cache,
    numpy_cosine_similarity_distance,
    require_accelerate_version_greater,
    require_accelerator,
    require_hf_hub_version_greater,
    require_torch,
    require_torch_accelerator,
    require_transformers_version_greater,
    skip_mps,
    torch_device,
)
78

79

80
81
82
83
84
85
86
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


87
88
89
90
91
def check_same_shape(tensor_list):
    shapes = [tensor.shape for tensor in tensor_list]
    return all(shape == shapes[0] for shape in shapes[1:])


92
93
94
95
96
97
98
99
100
101
102
def check_qkv_fusion_matches_attn_procs_length(model, original_attn_processors):
    current_attn_processors = model.attn_processors
    return len(current_attn_processors) == len(original_attn_processors)


def check_qkv_fusion_processors_exist(model):
    current_attn_processors = model.attn_processors
    proc_names = [v.__class__.__name__ for _, v in current_attn_processors.items()]
    return all(p.startswith("Fused") for p in proc_names)


103
104
105
106
107
108
109
110
111
112
113
114
115
116
def check_qkv_fused_layers_exist(model, layer_names):
    is_fused_submodules = []
    for submodule in model.modules():
        if not isinstance(submodule, AttentionModuleMixin):
            continue
        is_fused_attribute_set = submodule.fused_projections
        is_fused_layer = True
        for layer in layer_names:
            is_fused_layer = is_fused_layer and getattr(submodule, layer, None) is not None
        is_fused = is_fused_attribute_set and is_fused_layer
        is_fused_submodules.append(is_fused)
    return all(is_fused_submodules)


117
118
119
120
121
122
class SDFunctionTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that inherit from StableDiffusionMixin, e.g. vae_slicing, vae_tiling, freeu, etc.
    """

123
    def test_vae_slicing(self, image_count=4):
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        # components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:  # fix batch size mismatch in I2V_Gen pipeline
            inputs["image"] = [inputs["image"]] * image_count
        output_1 = pipe(**inputs)

        # make sure sliced vae decode yields the same result
        pipe.enable_vae_slicing()
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:
            inputs["image"] = [inputs["image"]] * image_count
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)

        assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2

    def test_vae_tiling(self):
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        if "safety_checker" in components:
            components["safety_checker"] = None
        pipe = self.pipeline_class(**components)
155
        pipe = pipe.to(torch_device)
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        output_1 = pipe(**inputs)[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)[0]

170
        assert np.abs(to_np(output_2) - to_np(output_1)).max() < 5e-1
171
172

        # test that tiled decode works with various shapes
173
        shapes = [(1, 4, 73, 97), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
174
175
176
177
        with torch.no_grad():
            for shape in shapes:
                zeros = torch.zeros(shape).to(torch_device)
                pipe.vae.decode(zeros)
178

179
    # MPS currently doesn't support ComplexFloats, which are required for FreeU - see https://github.com/huggingface/diffusers/issues/7569.
180
    @skip_mps
181
    def test_freeu(self):
182
183
184
185
186
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

187
        # Normal inference
188
189
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
190
        inputs["output_type"] = "np"
191
192
        output = pipe(**inputs)[0]

193
        # FreeU-enabled inference
194
195
196
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
197
        inputs["output_type"] = "np"
198
199
        output_freeu = pipe(**inputs)[0]

200
        # FreeU-disabled inference
201
202
203
204
205
206
207
208
        pipe.disable_freeu()
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
209
        inputs["output_type"] = "np"
210
        output_no_freeu = pipe(**inputs)[0]
211

212
213
214
215
216
217
        assert not np.allclose(output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]), (
            "Enabling of FreeU should lead to different results."
        )
        assert np.allclose(output, output_no_freeu, atol=1e-2), (
            f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}."
        )
218
219
220
221
222
223
224
225
226
227
228
229
230
231

    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image = pipe(**inputs)[0]
        original_image_slice = image[0, -3:, -3:, -1]

        pipe.fuse_qkv_projections()
232
233
234
235
236
237
        for _, component in pipe.components.items():
            if (
                isinstance(component, nn.Module)
                and hasattr(component, "original_attn_processors")
                and component.original_attn_processors is not None
            ):
238
239
240
241
242
243
                assert check_qkv_fusion_processors_exist(component), (
                    "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
                )
                assert check_qkv_fusion_matches_attn_procs_length(component, component.original_attn_processors), (
                    "Something wrong with the attention processors concerning the fused QKV projections."
                )
244

245
246
247
248
249
250
251
252
253
254
255
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_fused = pipe(**inputs)[0]
        image_slice_fused = image_fused[0, -3:, -3:, -1]

        pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_disabled = pipe(**inputs)[0]
        image_slice_disabled = image_disabled[0, -3:, -3:, -1]

256
257
258
259
260
261
262
263
264
        assert np.allclose(original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2), (
            "Fusion of QKV projections shouldn't affect the outputs."
        )
        assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        )
        assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
            "Original outputs should match when fused QKV projections are disabled."
        )
265
266


Aryan's avatar
Aryan committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
class IPAdapterTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for pipelines that support IP Adapters.
    """

    def test_pipeline_signature(self):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        assert issubclass(self.pipeline_class, IPAdapterMixin)
        self.assertIn(
            "ip_adapter_image",
            parameters,
            "`ip_adapter_image` argument must be supported by the `__call__` method",
        )
        self.assertIn(
            "ip_adapter_image_embeds",
            parameters,
            "`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
        )

    def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
        return torch.randn((2, 1, cross_attention_dim), device=torch_device)

291
292
293
    def _get_dummy_faceid_image_embeds(self, cross_attention_dim: int = 32):
        return torch.randn((2, 1, 1, cross_attention_dim), device=torch_device)

294
295
296
297
298
    def _get_dummy_masks(self, input_size: int = 64):
        _masks = torch.zeros((1, 1, input_size, input_size), device=torch_device)
        _masks[0, :, :, : int(input_size / 2)] = 1
        return _masks

Aryan's avatar
Aryan committed
299
300
301
302
303
304
305
306
307
    def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        if "image" in parameters.keys() and "strength" in parameters.keys():
            inputs["num_inference_steps"] = 4

        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

308
309
310
311
312
313
314
315
316
    def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
        r"""Tests for IP-Adapter.

        The following scenarios are tested:
          - Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
          - Multi IP-Adapter with scale=0 should produce same output as no IP-Adapter.
          - Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
          - Multi IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
        """
317
318
319
320
        # Raising the tolerance for this test when it's run on a CPU because we
        # compare against static slices and that can be shaky (with a VVVV low probability).
        expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff

Aryan's avatar
Aryan committed
321
322
323
324
325
326
327
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
328
329
330
331
        if expected_pipe_slice is None:
            output_without_adapter = pipe(**inputs)[0]
        else:
            output_without_adapter = expected_pipe_slice
Aryan's avatar
Aryan committed
332

333
        # 1. Single IP-Adapter test cases
Aryan's avatar
Aryan committed
334
335
336
337
338
339
340
341
        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
342
343
        if expected_pipe_slice is not None:
            output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
344
345
346
347
348
349

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
350
351
        if expected_pipe_slice is not None:
            output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
352
353
354
355
356
357
358
359
360
361
362
363
364

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
        )

365
        # 2. Multi IP-Adapter test cases
Aryan's avatar
Aryan committed
366
367
368
369
370
371
372
373
374
        adapter_state_dict_1 = create_ip_adapter_state_dict(pipe.unet)
        adapter_state_dict_2 = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])

        # forward pass with multi ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([0.0, 0.0])
        output_without_multi_adapter_scale = pipe(**inputs)[0]
375
376
        if expected_pipe_slice is not None:
            output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
377
378
379
380
381
382

        # forward pass with multi ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([42.0, 42.0])
        output_with_multi_adapter_scale = pipe(**inputs)[0]
383
384
        if expected_pipe_slice is not None:
            output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400

        max_diff_without_multi_adapter_scale = np.abs(
            output_without_multi_adapter_scale - output_without_adapter
        ).max()
        max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
        self.assertLess(
            max_diff_without_multi_adapter_scale,
            expected_max_diff,
            "Output without multi-ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_multi_adapter_scale,
            1e-2,
            "Output with multi-ip-adapter scale must be different from normal inference",
        )

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
    def test_ip_adapter_cfg(self, expected_max_diff: float = 1e-4):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        if "guidance_scale" not in parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)
        pipe.set_ip_adapter_scale(1.0)

        # forward pass with CFG not applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)[0].unsqueeze(0)]
        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        # forward pass with CFG applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    def test_ip_adapter_masks(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
        sample_size = pipe.unet.config.get("sample_size", 32)
        block_out_channels = pipe.vae.config.get("block_out_channels", [128, 256, 512, 512])
        input_size = sample_size * (2 ** (len(block_out_channels) - 1))

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]
        output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter and masks, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter and masks, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
        )

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
    def test_ip_adapter_faceid(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]
        output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()

        adapter_state_dict = create_ip_adapter_faceid_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
        )

Aryan's avatar
Aryan committed
515

hlky's avatar
hlky committed
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
class FluxIPAdapterTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for pipelines that support IP Adapters.
    """

    def test_pipeline_signature(self):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        assert issubclass(self.pipeline_class, FluxIPAdapterMixin)
        self.assertIn(
            "ip_adapter_image",
            parameters,
            "`ip_adapter_image` argument must be supported by the `__call__` method",
        )
        self.assertIn(
            "ip_adapter_image_embeds",
            parameters,
            "`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
        )

    def _get_dummy_image_embeds(self, image_embed_dim: int = 768):
        return torch.randn((1, 1, image_embed_dim), device=torch_device)

    def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
        inputs["negative_prompt"] = ""
Edna's avatar
Edna committed
542
543
        if "true_cfg_scale" in inspect.signature(self.pipeline_class.__call__).parameters:
            inputs["true_cfg_scale"] = 4.0
hlky's avatar
hlky committed
544
545
546
547
548
549
550
551
552
        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

    def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
        r"""Tests for IP-Adapter.

        The following scenarios are tested:
          - Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
553
          - Multi IP-Adapter with scale=0 should produce same output as no IP-Adapter.
hlky's avatar
hlky committed
554
          - Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
555
          - Multi IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
hlky's avatar
hlky committed
556
557
558
559
560
561
562
563
        """
        # Raising the tolerance for this test when it's run on a CPU because we
        # compare against static slices and that can be shaky (with a VVVV low probability).
        expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
Edna's avatar
Edna committed
564
565
566
567
568
        image_embed_dim = (
            pipe.transformer.config.pooled_projection_dim
            if hasattr(pipe.transformer.config, "pooled_projection_dim")
            else 768
        )
hlky's avatar
hlky committed
569
570
571
572
573
574
575
576

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        if expected_pipe_slice is None:
            output_without_adapter = pipe(**inputs)[0]
        else:
            output_without_adapter = expected_pipe_slice

577
        # 1. Single IP-Adapter test cases
hlky's avatar
hlky committed
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
        adapter_state_dict = create_flux_ip_adapter_state_dict(pipe.transformer)
        pipe.transformer._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        if expected_pipe_slice is not None:
            output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        if expected_pipe_slice is not None:
            output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
        )

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
        # 2. Multi IP-Adapter test cases
        adapter_state_dict_1 = create_flux_ip_adapter_state_dict(pipe.transformer)
        adapter_state_dict_2 = create_flux_ip_adapter_state_dict(pipe.transformer)
        pipe.transformer._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])

        # forward pass with multi ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
        inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
        pipe.set_ip_adapter_scale([0.0, 0.0])
        output_without_multi_adapter_scale = pipe(**inputs)[0]
        if expected_pipe_slice is not None:
            output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with multi ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
        inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
        pipe.set_ip_adapter_scale([42.0, 42.0])
        output_with_multi_adapter_scale = pipe(**inputs)[0]
        if expected_pipe_slice is not None:
            output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_multi_adapter_scale = np.abs(
            output_without_multi_adapter_scale - output_without_adapter
        ).max()
        max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
        self.assertLess(
            max_diff_without_multi_adapter_scale,
            expected_max_diff,
            "Output without multi-ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_multi_adapter_scale,
            1e-2,
            "Output with multi-ip-adapter scale must be different from normal inference",
        )

hlky's avatar
hlky committed
649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
class PipelineLatentTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that has vae, e.g.
    equivalence of different input and output types, etc.
    """

    @property
    def image_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_params` in the child test class. "
            "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
        )

664
665
666
667
668
669
670
    @property
    def image_latents_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_latents_params` in the child test class. "
            "`image_latents_params` are tested for if passing latents directly are producing same results"
        )

671
672
673
    def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
        inputs = self.get_dummy_inputs(device, seed)

674
675
676
677
678
679
680
681
682
683
684
685
        def convert_to_pt(image):
            if isinstance(image, torch.Tensor):
                input_image = image
            elif isinstance(image, np.ndarray):
                input_image = VaeImageProcessor.numpy_to_pt(image)
            elif isinstance(image, PIL.Image.Image):
                input_image = VaeImageProcessor.pil_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pt(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {type(image)}")
            return input_image

686
687
688
689
690
691
692
693
694
695
696
697
698
699
        def convert_pt_to_type(image, input_image_type):
            if input_image_type == "pt":
                input_image = image
            elif input_image_type == "np":
                input_image = VaeImageProcessor.pt_to_numpy(image)
            elif input_image_type == "pil":
                input_image = VaeImageProcessor.pt_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pil(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {input_image_type}.")
            return input_image

        for image_param in self.image_params:
            if image_param in inputs.keys():
700
701
702
                inputs[image_param] = convert_pt_to_type(
                    convert_to_pt(inputs[image_param]).to(device), input_image_type
                )
703
704
705
706
707

        inputs["output_type"] = output_type

        return inputs

708
    def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
709
710
711
        self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)

    def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
712
713
714
715
716
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

717
718
719
720
721
722
723
724
725
        output_pt = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
        )[0]
        output_np = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
        )[0]
        output_pil = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
        )[0]
726
727

        max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
728
729
730
        self.assertLess(
            max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
        )
731
732

        max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
733
        self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752

    def test_pt_np_pil_inputs_equivalent(self):
        if len(self.image_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
        out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
        out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]

        max_diff = np.abs(out_input_pt - out_input_np).max()
        self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
        max_diff = np.abs(out_input_pil - out_input_np).max()
        self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")

753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
    def test_latents_input(self):
        if len(self.image_latents_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]

        vae = components["vae"]
        inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
        generator = inputs["generator"]
        for image_param in self.image_latents_params:
            if image_param in inputs.keys():
                inputs[image_param] = (
                    vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
                )
        out_latents_inputs = pipe(**inputs)[0]

        max_diff = np.abs(out - out_latents_inputs).max()
        self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")

778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
    def test_multi_vae(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        block_out_channels = pipe.vae.config.block_out_channels
        norm_num_groups = pipe.vae.config.norm_num_groups

        vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
        configs = [
            get_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_consistency_vae_config(block_out_channels, norm_num_groups),
            get_autoencoder_tiny_config(block_out_channels),
        ]

        out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

        for vae_cls, config in zip(vae_classes, configs):
            vae = vae_cls(**config)
            vae = vae.to(torch_device)
            components["vae"] = vae
            vae_pipe = self.pipeline_class(**components)
            out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

            assert out_vae_np.shape == out_np.shape

806

807
808
809
810
811
812
@require_torch
class PipelineFromPipeTesterMixin:
    @property
    def original_pipeline_class(self):
        if "xl" in self.pipeline_class.__name__.lower():
            original_pipeline_class = StableDiffusionXLPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
813
814
        elif "kolors" in self.pipeline_class.__name__.lower():
            original_pipeline_class = KolorsPipeline
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
        else:
            original_pipeline_class = StableDiffusionPipeline

        return original_pipeline_class

    def get_dummy_inputs_pipe(self, device, seed=0):
        inputs = self.get_dummy_inputs(device, seed=seed)
        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

    def get_dummy_inputs_for_pipe_original(self, device, seed=0):
        inputs = {}
        for k, v in self.get_dummy_inputs_pipe(device, seed=seed).items():
            if k in set(inspect.signature(self.original_pipeline_class.__call__).parameters.keys()):
                inputs[k] = v
        return inputs

    def test_from_pipe_consistent_config(self):
        if self.original_pipeline_class == StableDiffusionPipeline:
            original_repo = "hf-internal-testing/tiny-stable-diffusion-pipe"
            original_kwargs = {"requires_safety_checker": False}
        elif self.original_pipeline_class == StableDiffusionXLPipeline:
            original_repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
            original_kwargs = {"requires_aesthetics_score": True, "force_zeros_for_empty_prompt": False}
Álvaro Somoza's avatar
Álvaro Somoza committed
840
841
842
        elif self.original_pipeline_class == KolorsPipeline:
            original_repo = "hf-internal-testing/tiny-kolors-pipe"
            original_kwargs = {"force_zeros_for_empty_prompt": False}
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
        else:
            raise ValueError(
                "original_pipeline_class must be either StableDiffusionPipeline or StableDiffusionXLPipeline"
            )

        # create original_pipeline_class(sd/sdxl)
        pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)

        # original_pipeline_class(sd/sdxl) -> pipeline_class
        pipe_components = self.get_dummy_components()
        pipe_additional_components = {}
        for name, component in pipe_components.items():
            if name not in pipe_original.components:
                pipe_additional_components[name] = component

        pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)

        # pipeline_class -> original_pipeline_class(sd/sdxl)
        original_pipe_additional_components = {}
        for name, component in pipe_original.components.items():
            if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
                original_pipe_additional_components[name] = component

        pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)

        # compare the config
        original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
        original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
        assert original_config_2 == original_config

    def test_from_pipe_consistent_forward_pass(self, expected_max_diff=1e-3):
        components = self.get_dummy_components()
        original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)

        # pipeline components that are also expected to be in the original pipeline
        original_pipe_components = {}
        # additional components that are not in the pipeline, but expected in the original pipeline
        original_pipe_additional_components = {}
        # additional components that are in the pipeline, but not expected in the original pipeline
        current_pipe_additional_components = {}

        for name, component in components.items():
            if name in original_expected_modules:
                original_pipe_components[name] = component
            else:
                current_pipe_additional_components[name] = component
        for name in original_expected_modules:
            if name not in original_pipe_components:
                if name in self.original_pipeline_class._optional_components:
                    original_pipe_additional_components[name] = None
                else:
                    raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")

        pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
        for component in pipe_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe_original.to(torch_device)
        pipe_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
        output_original = pipe_original(**inputs)[0]

        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output = pipe(**inputs)[0]

        pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
        pipe_from_original.to(torch_device)
        pipe_from_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output_from_original = pipe_from_original(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
        self.assertLess(
            max_diff,
            expected_max_diff,
            "The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
        )

        inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
        output_original_2 = pipe_original(**inputs)[0]

        max_diff = np.abs(to_np(output_original) - to_np(output_original_2)).max()
        self.assertLess(max_diff, expected_max_diff, "`from_pipe` should not change the output of original pipeline.")

        for component in pipe_original.components.values():
            if hasattr(component, "attn_processors"):
935
936
937
                assert all(type(proc) == AttnProcessor for proc in component.attn_processors.values()), (
                    "`from_pipe` changed the attention processor in original pipeline."
                )
938

939
940
    @require_accelerator
    @require_accelerate_version_greater("0.14.0")
941
942
943
944
945
946
    def test_from_pipe_consistent_forward_pass_cpu_offload(self, expected_max_diff=1e-3):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
947
        pipe.enable_model_cpu_offload(device=torch_device)
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output = pipe(**inputs)[0]

        original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)
        # pipeline components that are also expected to be in the original pipeline
        original_pipe_components = {}
        # additional components that are not in the pipeline, but expected in the original pipeline
        original_pipe_additional_components = {}
        # additional components that are in the pipeline, but not expected in the original pipeline
        current_pipe_additional_components = {}
        for name, component in components.items():
            if name in original_expected_modules:
                original_pipe_components[name] = component
            else:
                current_pipe_additional_components[name] = component
        for name in original_expected_modules:
            if name not in original_pipe_components:
                if name in self.original_pipeline_class._optional_components:
                    original_pipe_additional_components[name] = None
                else:
                    raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")

        pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
        for component in pipe_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe_original.set_progress_bar_config(disable=None)
976

977
        pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
978
979
980
981
        for component in pipe_from_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

982
        pipe_from_original.enable_model_cpu_offload(device=torch_device)
983
984
985
986
987
988
989
990
991
992
993
994
        pipe_from_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output_from_original = pipe_from_original(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
        self.assertLess(
            max_diff,
            expected_max_diff,
            "The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
        )


995
996
997
998
999
1000
1001
1002
@require_torch
class PipelineKarrasSchedulerTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
    equivalence of dict and tuple outputs, etc.
    """

1003
1004
1005
    def test_karras_schedulers_shape(
        self, num_inference_steps_for_strength=4, num_inference_steps_for_strength_for_iterations=5
    ):
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        # make sure that PNDM does not need warm-up
        pipe.scheduler.register_to_config(skip_prk_steps=True)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 2

        if "strength" in inputs:
1018
            inputs["num_inference_steps"] = num_inference_steps_for_strength
1019
1020
1021
1022
1023
            inputs["strength"] = 0.5

        outputs = []
        for scheduler_enum in KarrasDiffusionSchedulers:
            if "KDPM2" in scheduler_enum.name:
1024
                inputs["num_inference_steps"] = num_inference_steps_for_strength_for_iterations
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

            scheduler_cls = getattr(diffusers, scheduler_enum.name)
            pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
            output = pipe(**inputs)[0]
            outputs.append(output)

            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 2

        assert check_same_shape(outputs)


1037
1038
1039
1040
1041
1042
1043
1044
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
        ]
    )
1058

1059
1060
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
1061

1062
    test_xformers_attention = True
Aryan's avatar
Aryan committed
1063
    test_layerwise_casting = False
Aryan's avatar
Aryan committed
1064
    test_group_offloading = False
Marc Sun's avatar
Marc Sun committed
1065
1066
    supports_dduf = True

1067
1068
1069
1070
1071
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

1091
1092
1093
1094
1095
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
1096
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

1120
1121
1122
1123
1124
1125
1126
1127
1128
    @property
    def callback_cfg_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `callback_cfg_params` in the child test class that requires to run test_callback_cfg. "
            "`callback_cfg_params` are the parameters that needs to be passed to the pipeline's callback "
            "function when dynamically adjusting `guidance_scale`. They are variables that require special"
            "treatment when `do_classifier_free_guidance` is `True`. `pipeline_params.py` provides some common"
            " sets of parameters such as `TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS`. If your pipeline's "
            "set of cfg arguments has minor changes from one of the common sets of cfg arguments, "
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1129
            "do not make modifications to the existing common sets of cfg arguments. I.e. for inpaint pipeline, you "
1130
1131
1132
1133
            " need to adjust batch size of `mask` and `masked_image_latents` so should set the attribute as"
            "`callback_cfg_params = TEXT_TO_IMAGE_CFG_PARAMS.union({'mask', 'masked_image_latents'})`"
        )

1134
1135
1136
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
1137
        torch.compiler.reset()
1138
        gc.collect()
1139
        backend_empty_cache(torch_device)
1140

1141
1142
1143
1144
1145
1146
1147
1148
        # Skip tests for pipelines that inherit from DeprecatedPipelineMixin
        from diffusers.pipelines.pipeline_utils import DeprecatedPipelineMixin

        if hasattr(self, "pipeline_class") and issubclass(self.pipeline_class, DeprecatedPipelineMixin):
            import pytest

            pytest.skip(reason=f"Deprecated Pipeline: {self.pipeline_class.__name__}")

1149
1150
1151
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
1152
        torch.compiler.reset()
1153
        gc.collect()
1154
        backend_empty_cache(torch_device)
1155

1156
    def test_save_load_local(self, expected_max_difference=5e-4):
1157
1158
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1159
1160
1161
1162
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1163
1164
1165
1166
1167
1168
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

1169
1170
1171
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

1172
        with tempfile.TemporaryDirectory() as tmpdir:
1173
            pipe.save_pretrained(tmpdir, safe_serialization=False)
1174
1175
1176
1177

            with CaptureLogger(logger) as cap_logger:
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)

1178
1179
1180
1181
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()

1182
1183
1184
1185
            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

1186
1187
1188
1189
1190
1191
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

1192
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1193
        self.assertLess(max_diff, expected_max_difference)
1194

1195
1196
1197
1198
1199
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

1200
1201
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
1217

1218
1219
1220
1221
1222
1223
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
1224

1225
        for param in self.required_optional_params:
1226
1227
1228
1229
1230
1231
1232
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
1233

1234
    def test_inference_batch_consistent(self, batch_sizes=[2]):
1235
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
1236

1237
    def _test_inference_batch_consistent(
Will Berman's avatar
Will Berman committed
1238
        self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
1239
    ):
1240
1241
1242
1243
1244
1245
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
1246
        inputs["generator"] = self.get_generator(0)
1247
1248
1249
1250

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

1251
1252
        # prepare batched inputs
        batched_inputs = []
1253
        for batch_size in batch_sizes:
1254
1255
            batched_input = {}
            batched_input.update(inputs)
1256

1257
1258
1259
            for name in self.batch_params:
                if name not in inputs:
                    continue
1260

1261
1262
1263
1264
1265
                value = inputs[name]
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
1266

1267
1268
                    # make last batch super long
                    batched_input[name][-1] = 100 * "very long"
1269

1270
1271
                else:
                    batched_input[name] = batch_size * [value]
1272

Will Berman's avatar
Will Berman committed
1273
            if batch_generator and "generator" in inputs:
1274
                batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
1275

1276
1277
            if "batch_size" in inputs:
                batched_input["batch_size"] = batch_size
1278

1279
            batched_inputs.append(batched_input)
1280
1281

        logger.setLevel(level=diffusers.logging.WARNING)
1282
1283
1284
        for batch_size, batched_input in zip(batch_sizes, batched_inputs):
            output = pipe(**batched_input)
            assert len(output[0]) == batch_size
1285

1286
1287
    def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
        self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
1288
1289

    def _test_inference_batch_single_identical(
1290
        self,
1291
        batch_size=2,
1292
        expected_max_diff=1e-4,
1293
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
1294
    ):
1295
1296
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1297
1298
1299
1300
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

1301
1302
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1303
1304
1305
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)
1306
1307
1308
1309
1310
1311

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
1312
        batched_inputs.update(inputs)
1313

1314
1315
1316
        for name in self.batch_params:
            if name not in inputs:
                continue
1317

1318
1319
1320
1321
1322
            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"
1323

1324
1325
            else:
                batched_inputs[name] = batch_size * [value]
1326

1327
1328
        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
1329

1330
1331
1332
1333
1334
        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]
1335
1336

        output = pipe(**inputs)
1337
        output_batch = pipe(**batched_inputs)
1338

1339
        assert output_batch[0].shape[0] == batch_size
1340

YiYi Xu's avatar
YiYi Xu committed
1341
        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
1342
        assert max_diff < expected_max_diff
1343

1344
    def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4):
1345
1346
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1347
1348
1349
1350
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1351
1352
1353
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1354
        generator_device = "cpu"
1355
1356
1357
1358
1359
        if expected_slice is None:
            output = pipe(**self.get_dummy_inputs(generator_device))[0]
        else:
            output = expected_slice

1360
        output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
1361

1362
1363
1364
1365
1366
1367
1368
1369
        if expected_slice is None:
            max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
        else:
            if output_tuple.ndim != 5:
                max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max()
            else:
                max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max()

1370
        self.assertLess(max_diff, expected_max_difference)
1371
1372
1373

    def test_components_function(self):
        init_components = self.get_dummy_components()
Kashif Rasul's avatar
Kashif Rasul committed
1374
1375
        init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))}

1376
1377
1378
1379
1380
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

1381
1382
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
1383
    def test_float16_inference(self, expected_max_diff=5e-2):
1384
1385
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1386
1387
1388
1389
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1390
1391
1392
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

YiYi Xu's avatar
YiYi Xu committed
1393
        components = self.get_dummy_components()
1394
        pipe_fp16 = self.pipeline_class(**components)
1395
1396
1397
        for component in pipe_fp16.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1398
        pipe_fp16.to(torch_device, torch.float16)
1399
1400
        pipe_fp16.set_progress_bar_config(disable=None)

1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in inputs:
            inputs["generator"] = self.get_generator(0)
        output = pipe(**inputs)[0]

        fp16_inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in fp16_inputs:
            fp16_inputs["generator"] = self.get_generator(0)
        output_fp16 = pipe_fp16(**fp16_inputs)[0]
1412
1413
1414
1415
1416

        if isinstance(output, torch.Tensor):
            output = output.cpu()
            output_fp16 = output_fp16.cpu()

1417
        max_diff = numpy_cosine_similarity_distance(output.flatten(), output_fp16.flatten())
1418
        assert max_diff < expected_max_diff
1419

1420
1421
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
1422
    def test_save_load_float16(self, expected_max_diff=1e-2):
1423
1424
1425
1426
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
1427

1428
        pipe = self.pipeline_class(**components)
1429
1430
1431
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1432
1433
1434
1435
1436
1437
1438
1439
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
1440
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
1441
1442
1443
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]
1456
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1457
1458
1459
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )
1460

1461
    def test_save_load_optional_components(self, expected_max_difference=1e-4):
1462
1463
        if not hasattr(self.pipeline_class, "_optional_components"):
            return
1464
1465
        if not self.pipeline_class._optional_components:
            return
1466
1467
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1468
1469
1470
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1471
1472
1473
1474
1475
1476
1477
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

Dhruv Nair's avatar
Dhruv Nair committed
1478
1479
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1480
        torch.manual_seed(0)
1481
1482
1483
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
1484
            pipe.save_pretrained(tmpdir, safe_serialization=False)
1485
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
1486
1487
1488
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
1489
1490
1491
1492
1493
1494
1495
1496
1497
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

Dhruv Nair's avatar
Dhruv Nair committed
1498
        inputs = self.get_dummy_inputs(generator_device)
1499
        torch.manual_seed(0)
1500
1501
        output_loaded = pipe_loaded(**inputs)[0]

1502
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1503
        self.assertLess(max_diff, expected_max_difference)
1504

1505
    @require_accelerator
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

1518
        pipe.to(torch_device)
1519
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
1520
        self.assertTrue(all(device == torch_device for device in model_devices))
1521

1522
1523
        output_device = pipe(**self.get_dummy_inputs(torch_device))[0]
        self.assertTrue(np.isnan(to_np(output_device)).sum() == 0)
1524

1525
1526
1527
1528
1529
1530
1531
1532
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

1533
        pipe.to(dtype=torch.float16)
1534
1535
1536
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

1537
1538
    def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
        self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
1539

1540
1541
1542
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
1543
1544
1545
1546
1547
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1548
1549
1550
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1551
1552
1553
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1554
1555
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1556
1557
1558
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
1559
        inputs = self.get_dummy_inputs(generator_device)
1560
1561
1562
1563
1564
        output_with_slicing1 = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=2)
        inputs = self.get_dummy_inputs(generator_device)
        output_with_slicing2 = pipe(**inputs)[0]
1565

1566
        if test_max_difference:
1567
1568
1569
1570
1571
1572
1573
            max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
            max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
            self.assertLess(
                max(max_diff1, max_diff2),
                expected_max_diff,
                "Attention slicing should not affect the inference results",
            )
1574

1575
        if test_mean_pixel_difference:
1576
1577
            assert_mean_pixel_difference(to_np(output_with_slicing1[0]), to_np(output_without_slicing[0]))
            assert_mean_pixel_difference(to_np(output_with_slicing2[0]), to_np(output_without_slicing[0]))
1578

1579
1580
    @require_accelerator
    @require_accelerate_version_greater("0.14.0")
1581
    def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
1582
1583
        import accelerate

1584
1585
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1586
1587
1588
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1589
1590
1591
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1592
1593
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1594
        torch.manual_seed(0)
1595
1596
        output_without_offload = pipe(**inputs)[0]

1597
1598
        pipe.enable_sequential_cpu_offload(device=torch_device)
        assert pipe._execution_device.type == torch_device
1599
1600

        inputs = self.get_dummy_inputs(generator_device)
1601
        torch.manual_seed(0)
1602
1603
1604
1605
1606
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")

1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
        offloaded_modules = {
            k: v
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
        }
        # 1. all offloaded modules should be saved to cpu and moved to meta device
        self.assertTrue(
            all(v.device.type == "meta" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
        )
        # 2. all offloaded modules should have hook installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. all offloaded modules should have correct hooks installed, should be either one of these two
        #    - `AlignDevicesHook`
        #    - a SequentialHook` that contains `AlignDevicesHook`
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook"):
                if isinstance(v._hf_hook, accelerate.hooks.SequentialHook):
                    # if it is a `SequentialHook`, we loop through its `hooks` attribute to check if it only contains `AlignDevicesHook`
                    for hook in v._hf_hook.hooks:
                        if not isinstance(hook, accelerate.hooks.AlignDevicesHook):
                            offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0])
                elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
                    offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
        )

1642
1643
    @require_accelerator
    @require_accelerate_version_greater("0.17.0")
1644
    def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
1645
1646
        import accelerate

1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(generator_device)
1659
        torch.manual_seed(0)
1660
1661
        output_without_offload = pipe(**inputs)[0]

1662
1663
        pipe.enable_model_cpu_offload(device=torch_device)
        assert pipe._execution_device.type == torch_device
1664

1665
        inputs = self.get_dummy_inputs(generator_device)
1666
        torch.manual_seed(0)
1667
1668
        output_with_offload = pipe(**inputs)[0]

1669
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1670
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
1671
1672
1673
1674

        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
        offloaded_modules = {
            k: v
1675
1676
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
        }
        # 1. check if all offloaded modules are saved to cpu
        self.assertTrue(
            all(v.device.type == "cpu" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
        )
        # 2. check if all offloaded modules have hooks installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. check if all offloaded modules have correct type of hooks installed, should be `CpuOffload`
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
                offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1697
        )
1698

1699
1700
    @require_accelerator
    @require_accelerate_version_greater("0.17.0")
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
    def test_cpu_offload_forward_pass_twice(self, expected_max_diff=2e-4):
        import accelerate

        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.set_progress_bar_config(disable=None)

1714
        pipe.enable_model_cpu_offload()
1715
1716
1717
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

1718
        pipe.enable_model_cpu_offload()
1719
1720
1721
1722
1723
1724
1725
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload_twice = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
        self.assertLess(
            max_diff, expected_max_diff, "running CPU offloading 2nd time should not affect the inference results"
        )
1726
1727

        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
YiYi Xu's avatar
YiYi Xu committed
1728
1729
        offloaded_modules = {
            k: v
1730
1731
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
YiYi Xu's avatar
YiYi Xu committed
1732
        }
1733
        # 1. check if all offloaded modules are saved to cpu
YiYi Xu's avatar
YiYi Xu committed
1734
1735
1736
        self.assertTrue(
            all(v.device.type == "cpu" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
1737
        )
1738
1739
1740
1741
1742
1743
        # 2. check if all offloaded modules have hooks installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. check if all offloaded modules have correct type of hooks installed, should be `CpuOffload`
YiYi Xu's avatar
YiYi Xu committed
1744
1745
1746
1747
1748
1749
1750
1751
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
                offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1752
1753
        )

1754
1755
    @require_accelerator
    @require_accelerate_version_greater("0.14.0")
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
    def test_sequential_offload_forward_pass_twice(self, expected_max_diff=2e-4):
        import accelerate

        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.set_progress_bar_config(disable=None)

1769
        pipe.enable_sequential_cpu_offload(device=torch_device)
1770
1771
1772
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

1773
        pipe.enable_sequential_cpu_offload(device=torch_device)
1774
1775
1776
1777
1778
1779
1780
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload_twice = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
        self.assertLess(
            max_diff, expected_max_diff, "running sequential offloading second time should have the inference results"
        )
1781
1782

        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
YiYi Xu's avatar
YiYi Xu committed
1783
1784
        offloaded_modules = {
            k: v
1785
1786
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
YiYi Xu's avatar
YiYi Xu committed
1787
        }
1788
        # 1. check if all offloaded modules are moved to meta device
YiYi Xu's avatar
YiYi Xu committed
1789
1790
1791
        self.assertTrue(
            all(v.device.type == "meta" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
1792
        )
1793
1794
1795
1796
1797
1798
1799
1800
        # 2. check if all offloaded modules have hook installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. check if all offloaded modules have correct hooks installed, should be either one of these two
        #    - `AlignDevicesHook`
        #    - a SequentialHook` that contains `AlignDevicesHook`
YiYi Xu's avatar
YiYi Xu committed
1801
1802
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
1803
1804
1805
1806
1807
1808
1809
1810
            if hasattr(v, "_hf_hook"):
                if isinstance(v._hf_hook, accelerate.hooks.SequentialHook):
                    # if it is a `SequentialHook`, we loop through its `hooks` attribute to check if it only contains `AlignDevicesHook`
                    for hook in v._hf_hook.hooks:
                        if not isinstance(hook, accelerate.hooks.AlignDevicesHook):
                            offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0])
                elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
                    offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
1811

YiYi Xu's avatar
YiYi Xu committed
1812
1813
1814
        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1815
1816
        )

1817
1818
1819
1820
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
1821
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
1822
1823
        self._test_xformers_attention_forwardGenerator_pass()

1824
1825
1826
    def _test_xformers_attention_forwardGenerator_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
    ):
1827
1828
1829
1830
1831
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1832
1833
1834
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1835
1836
1837
1838
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
1839
        output_without_offload = pipe(**inputs)[0]
1840
1841
1842
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )
1843
1844
1845

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
1846
        output_with_offload = pipe(**inputs)[0]
1847
1848
1849
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )
1850

Will Berman's avatar
Will Berman committed
1851
        if test_max_difference:
1852
            max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1853
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
1854

1855
1856
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
1857

1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

1880
                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
1881
1882
1883

                assert images.shape[0] == batch_size * num_images_per_prompt

1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
    def test_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
    def test_callback_inputs(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_subset(pipe, i, t, callback_kwargs):
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1923
            # iterate over callback args
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        def callback_inputs_all(pipe, i, t, callback_kwargs):
            for tensor_name in pipe._callback_tensor_inputs:
                assert tensor_name in callback_kwargs

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1934
            # iterate over callback args
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # Test passing in a subset
        inputs["callback_on_step_end"] = callback_inputs_subset
        inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        # Test passing in a everything
        inputs["callback_on_step_end"] = callback_inputs_all
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
            is_last = i == (pipe.num_timesteps - 1)
            if is_last:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs["callback_on_step_end"] = callback_inputs_change_tensor
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]
        assert output.abs().sum() == 0

    def test_callback_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_increase_guidance(pipe, i, t, callback_kwargs):
            pipe._guidance_scale += 1.0

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # use cfg guidance because some pipelines modify the shape of the latents
        # outside of the denoising loop
        inputs["guidance_scale"] = 2.0
        inputs["callback_on_step_end"] = callback_increase_guidance
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        _ = pipe(**inputs)[0]

        # we increase the guidance scale by 1.0 at every step
        # check that the guidance scale is increased by the number of scheduler timesteps
        # accounts for models that modify the number of inference steps based on strength
        assert pipe.guidance_scale == (inputs["guidance_scale"] + pipe.num_timesteps)

2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
    def test_serialization_with_variants(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        model_components = [
            component_name for component_name, component in pipe.components.items() if isinstance(component, nn.Module)
        ]
        variant = "fp16"

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)

            with open(f"{tmpdir}/model_index.json", "r") as f:
                config = json.load(f)

            for subfolder in os.listdir(tmpdir):
                if not os.path.isfile(subfolder) and subfolder in model_components:
                    folder_path = os.path.join(tmpdir, subfolder)
                    is_folder = os.path.isdir(folder_path) and subfolder in config
                    assert is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))

    def test_loading_with_variants(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        variant = "fp16"

        def is_nan(tensor):
            if tensor.ndimension() == 0:
                has_nan = torch.isnan(tensor).item()
            else:
                has_nan = torch.isnan(tensor).any()
            return has_nan

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, variant=variant)

            model_components_pipe = {
                component_name: component
                for component_name, component in pipe.components.items()
                if isinstance(component, nn.Module)
            }
            model_components_pipe_loaded = {
                component_name: component
                for component_name, component in pipe_loaded.components.items()
                if isinstance(component, nn.Module)
            }
            for component_name in model_components_pipe:
                pipe_component = model_components_pipe[component_name]
                pipe_loaded_component = model_components_pipe_loaded[component_name]
                for p1, p2 in zip(pipe_component.parameters(), pipe_loaded_component.parameters()):
                    # nan check for luminanext (mps).
                    if not (is_nan(p1) and is_nan(p2)):
                        self.assertTrue(torch.equal(p1, p2))

    def test_loading_with_incorrect_variants_raises_error(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        variant = "fp16"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Don't save with variants.
            pipe.save_pretrained(tmpdir, safe_serialization=False)

            with self.assertRaises(ValueError) as error:
                _ = self.pipeline_class.from_pretrained(tmpdir, variant=variant)

            assert f"You are trying to load the model files of the `variant={variant}`" in str(error.exception)

2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
    def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=1e-4, rtol=1e-4):
        if not hasattr(self.pipeline_class, "encode_prompt"):
            return

        components = self.get_dummy_components()

        # We initialize the pipeline with only text encoders and tokenizers,
        # mimicking a real-world scenario.
        components_with_text_encoders = {}
        for k in components:
            if "text" in k or "tokenizer" in k:
                components_with_text_encoders[k] = components[k]
            else:
                components_with_text_encoders[k] = None
        pipe_with_just_text_encoder = self.pipeline_class(**components_with_text_encoders)
        pipe_with_just_text_encoder = pipe_with_just_text_encoder.to(torch_device)

        # Get inputs and also the args of `encode_prompts`.
        inputs = self.get_dummy_inputs(torch_device)
        encode_prompt_signature = inspect.signature(pipe_with_just_text_encoder.encode_prompt)
        encode_prompt_parameters = list(encode_prompt_signature.parameters.values())

        # Required args in encode_prompt with those with no default.
        required_params = []
        for param in encode_prompt_parameters:
            if param.name == "self" or param.name == "kwargs":
                continue
            if param.default is inspect.Parameter.empty:
                required_params.append(param.name)

        # Craft inputs for the `encode_prompt()` method to run in isolation.
        encode_prompt_param_names = [p.name for p in encode_prompt_parameters if p.name != "self"]
        input_keys = list(inputs.keys())
        encode_prompt_inputs = {k: inputs.pop(k) for k in input_keys if k in encode_prompt_param_names}

        pipe_call_signature = inspect.signature(pipe_with_just_text_encoder.__call__)
        pipe_call_parameters = pipe_call_signature.parameters

        # For each required arg in encode_prompt, check if it's missing
        # in encode_prompt_inputs. If so, see if __call__ has a default
        # for that arg and use it if available.
        for required_param_name in required_params:
            if required_param_name not in encode_prompt_inputs:
                pipe_call_param = pipe_call_parameters.get(required_param_name, None)
                if pipe_call_param is not None and pipe_call_param.default is not inspect.Parameter.empty:
                    # Use the default from pipe.__call__
                    encode_prompt_inputs[required_param_name] = pipe_call_param.default
                elif extra_required_param_value_dict is not None and isinstance(extra_required_param_value_dict, dict):
                    encode_prompt_inputs[required_param_name] = extra_required_param_value_dict[required_param_name]
                else:
                    raise ValueError(
                        f"Required parameter '{required_param_name}' in "
                        f"encode_prompt has no default in either encode_prompt or __call__."
                    )

        # Compute `encode_prompt()`.
        with torch.no_grad():
            encoded_prompt_outputs = pipe_with_just_text_encoder.encode_prompt(**encode_prompt_inputs)

2133
2134
2135
2136
2137
        # Programmatically determine the return names of `encode_prompt.`
        ast_visitor = ReturnNameVisitor()
        encode_prompt_tree = ast_visitor.get_ast_tree(cls=self.pipeline_class)
        ast_visitor.visit(encode_prompt_tree)
        prompt_embed_kwargs = ast_visitor.return_names
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
        prompt_embeds_kwargs = dict(zip(prompt_embed_kwargs, encoded_prompt_outputs))

        # Pack the outputs of `encode_prompt`.
        adapted_prompt_embeds_kwargs = {
            k: prompt_embeds_kwargs.pop(k) for k in list(prompt_embeds_kwargs.keys()) if k in pipe_call_parameters
        }

        # now initialize a pipeline without text encoders and compute outputs with the
        # `encode_prompt()` outputs and other relevant inputs.
        components_with_text_encoders = {}
        for k in components:
            if "text" in k or "tokenizer" in k:
                components_with_text_encoders[k] = None
            else:
                components_with_text_encoders[k] = components[k]
        pipe_without_text_encoders = self.pipeline_class(**components_with_text_encoders).to(torch_device)

        # Set `negative_prompt` to None as we have already calculated its embeds
        # if it was present in `inputs`. This is because otherwise we will interfere wrongly
        # for non-None `negative_prompt` values as defaults (PixArt for example).
        pipe_without_tes_inputs = {**inputs, **adapted_prompt_embeds_kwargs}
        if (
            pipe_call_parameters.get("negative_prompt", None) is not None
            and pipe_call_parameters.get("negative_prompt").default is not None
        ):
            pipe_without_tes_inputs.update({"negative_prompt": None})

        # Pipelines like attend and excite have `prompt` as a required argument.
        if (
            pipe_call_parameters.get("prompt", None) is not None
            and pipe_call_parameters.get("prompt").default is inspect.Parameter.empty
            and pipe_call_parameters.get("prompt_embeds", None) is not None
            and pipe_call_parameters.get("prompt_embeds").default is None
        ):
            pipe_without_tes_inputs.update({"prompt": None})

        pipe_out = pipe_without_text_encoders(**pipe_without_tes_inputs)[0]

        # Compare against regular pipeline outputs.
        full_pipe = self.pipeline_class(**components).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)
        pipe_out_2 = full_pipe(**inputs)[0]

        if isinstance(pipe_out, np.ndarray) and isinstance(pipe_out_2, np.ndarray):
            self.assertTrue(np.allclose(pipe_out, pipe_out_2, atol=atol, rtol=rtol))
        elif isinstance(pipe_out, torch.Tensor) and isinstance(pipe_out_2, torch.Tensor):
            self.assertTrue(torch.allclose(pipe_out, pipe_out_2, atol=atol, rtol=rtol))

2186
2187
2188
2189
2190
2191
2192
2193
2194
    def test_StableDiffusionMixin_component(self):
        """Any pipeline that have LDMFuncMixin should have vae and unet components."""
        if not issubclass(self.pipeline_class, StableDiffusionMixin):
            return
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        self.assertTrue(hasattr(pipe, "vae") and isinstance(pipe.vae, (AutoencoderKL, AutoencoderTiny)))
        self.assertTrue(
            hasattr(pipe, "unet")
2195
2196
2197
2198
            and isinstance(
                pipe.unet,
                (UNet2DConditionModel, UNet3DConditionModel, I2VGenXLUNet, UNetMotionModel, UNetControlNetXSModel),
            )
2199
2200
        )

Marc Sun's avatar
Marc Sun committed
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
    @require_hf_hub_version_greater("0.26.5")
    @require_transformers_version_greater("4.47.1")
    def test_save_load_dduf(self, atol=1e-4, rtol=1e-4):
        if not self.supports_dduf:
            return

        from huggingface_hub import export_folder_as_dduf

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device="cpu")
        inputs.pop("generator")
        inputs["generator"] = torch.manual_seed(0)

        pipeline_out = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            dduf_filename = os.path.join(tmpdir, f"{pipe.__class__.__name__.lower()}.dduf")
            pipe.save_pretrained(tmpdir, safe_serialization=True)
            export_folder_as_dduf(dduf_filename, folder_path=tmpdir)
            loaded_pipe = self.pipeline_class.from_pretrained(tmpdir, dduf_file=dduf_filename).to(torch_device)

        inputs["generator"] = torch.manual_seed(0)
        loaded_pipeline_out = loaded_pipe(**inputs)[0]

        if isinstance(pipeline_out, np.ndarray) and isinstance(loaded_pipeline_out, np.ndarray):
            assert np.allclose(pipeline_out, loaded_pipeline_out, atol=atol, rtol=rtol)
        elif isinstance(pipeline_out, torch.Tensor) and isinstance(loaded_pipeline_out, torch.Tensor):
            assert torch.allclose(pipeline_out, loaded_pipeline_out, atol=atol, rtol=rtol)

Aryan's avatar
Aryan committed
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
    def test_layerwise_casting_inference(self):
        if not self.test_layerwise_casting:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device, dtype=torch.bfloat16)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
        denoiser.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)

        inputs = self.get_dummy_inputs(torch_device)
        _ = pipe(**inputs)[0]

2249
    @require_torch_accelerator
Aryan's avatar
Aryan committed
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
    def test_group_offloading_inference(self):
        if not self.test_group_offloading:
            return

        def create_pipe():
            torch.manual_seed(0)
            components = self.get_dummy_components()
            pipe = self.pipeline_class(**components)
            pipe.set_progress_bar_config(disable=None)
            return pipe

        def enable_group_offload_on_component(pipe, group_offloading_kwargs):
            # We intentionally don't test VAE's here. This is because some tests enable tiling on the VAE. If
2263
            # tiling is enabled and a forward pass is run, when accelerator streams are used, the execution order of
Aryan's avatar
Aryan committed
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
            # the layers is not traced correctly. This causes errors. For apply group offloading to VAE, a
            # warmup forward pass (even with dummy small inputs) is recommended.
            for component_name in [
                "text_encoder",
                "text_encoder_2",
                "text_encoder_3",
                "transformer",
                "unet",
                "controlnet",
            ]:
                if not hasattr(pipe, component_name):
                    continue
                component = getattr(pipe, component_name)
                if not getattr(component, "_supports_group_offloading", True):
                    continue
                if hasattr(component, "enable_group_offload"):
                    # For diffusers ModelMixin implementations
                    component.enable_group_offload(torch.device(torch_device), **group_offloading_kwargs)
                else:
                    # For other models not part of diffusers
                    apply_group_offloading(
                        component, onload_device=torch.device(torch_device), **group_offloading_kwargs
                    )
                self.assertTrue(
                    all(
                        module._diffusers_hook.get_hook("group_offloading") is not None
                        for module in component.modules()
                        if hasattr(module, "_diffusers_hook")
                    )
                )
2294
2295
2296
2297
            for component_name in ["vae", "vqvae", "image_encoder"]:
                component = getattr(pipe, component_name, None)
                if isinstance(component, torch.nn.Module):
                    component.to(torch_device)
Aryan's avatar
Aryan committed
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322

        def run_forward(pipe):
            torch.manual_seed(0)
            inputs = self.get_dummy_inputs(torch_device)
            return pipe(**inputs)[0]

        pipe = create_pipe().to(torch_device)
        output_without_group_offloading = run_forward(pipe)

        pipe = create_pipe()
        enable_group_offload_on_component(pipe, {"offload_type": "block_level", "num_blocks_per_group": 1})
        output_with_group_offloading1 = run_forward(pipe)

        pipe = create_pipe()
        enable_group_offload_on_component(pipe, {"offload_type": "leaf_level"})
        output_with_group_offloading2 = run_forward(pipe)

        if torch.is_tensor(output_without_group_offloading):
            output_without_group_offloading = output_without_group_offloading.detach().cpu().numpy()
            output_with_group_offloading1 = output_with_group_offloading1.detach().cpu().numpy()
            output_with_group_offloading2 = output_with_group_offloading2.detach().cpu().numpy()

        self.assertTrue(np.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-4))
        self.assertTrue(np.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-4))

2323
2324
2325
2326
2327
2328
2329
2330
2331
    def test_torch_dtype_dict(self):
        components = self.get_dummy_components()
        if not components:
            self.skipTest("No dummy components defined.")

        pipe = self.pipeline_class(**components)
        specified_key = next(iter(components.keys()))

        with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
2332
            pipe.save_pretrained(tmpdirname, safe_serialization=False)
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
            torch_dtype_dict = {specified_key: torch.bfloat16, "default": torch.float16}
            loaded_pipe = self.pipeline_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype_dict)

        for name, component in loaded_pipe.components.items():
            if isinstance(component, torch.nn.Module) and hasattr(component, "dtype"):
                expected_dtype = torch_dtype_dict.get(name, torch_dtype_dict.get("default", torch.float32))
                self.assertEqual(
                    component.dtype,
                    expected_dtype,
                    f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}",
                )

2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
    @require_torch_accelerator
    def test_pipeline_with_accelerator_device_map(self, expected_max_difference=1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        torch.manual_seed(0)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["generator"] = torch.manual_seed(0)
        out = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            loaded_pipe = self.pipeline_class.from_pretrained(tmpdir, device_map=torch_device)
            for component in loaded_pipe.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
        inputs["generator"] = torch.manual_seed(0)
        loaded_out = loaded_pipe(**inputs)[0]
        max_diff = np.abs(to_np(out) - to_np(loaded_out)).max()
        self.assertLess(max_diff, expected_max_difference)

2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
    @require_torch_accelerator
    def test_pipeline_level_group_offloading_sanity_checks(self):
        components = self.get_dummy_components()
        pipe: DiffusionPipeline = self.pipeline_class(**components)

        for name, component in pipe.components.items():
            if hasattr(component, "_supports_group_offloading"):
                if not component._supports_group_offloading:
                    pytest.skip(f"{self.pipeline_class.__name__} is not suitable for this test.")

        module_names = sorted(
            [name for name, component in pipe.components.items() if isinstance(component, torch.nn.Module)]
        )
        exclude_module_name = module_names[0]
        offload_device = "cpu"
        pipe.enable_group_offload(
            onload_device=torch_device,
            offload_device=offload_device,
            offload_type="leaf_level",
            exclude_modules=exclude_module_name,
        )
        excluded_module = getattr(pipe, exclude_module_name)
        self.assertTrue(torch.device(excluded_module.device).type == torch.device(torch_device).type)

        for name, component in pipe.components.items():
            if name not in [exclude_module_name] and isinstance(component, torch.nn.Module):
                # `component.device` prints the `onload_device` type. We should probably override the
                # `device` property in `ModelMixin`.
                component_device = next(component.parameters())[0].device
                self.assertTrue(torch.device(component_device).type == torch.device(offload_device).type)

    @require_torch_accelerator
    def test_pipeline_level_group_offloading_inference(self, expected_max_difference=1e-4):
        components = self.get_dummy_components()
        pipe: DiffusionPipeline = self.pipeline_class(**components)

        for name, component in pipe.components.items():
            if hasattr(component, "_supports_group_offloading"):
                if not component._supports_group_offloading:
                    pytest.skip(f"{self.pipeline_class.__name__} is not suitable for this test.")

        # Regular inference.
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        torch.manual_seed(0)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["generator"] = torch.manual_seed(0)
        out = pipe(**inputs)[0]

        pipe.to("cpu")
        del pipe

        # Inference with offloading
        pipe: DiffusionPipeline = self.pipeline_class(**components)
        offload_device = "cpu"
        pipe.enable_group_offload(
            onload_device=torch_device,
            offload_device=offload_device,
            offload_type="leaf_level",
        )
        pipe.set_progress_bar_config(disable=None)
        inputs["generator"] = torch.manual_seed(0)
        out_offload = pipe(**inputs)[0]

        max_diff = np.abs(to_np(out) - to_np(out_offload)).max()
        self.assertLess(max_diff, expected_max_difference)

2435

2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-pipeline-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def get_pipeline_components(self):
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)

        with tempfile.TemporaryDirectory() as tmpdir:
            dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2}
            vocab_path = os.path.join(tmpdir, "vocab.json")
            with open(vocab_path, "w") as f:
                json.dump(dummy_vocab, f)

            merges = "Ġ t\nĠt h"
            merges_path = os.path.join(tmpdir, "merges.txt")
            with open(merges_path, "w") as f:
                f.writelines(merges)
            tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def test_push_to_hub(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
2569
2570


2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
class PyramidAttentionBroadcastTesterMixin:
    pab_config = PyramidAttentionBroadcastConfig(
        spatial_attention_block_skip_range=2,
        spatial_attention_timestep_skip_range=(100, 800),
        spatial_attention_block_identifiers=["transformer_blocks"],
    )

    def test_pyramid_attention_broadcast_layers(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        num_layers = 0
        num_single_layers = 0
        dummy_component_kwargs = {}
        dummy_component_parameters = inspect.signature(self.get_dummy_components).parameters
        if "num_layers" in dummy_component_parameters:
            num_layers = 2
            dummy_component_kwargs["num_layers"] = num_layers
        if "num_single_layers" in dummy_component_parameters:
            num_single_layers = 2
            dummy_component_kwargs["num_single_layers"] = num_single_layers

        components = self.get_dummy_components(**dummy_component_kwargs)
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        self.pab_config.current_timestep_callback = lambda: pipe.current_timestep
        denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
        denoiser.enable_cache(self.pab_config)

        expected_hooks = 0
        if self.pab_config.spatial_attention_block_skip_range is not None:
            expected_hooks += num_layers + num_single_layers
        if self.pab_config.temporal_attention_block_skip_range is not None:
            expected_hooks += num_layers + num_single_layers
        if self.pab_config.cross_attention_block_skip_range is not None:
            expected_hooks += num_layers + num_single_layers

        denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
        count = 0
        for module in denoiser.modules():
            if hasattr(module, "_diffusers_hook"):
                hook = module._diffusers_hook.get_hook("pyramid_attention_broadcast")
                if hook is None:
                    continue
                count += 1
                self.assertTrue(
                    isinstance(hook, PyramidAttentionBroadcastHook),
                    "Hook should be of type PyramidAttentionBroadcastHook.",
                )
                self.assertTrue(hook.state.cache is None, "Cache should be None at initialization.")
        self.assertEqual(count, expected_hooks, "Number of hooks should match the expected number.")

        # Perform dummy inference step to ensure state is updated
        def pab_state_check_callback(pipe, i, t, kwargs):
            for module in denoiser.modules():
                if hasattr(module, "_diffusers_hook"):
                    hook = module._diffusers_hook.get_hook("pyramid_attention_broadcast")
                    if hook is None:
                        continue
                    self.assertTrue(
                        hook.state.cache is not None,
                        "Cache should have updated during inference.",
                    )
                    self.assertTrue(
                        hook.state.iteration == i + 1,
                        "Hook iteration state should have updated during inference.",
                    )
            return {}

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = 2
        inputs["callback_on_step_end"] = pab_state_check_callback
        pipe(**inputs)[0]

        # After inference, reset_stateful_hooks is called within the pipeline, which should have reset the states
        for module in denoiser.modules():
            if hasattr(module, "_diffusers_hook"):
                hook = module._diffusers_hook.get_hook("pyramid_attention_broadcast")
                if hook is None:
                    continue
                self.assertTrue(
                    hook.state.cache is None,
                    "Cache should be reset to None after inference.",
                )
                self.assertTrue(
                    hook.state.iteration == 0,
                    "Iteration should be reset to 0 after inference.",
                )

    def test_pyramid_attention_broadcast_inference(self, expected_atol: float = 0.2):
        # We need to use higher tolerance because we are using a random model. With a converged/trained
        # model, the tolerance can be lower.

        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        num_layers = 2
        components = self.get_dummy_components(num_layers=num_layers)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        # Run inference without PAB
        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = 4
        output = pipe(**inputs)[0]
        original_image_slice = output.flatten()
        original_image_slice = np.concatenate((original_image_slice[:8], original_image_slice[-8:]))

        # Run inference with PAB enabled
        self.pab_config.current_timestep_callback = lambda: pipe.current_timestep
        denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
        denoiser.enable_cache(self.pab_config)

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = 4
        output = pipe(**inputs)[0]
        image_slice_pab_enabled = output.flatten()
        image_slice_pab_enabled = np.concatenate((image_slice_pab_enabled[:8], image_slice_pab_enabled[-8:]))

        # Run inference with PAB disabled
        denoiser.disable_cache()

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = 4
        output = pipe(**inputs)[0]
        image_slice_pab_disabled = output.flatten()
        image_slice_pab_disabled = np.concatenate((image_slice_pab_disabled[:8], image_slice_pab_disabled[-8:]))

2698
2699
2700
2701
2702
2703
        assert np.allclose(original_image_slice, image_slice_pab_enabled, atol=expected_atol), (
            "PAB outputs should not differ much in specified timestep range."
        )
        assert np.allclose(original_image_slice, image_slice_pab_disabled, atol=1e-4), (
            "Outputs from normal inference and after disabling cache should not differ."
        )
2704
2705


Aryan's avatar
Aryan committed
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
class FasterCacheTesterMixin:
    faster_cache_config = FasterCacheConfig(
        spatial_attention_block_skip_range=2,
        spatial_attention_timestep_skip_range=(-1, 901),
        unconditional_batch_skip_range=2,
        attention_weight_callback=lambda _: 0.5,
    )

    def test_faster_cache_basic_warning_or_errors_raised(self):
        components = self.get_dummy_components()

        logger = logging.get_logger("diffusers.hooks.faster_cache")
        logger.setLevel(logging.INFO)

        # Check if warning is raise when no attention_weight_callback is provided
        pipe = self.pipeline_class(**components)
        with CaptureLogger(logger) as cap_logger:
            config = FasterCacheConfig(spatial_attention_block_skip_range=2, attention_weight_callback=None)
            apply_faster_cache(pipe.transformer, config)
        self.assertTrue("No `attention_weight_callback` provided when enabling FasterCache" in cap_logger.out)

        # Check if error raised when unsupported tensor format used
        pipe = self.pipeline_class(**components)
        with self.assertRaises(ValueError):
            config = FasterCacheConfig(spatial_attention_block_skip_range=2, tensor_format="BFHWC")
            apply_faster_cache(pipe.transformer, config)

    def test_faster_cache_inference(self, expected_atol: float = 0.1):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        def create_pipe():
            torch.manual_seed(0)
            num_layers = 2
            components = self.get_dummy_components(num_layers=num_layers)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(device)
            pipe.set_progress_bar_config(disable=None)
            return pipe

        def run_forward(pipe):
            torch.manual_seed(0)
            inputs = self.get_dummy_inputs(device)
            inputs["num_inference_steps"] = 4
            return pipe(**inputs)[0]

        # Run inference without FasterCache
        pipe = create_pipe()
        output = run_forward(pipe).flatten()
        original_image_slice = np.concatenate((output[:8], output[-8:]))

        # Run inference with FasterCache enabled
        self.faster_cache_config.current_timestep_callback = lambda: pipe.current_timestep
        pipe = create_pipe()
        pipe.transformer.enable_cache(self.faster_cache_config)
Aryan's avatar
Aryan committed
2760
        output = run_forward(pipe).flatten()
Aryan's avatar
Aryan committed
2761
2762
2763
2764
2765
2766
2767
        image_slice_faster_cache_enabled = np.concatenate((output[:8], output[-8:]))

        # Run inference with FasterCache disabled
        pipe.transformer.disable_cache()
        output = run_forward(pipe).flatten()
        image_slice_faster_cache_disabled = np.concatenate((output[:8], output[-8:]))

2768
2769
2770
2771
2772
2773
        assert np.allclose(original_image_slice, image_slice_faster_cache_enabled, atol=expected_atol), (
            "FasterCache outputs should not differ much in specified timestep range."
        )
        assert np.allclose(original_image_slice, image_slice_faster_cache_disabled, atol=1e-4), (
            "Outputs from normal inference and after disabling cache should not differ."
        )
Aryan's avatar
Aryan committed
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866

    def test_faster_cache_state(self):
        from diffusers.hooks.faster_cache import _FASTER_CACHE_BLOCK_HOOK, _FASTER_CACHE_DENOISER_HOOK

        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        num_layers = 0
        num_single_layers = 0
        dummy_component_kwargs = {}
        dummy_component_parameters = inspect.signature(self.get_dummy_components).parameters
        if "num_layers" in dummy_component_parameters:
            num_layers = 2
            dummy_component_kwargs["num_layers"] = num_layers
        if "num_single_layers" in dummy_component_parameters:
            num_single_layers = 2
            dummy_component_kwargs["num_single_layers"] = num_single_layers

        components = self.get_dummy_components(**dummy_component_kwargs)
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        self.faster_cache_config.current_timestep_callback = lambda: pipe.current_timestep
        pipe.transformer.enable_cache(self.faster_cache_config)

        expected_hooks = 0
        if self.faster_cache_config.spatial_attention_block_skip_range is not None:
            expected_hooks += num_layers + num_single_layers
        if self.faster_cache_config.temporal_attention_block_skip_range is not None:
            expected_hooks += num_layers + num_single_layers

        # Check if faster_cache denoiser hook is attached
        denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
        self.assertTrue(
            hasattr(denoiser, "_diffusers_hook")
            and isinstance(denoiser._diffusers_hook.get_hook(_FASTER_CACHE_DENOISER_HOOK), FasterCacheDenoiserHook),
            "Hook should be of type FasterCacheDenoiserHook.",
        )

        # Check if all blocks have faster_cache block hook attached
        count = 0
        for name, module in denoiser.named_modules():
            if hasattr(module, "_diffusers_hook"):
                if name == "":
                    # Skip the root denoiser module
                    continue
                count += 1
                self.assertTrue(
                    isinstance(module._diffusers_hook.get_hook(_FASTER_CACHE_BLOCK_HOOK), FasterCacheBlockHook),
                    "Hook should be of type FasterCacheBlockHook.",
                )
        self.assertEqual(count, expected_hooks, "Number of hooks should match expected number.")

        # Perform inference to ensure that states are updated correctly
        def faster_cache_state_check_callback(pipe, i, t, kwargs):
            for name, module in denoiser.named_modules():
                if not hasattr(module, "_diffusers_hook"):
                    continue
                if name == "":
                    # Root denoiser module
                    state = module._diffusers_hook.get_hook(_FASTER_CACHE_DENOISER_HOOK).state
                    if not self.faster_cache_config.is_guidance_distilled:
                        self.assertTrue(state.low_frequency_delta is not None, "Low frequency delta should be set.")
                        self.assertTrue(state.high_frequency_delta is not None, "High frequency delta should be set.")
                else:
                    # Internal blocks
                    state = module._diffusers_hook.get_hook(_FASTER_CACHE_BLOCK_HOOK).state
                    self.assertTrue(state.cache is not None and len(state.cache) == 2, "Cache should be set.")
                self.assertTrue(state.iteration == i + 1, "Hook iteration state should have updated during inference.")
            return {}

        inputs = self.get_dummy_inputs(device)
        inputs["num_inference_steps"] = 4
        inputs["callback_on_step_end"] = faster_cache_state_check_callback
        _ = pipe(**inputs)[0]

        # After inference, reset_stateful_hooks is called within the pipeline, which should have reset the states
        for name, module in denoiser.named_modules():
            if not hasattr(module, "_diffusers_hook"):
                continue

            if name == "":
                # Root denoiser module
                state = module._diffusers_hook.get_hook(_FASTER_CACHE_DENOISER_HOOK).state
                self.assertTrue(state.iteration == 0, "Iteration should be reset to 0.")
                self.assertTrue(state.low_frequency_delta is None, "Low frequency delta should be reset to None.")
                self.assertTrue(state.high_frequency_delta is None, "High frequency delta should be reset to None.")
            else:
                # Internal blocks
                state = module._diffusers_hook.get_hook(_FASTER_CACHE_BLOCK_HOOK).state
                self.assertTrue(state.iteration == 0, "Iteration should be reset to 0.")
                self.assertTrue(state.batch_size is None, "Batch size should be reset to None.")
                self.assertTrue(state.cache is None, "Cache should be reset to None.")


Aryan's avatar
Aryan committed
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
# TODO(aryan, dhruv): the cache tester mixins should probably be rewritten so that more models can be tested out
# of the box once there is better cache support/implementation
class FirstBlockCacheTesterMixin:
    # threshold is intentionally set higher than usual values since we're testing with random unconverged models
    # that will not satisfy the expected properties of the denoiser for caching to be effective
    first_block_cache_config = FirstBlockCacheConfig(threshold=0.8)

    def test_first_block_cache_inference(self, expected_atol: float = 0.1):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator

        def create_pipe():
            torch.manual_seed(0)
            num_layers = 2
            components = self.get_dummy_components(num_layers=num_layers)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(device)
            pipe.set_progress_bar_config(disable=None)
            return pipe

        def run_forward(pipe):
            torch.manual_seed(0)
            inputs = self.get_dummy_inputs(device)
            inputs["num_inference_steps"] = 4
            return pipe(**inputs)[0]

        # Run inference without FirstBlockCache
        pipe = create_pipe()
        output = run_forward(pipe).flatten()
        original_image_slice = np.concatenate((output[:8], output[-8:]))

        # Run inference with FirstBlockCache enabled
        pipe = create_pipe()
        pipe.transformer.enable_cache(self.first_block_cache_config)
        output = run_forward(pipe).flatten()
        image_slice_fbc_enabled = np.concatenate((output[:8], output[-8:]))

        # Run inference with FirstBlockCache disabled
        pipe.transformer.disable_cache()
        output = run_forward(pipe).flatten()
        image_slice_fbc_disabled = np.concatenate((output[:8], output[-8:]))

        assert np.allclose(original_image_slice, image_slice_fbc_enabled, atol=expected_atol), (
            "FirstBlockCache outputs should not differ much."
        )
        assert np.allclose(original_image_slice, image_slice_fbc_disabled, atol=1e-4), (
            "Outputs from normal inference and after disabling cache should not differ."
        )


2916
2917
2918
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
2919
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
2920
2921
2922
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
2923
    assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"