test_pipelines_common.py 67.2 KB
Newer Older
1
2
3
4
import contextlib
import gc
import inspect
import io
5
6
import json
import os
7
8
9
import re
import tempfile
import unittest
10
import uuid
Aryan's avatar
Aryan committed
11
from typing import Any, Callable, Dict, Union
12
13

import numpy as np
Anh71me's avatar
Anh71me committed
14
import PIL.Image
15
import torch
16
17
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
18
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
19

20
import diffusers
21
22
23
24
25
26
27
28
29
30
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    DDIMScheduler,
    DiffusionPipeline,
    StableDiffusionPipeline,
    UNet2DConditionModel,
)
31
from diffusers.image_processor import VaeImageProcessor
Aryan's avatar
Aryan committed
32
from diffusers.loaders import IPAdapterMixin
33
34
35
36
from diffusers.models.unets.unet_3d_condition import UNet3DConditionModel
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.models.unets.unet_motion_model import UNetMotionModel
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
37
from diffusers.schedulers import KarrasDiffusionSchedulers
38
from diffusers.utils import logging
39
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available
40
41
42
43
44
from diffusers.utils.testing_utils import (
    CaptureLogger,
    require_torch,
    torch_device,
)
45

46
from ..models.autoencoders.test_models_vae import (
47
48
49
50
51
    get_asym_autoencoder_kl_config,
    get_autoencoder_kl_config,
    get_autoencoder_tiny_config,
    get_consistency_vae_config,
)
Aryan's avatar
Aryan committed
52
from ..models.unets.test_models_unet_2d_condition import create_ip_adapter_state_dict
53
54
from ..others.test_utils import TOKEN, USER, is_staging_test

55

56
57
58
59
60
61
62
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


63
64
65
66
67
def check_same_shape(tensor_list):
    shapes = [tensor.shape for tensor in tensor_list]
    return all(shape == shapes[0] for shape in shapes[1:])


68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
class SDFunctionTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that inherit from StableDiffusionMixin, e.g. vae_slicing, vae_tiling, freeu, etc.
    """

    def test_vae_slicing(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        # components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        image_count = 4

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:  # fix batch size mismatch in I2V_Gen pipeline
            inputs["image"] = [inputs["image"]] * image_count
        output_1 = pipe(**inputs)

        # make sure sliced vae decode yields the same result
        pipe.enable_vae_slicing()
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:
            inputs["image"] = [inputs["image"]] * image_count
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)

        assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2

    def test_vae_tiling(self):
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        if "safety_checker" in components:
            components["safety_checker"] = None
        pipe = self.pipeline_class(**components)
108
        pipe = pipe.to(torch_device)
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        output_1 = pipe(**inputs)[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)[0]

        assert np.abs(output_2 - output_1).max() < 5e-1

        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
        for shape in shapes:
128
            zeros = torch.zeros(shape).to(torch_device)
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
            pipe.vae.decode(zeros)

    def test_freeu_enabled(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output = pipe(**inputs)[0]

        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output_freeu = pipe(**inputs)[0]

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."

    def test_freeu_disabled(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output = pipe(**inputs)[0]

        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        pipe.disable_freeu()

        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output_no_freeu = pipe(**inputs)[0]
        assert np.allclose(
            output, output_no_freeu, atol=1e-2
        ), f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}."

    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image = pipe(**inputs)[0]
        original_image_slice = image[0, -3:, -3:, -1]

        pipe.fuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_fused = pipe(**inputs)[0]
        image_slice_fused = image_fused[0, -3:, -3:, -1]

        pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_disabled = pipe(**inputs)[0]
        image_slice_disabled = image_disabled[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."


Aryan's avatar
Aryan committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
class IPAdapterTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for pipelines that support IP Adapters.
    """

    def test_pipeline_signature(self):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        assert issubclass(self.pipeline_class, IPAdapterMixin)
        self.assertIn(
            "ip_adapter_image",
            parameters,
            "`ip_adapter_image` argument must be supported by the `__call__` method",
        )
        self.assertIn(
            "ip_adapter_image_embeds",
            parameters,
            "`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
        )

    def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
        return torch.randn((2, 1, cross_attention_dim), device=torch_device)

    def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        if "image" in parameters.keys() and "strength" in parameters.keys():
            inputs["num_inference_steps"] = 4

        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

    def test_ip_adapter_single(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
        )

    def test_ip_adapter_multi(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]

        adapter_state_dict_1 = create_ip_adapter_state_dict(pipe.unet)
        adapter_state_dict_2 = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])

        # forward pass with multi ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([0.0, 0.0])
        output_without_multi_adapter_scale = pipe(**inputs)[0]

        # forward pass with multi ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([42.0, 42.0])
        output_with_multi_adapter_scale = pipe(**inputs)[0]

        max_diff_without_multi_adapter_scale = np.abs(
            output_without_multi_adapter_scale - output_without_adapter
        ).max()
        max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
        self.assertLess(
            max_diff_without_multi_adapter_scale,
            expected_max_diff,
            "Output without multi-ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_multi_adapter_scale,
            1e-2,
            "Output with multi-ip-adapter scale must be different from normal inference",
        )

321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
    def test_ip_adapter_cfg(self, expected_max_diff: float = 1e-4):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        if "guidance_scale" not in parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)
        pipe.set_ip_adapter_scale(1.0)

        # forward pass with CFG not applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)[0].unsqueeze(0)]
        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        # forward pass with CFG applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

Aryan's avatar
Aryan committed
350

351
352
353
354
355
356
357
358
359
360
361
362
363
364
class PipelineLatentTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that has vae, e.g.
    equivalence of different input and output types, etc.
    """

    @property
    def image_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_params` in the child test class. "
            "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
        )

365
366
367
368
369
370
371
    @property
    def image_latents_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_latents_params` in the child test class. "
            "`image_latents_params` are tested for if passing latents directly are producing same results"
        )

372
373
374
    def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
        inputs = self.get_dummy_inputs(device, seed)

375
376
377
378
379
380
381
382
383
384
385
386
        def convert_to_pt(image):
            if isinstance(image, torch.Tensor):
                input_image = image
            elif isinstance(image, np.ndarray):
                input_image = VaeImageProcessor.numpy_to_pt(image)
            elif isinstance(image, PIL.Image.Image):
                input_image = VaeImageProcessor.pil_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pt(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {type(image)}")
            return input_image

387
388
389
390
391
392
393
394
395
396
397
398
399
400
        def convert_pt_to_type(image, input_image_type):
            if input_image_type == "pt":
                input_image = image
            elif input_image_type == "np":
                input_image = VaeImageProcessor.pt_to_numpy(image)
            elif input_image_type == "pil":
                input_image = VaeImageProcessor.pt_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pil(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {input_image_type}.")
            return input_image

        for image_param in self.image_params:
            if image_param in inputs.keys():
401
402
403
                inputs[image_param] = convert_pt_to_type(
                    convert_to_pt(inputs[image_param]).to(device), input_image_type
                )
404
405
406
407
408

        inputs["output_type"] = output_type

        return inputs

409
    def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
410
411
412
        self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)

    def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
413
414
415
416
417
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

418
419
420
421
422
423
424
425
426
        output_pt = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
        )[0]
        output_np = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
        )[0]
        output_pil = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
        )[0]
427
428

        max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
429
430
431
        self.assertLess(
            max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
        )
432
433

        max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
434
        self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453

    def test_pt_np_pil_inputs_equivalent(self):
        if len(self.image_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
        out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
        out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]

        max_diff = np.abs(out_input_pt - out_input_np).max()
        self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
        max_diff = np.abs(out_input_pil - out_input_np).max()
        self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")

454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
    def test_latents_input(self):
        if len(self.image_latents_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]

        vae = components["vae"]
        inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
        generator = inputs["generator"]
        for image_param in self.image_latents_params:
            if image_param in inputs.keys():
                inputs[image_param] = (
                    vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
                )
        out_latents_inputs = pipe(**inputs)[0]

        max_diff = np.abs(out - out_latents_inputs).max()
        self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")

479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
    def test_multi_vae(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        block_out_channels = pipe.vae.config.block_out_channels
        norm_num_groups = pipe.vae.config.norm_num_groups

        vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
        configs = [
            get_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_consistency_vae_config(block_out_channels, norm_num_groups),
            get_autoencoder_tiny_config(block_out_channels),
        ]

        out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

        for vae_cls, config in zip(vae_classes, configs):
            vae = vae_cls(**config)
            vae = vae.to(torch_device)
            components["vae"] = vae
            vae_pipe = self.pipeline_class(**components)
            out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

            assert out_vae_np.shape == out_np.shape

507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
@require_torch
class PipelineKarrasSchedulerTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
    equivalence of dict and tuple outputs, etc.
    """

    def test_karras_schedulers_shape(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        # make sure that PNDM does not need warm-up
        pipe.scheduler.register_to_config(skip_prk_steps=True)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 2

        if "strength" in inputs:
            inputs["num_inference_steps"] = 4
            inputs["strength"] = 0.5

        outputs = []
        for scheduler_enum in KarrasDiffusionSchedulers:
            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 5

            scheduler_cls = getattr(diffusers, scheduler_enum.name)
            pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
            output = pipe(**inputs)[0]
            outputs.append(output)

            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 2

        assert check_same_shape(outputs)


548
549
550
551
552
553
554
555
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

556
557
558
559
560
561
562
563
564
565
566
567
568
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
        ]
    )
569

570
571
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
572

573
574
    test_xformers_attention = True

575
576
577
578
579
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

599
600
601
602
603
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
604
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

628
629
630
631
632
633
634
635
636
637
638
639
640
641
    @property
    def callback_cfg_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `callback_cfg_params` in the child test class that requires to run test_callback_cfg. "
            "`callback_cfg_params` are the parameters that needs to be passed to the pipeline's callback "
            "function when dynamically adjusting `guidance_scale`. They are variables that require special"
            "treatment when `do_classifier_free_guidance` is `True`. `pipeline_params.py` provides some common"
            " sets of parameters such as `TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS`. If your pipeline's "
            "set of cfg arguments has minor changes from one of the common sets of cfg arguments, "
            "do not make modifications to the existing common sets of cfg arguments. I.e. for inpaint pipeine, you "
            " need to adjust batch size of `mask` and `masked_image_latents` so should set the attribute as"
            "`callback_cfg_params = TEXT_TO_IMAGE_CFG_PARAMS.union({'mask', 'masked_image_latents'})`"
        )

642
643
644
645
646
647
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

648
    def test_save_load_local(self, expected_max_difference=5e-4):
649
650
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
651
652
653
654
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

655
656
657
658
659
660
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

661
662
663
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

664
        with tempfile.TemporaryDirectory() as tmpdir:
665
            pipe.save_pretrained(tmpdir, safe_serialization=False)
666
667
668
669

            with CaptureLogger(logger) as cap_logger:
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)

670
671
672
673
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()

674
675
676
677
            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

678
679
680
681
682
683
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

684
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
685
        self.assertLess(max_diff, expected_max_difference)
686

687
688
689
690
691
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

692
693
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
709

710
711
712
713
714
715
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
716

717
        for param in self.required_optional_params:
718
719
720
721
722
723
724
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
725

726
    def test_inference_batch_consistent(self, batch_sizes=[2]):
727
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
728

729
    def _test_inference_batch_consistent(
Will Berman's avatar
Will Berman committed
730
        self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
731
    ):
732
733
734
735
736
737
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
738
        inputs["generator"] = self.get_generator(0)
739
740
741
742

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

743
744
        # prepare batched inputs
        batched_inputs = []
745
        for batch_size in batch_sizes:
746
747
            batched_input = {}
            batched_input.update(inputs)
748

749
750
751
            for name in self.batch_params:
                if name not in inputs:
                    continue
752

753
754
755
756
757
                value = inputs[name]
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
758

759
760
                    # make last batch super long
                    batched_input[name][-1] = 100 * "very long"
761

762
763
                else:
                    batched_input[name] = batch_size * [value]
764

Will Berman's avatar
Will Berman committed
765
            if batch_generator and "generator" in inputs:
766
                batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
767

768
769
            if "batch_size" in inputs:
                batched_input["batch_size"] = batch_size
770

771
            batched_inputs.append(batched_input)
772
773

        logger.setLevel(level=diffusers.logging.WARNING)
774
775
776
        for batch_size, batched_input in zip(batch_sizes, batched_inputs):
            output = pipe(**batched_input)
            assert len(output[0]) == batch_size
777

778
779
    def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
        self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
780
781

    def _test_inference_batch_single_identical(
782
        self,
783
        batch_size=2,
784
        expected_max_diff=1e-4,
785
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
786
    ):
787
788
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
789
790
791
792
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

793
794
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
795
796
797
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)
798
799
800
801
802
803

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
804
        batched_inputs.update(inputs)
805

806
807
808
        for name in self.batch_params:
            if name not in inputs:
                continue
809

810
811
812
813
814
            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"
815

816
817
            else:
                batched_inputs[name] = batch_size * [value]
818

819
820
        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
821

822
823
824
825
826
        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]
827
828

        output = pipe(**inputs)
829
        output_batch = pipe(**batched_inputs)
830

831
        assert output_batch[0].shape[0] == batch_size
832

YiYi Xu's avatar
YiYi Xu committed
833
        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
834
        assert max_diff < expected_max_diff
835

836
    def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4):
837
838
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
839
840
841
842
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

843
844
845
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

846
847
848
        generator_device = "cpu"
        output = pipe(**self.get_dummy_inputs(generator_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
849

850
        max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
851
        self.assertLess(max_diff, expected_max_difference)
852
853
854

    def test_components_function(self):
        init_components = self.get_dummy_components()
Kashif Rasul's avatar
Kashif Rasul committed
855
856
        init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))}

857
858
859
860
861
862
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
863
    def test_float16_inference(self, expected_max_diff=5e-2):
864
865
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
866
867
868
869
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

870
871
872
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

YiYi Xu's avatar
YiYi Xu committed
873
        components = self.get_dummy_components()
874
        pipe_fp16 = self.pipeline_class(**components)
875
876
877
878
        for component in pipe_fp16.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

879
        pipe_fp16.to(torch_device, torch.float16)
880
881
        pipe_fp16.set_progress_bar_config(disable=None)

882
883
884
885
886
887
888
889
890
891
892
893
894
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in inputs:
            inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)[0]

        fp16_inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in fp16_inputs:
            fp16_inputs["generator"] = self.get_generator(0)

        output_fp16 = pipe_fp16(**fp16_inputs)[0]
895

896
        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
897
        self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
898
899

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
900
    def test_save_load_float16(self, expected_max_diff=1e-2):
901
902
903
904
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
905

906
        pipe = self.pipeline_class(**components)
907
908
909
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
910
911
912
913
914
915
916
917
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
918
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
919
920
921
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
922
923
924
925
926
927
928
929
930
931
932
933
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]
934
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
935
936
937
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )
938

939
    def test_save_load_optional_components(self, expected_max_difference=1e-4):
940
941
942
943
944
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
945
946
947
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
948
949
950
951
952
953
954
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

Dhruv Nair's avatar
Dhruv Nair committed
955
956
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
957
958
959
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
960
            pipe.save_pretrained(tmpdir, safe_serialization=False)
961
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
962
963
964
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
965
966
967
968
969
970
971
972
973
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

Dhruv Nair's avatar
Dhruv Nair committed
974
        inputs = self.get_dummy_inputs(generator_device)
975
976
        output_loaded = pipe_loaded(**inputs)[0]

977
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
978
        self.assertLess(max_diff, expected_max_difference)
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
998
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
999

1000
1001
1002
1003
1004
1005
1006
1007
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

1008
        pipe.to(dtype=torch.float16)
1009
1010
1011
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

1012
1013
    def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
        self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
1014

1015
1016
1017
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
1018
1019
1020
1021
1022
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1023
1024
1025
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1026
1027
1028
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1029
1030
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1031
1032
1033
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
1034
        inputs = self.get_dummy_inputs(generator_device)
1035
1036
        output_with_slicing = pipe(**inputs)[0]

1037
        if test_max_difference:
1038
            max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max()
1039
            self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results")
1040

1041
        if test_mean_pixel_difference:
YiYi Xu's avatar
YiYi Xu committed
1042
            assert_mean_pixel_difference(to_np(output_with_slicing[0]), to_np(output_without_slicing[0]))
1043
1044

    @unittest.skipIf(
1045
1046
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
1047
    )
1048
    def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
1049
1050
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1051
1052
1053
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1054
1055
1056
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1057
1058
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1059
1060
1061
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089

        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")

    @unittest.skipIf(
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.17.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.17.0` or higher",
    )
    def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(generator_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_model_cpu_offload()
        inputs = self.get_dummy_inputs(generator_device)
1090
1091
        output_with_offload = pipe(**inputs)[0]

1092
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1093
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
1094
1095
1096
1097
1098
        offloaded_modules = [
            v
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
        ]
1099
1100
1101
1102
        (
            self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)),
            f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}",
        )
1103
1104
1105
1106
1107

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
1108
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
1109
1110
        self._test_xformers_attention_forwardGenerator_pass()

1111
1112
1113
    def _test_xformers_attention_forwardGenerator_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
    ):
1114
1115
1116
1117
1118
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1119
1120
1121
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1122
1123
1124
1125
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
1126
        output_without_offload = pipe(**inputs)[0]
1127
1128
1129
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )
1130
1131
1132

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
1133
        output_with_offload = pipe(**inputs)[0]
1134
1135
1136
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )
1137

Will Berman's avatar
Will Berman committed
1138
        if test_max_difference:
1139
            max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1140
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
1141

1142
1143
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
1166

1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

1189
                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
1190
1191
1192

                assert images.shape[0] == batch_size * num_images_per_prompt

1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
    def test_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
    def test_callback_inputs(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_subset(pipe, i, t, callback_kwargs):
            # interate over callback args
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        def callback_inputs_all(pipe, i, t, callback_kwargs):
            for tensor_name in pipe._callback_tensor_inputs:
                assert tensor_name in callback_kwargs

            # interate over callback args
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # Test passing in a subset
        inputs["callback_on_step_end"] = callback_inputs_subset
        inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        # Test passing in a everything
        inputs["callback_on_step_end"] = callback_inputs_all
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
            is_last = i == (pipe.num_timesteps - 1)
            if is_last:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs["callback_on_step_end"] = callback_inputs_change_tensor
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]
        assert output.abs().sum() == 0

    def test_callback_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_increase_guidance(pipe, i, t, callback_kwargs):
            pipe._guidance_scale += 1.0

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # use cfg guidance because some pipelines modify the shape of the latents
        # outside of the denoising loop
        inputs["guidance_scale"] = 2.0
        inputs["callback_on_step_end"] = callback_increase_guidance
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        _ = pipe(**inputs)[0]

        # we increase the guidance scale by 1.0 at every step
        # check that the guidance scale is increased by the number of scheduler timesteps
        # accounts for models that modify the number of inference steps based on strength
        assert pipe.guidance_scale == (inputs["guidance_scale"] + pipe.num_timesteps)

1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
    def test_StableDiffusionMixin_component(self):
        """Any pipeline that have LDMFuncMixin should have vae and unet components."""
        if not issubclass(self.pipeline_class, StableDiffusionMixin):
            return
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        self.assertTrue(hasattr(pipe, "vae") and isinstance(pipe.vae, (AutoencoderKL, AutoencoderTiny)))
        self.assertTrue(
            hasattr(pipe, "unet")
            and isinstance(pipe.unet, (UNet2DConditionModel, UNet3DConditionModel, I2VGenXLUNet, UNetMotionModel))
        )

1327

1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-pipeline-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def get_pipeline_components(self):
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)

        with tempfile.TemporaryDirectory() as tmpdir:
            dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2}
            vocab_path = os.path.join(tmpdir, "vocab.json")
            with open(vocab_path, "w") as f:
                json.dump(dummy_vocab, f)

            merges = "Ġ t\nĠt h"
            merges_path = os.path.join(tmpdir, "merges.txt")
            with open(merges_path, "w") as f:
                f.writelines(merges)
            tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def test_push_to_hub(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
1461
1462


1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
# For SDXL and its derivative pipelines (such as ControlNet), we have the text encoders
# and the tokenizers as optional components. So, we need to override the `test_save_load_optional_components()`
# test for all such pipelines. This requires us to use a custom `encode_prompt()` function.
class SDXLOptionalComponentsTesterMixin:
    def encode_prompt(
        self, tokenizers, text_encoders, prompt: str, num_images_per_prompt: int = 1, negative_prompt: str = None
    ):
        device = text_encoders[0].device

        if isinstance(prompt, str):
            prompt = [prompt]
        batch_size = len(prompt)

        prompt_embeds_list = []
        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            text_input_ids = text_inputs.input_ids

            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        if negative_prompt is None:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        else:
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            negative_prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True)
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        bs_embed, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # for classifier-free guidance
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        # for classifier-free guidance
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def _test_save_load_optional_components(self, expected_max_difference=1e-4):
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)

        tokenizer = components.pop("tokenizer")
        tokenizer_2 = components.pop("tokenizer_2")
        text_encoder = components.pop("text_encoder")
        text_encoder_2 = components.pop("text_encoder_2")

        tokenizers = [tokenizer, tokenizer_2] if tokenizer is not None else [tokenizer_2]
        text_encoders = [text_encoder, text_encoder_2] if text_encoder is not None else [text_encoder_2]
        prompt = inputs.pop("prompt")
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(tokenizers, text_encoders, prompt)
        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds
        inputs["pooled_prompt_embeds"] = pooled_prompt_embeds
        inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(generator_device)
        _ = inputs.pop("prompt")
        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds
        inputs["pooled_prompt_embeds"] = pooled_prompt_embeds
        inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)


1607
1608
1609
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
1610
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
1611
1612
1613
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
1614
    assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"