test_pipelines_common.py 100 KB
Newer Older
1
2
import gc
import inspect
3
4
import json
import os
5
6
import tempfile
import unittest
7
import uuid
Aryan's avatar
Aryan committed
8
from typing import Any, Callable, Dict, Union
9
10

import numpy as np
Anh71me's avatar
Anh71me committed
11
import PIL.Image
12
import torch
13
import torch.nn as nn
14
15
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
16
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
17

18
import diffusers
19
20
21
22
23
24
25
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    DDIMScheduler,
    DiffusionPipeline,
Álvaro Somoza's avatar
Álvaro Somoza committed
26
    KolorsPipeline,
27
    StableDiffusionPipeline,
28
    StableDiffusionXLPipeline,
29
30
    UNet2DConditionModel,
)
31
from diffusers.image_processor import VaeImageProcessor
hlky's avatar
hlky committed
32
from diffusers.loaders import FluxIPAdapterMixin, IPAdapterMixin
33
from diffusers.models.attention_processor import AttnProcessor
34
from diffusers.models.controlnets.controlnet_xs import UNetControlNetXSModel
35
36
37
38
from diffusers.models.unets.unet_3d_condition import UNet3DConditionModel
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.models.unets.unet_motion_model import UNetMotionModel
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
39
from diffusers.schedulers import KarrasDiffusionSchedulers
40
from diffusers.utils import logging
41
from diffusers.utils.import_utils import is_xformers_available
42
43
from diffusers.utils.testing_utils import (
    CaptureLogger,
44
45
    require_accelerate_version_greater,
    require_accelerator,
46
47
48
49
    require_torch,
    skip_mps,
    torch_device,
)
50

51
from ..models.autoencoders.vae import (
52
53
54
55
56
    get_asym_autoencoder_kl_config,
    get_autoencoder_kl_config,
    get_autoencoder_tiny_config,
    get_consistency_vae_config,
)
hlky's avatar
hlky committed
57
from ..models.transformers.test_models_transformer_flux import create_flux_ip_adapter_state_dict
58
59
60
61
from ..models.unets.test_models_unet_2d_condition import (
    create_ip_adapter_faceid_state_dict,
    create_ip_adapter_state_dict,
)
62
63
from ..others.test_utils import TOKEN, USER, is_staging_test

64

65
66
67
68
69
70
71
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


72
73
74
75
76
def check_same_shape(tensor_list):
    shapes = [tensor.shape for tensor in tensor_list]
    return all(shape == shapes[0] for shape in shapes[1:])


77
78
79
80
81
82
83
84
85
86
87
def check_qkv_fusion_matches_attn_procs_length(model, original_attn_processors):
    current_attn_processors = model.attn_processors
    return len(current_attn_processors) == len(original_attn_processors)


def check_qkv_fusion_processors_exist(model):
    current_attn_processors = model.attn_processors
    proc_names = [v.__class__.__name__ for _, v in current_attn_processors.items()]
    return all(p.startswith("Fused") for p in proc_names)


88
89
90
91
92
93
class SDFunctionTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that inherit from StableDiffusionMixin, e.g. vae_slicing, vae_tiling, freeu, etc.
    """

94
    def test_vae_slicing(self, image_count=4):
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        # components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:  # fix batch size mismatch in I2V_Gen pipeline
            inputs["image"] = [inputs["image"]] * image_count
        output_1 = pipe(**inputs)

        # make sure sliced vae decode yields the same result
        pipe.enable_vae_slicing()
        inputs = self.get_dummy_inputs(device)
        inputs["prompt"] = [inputs["prompt"]] * image_count
        if "image" in inputs:
            inputs["image"] = [inputs["image"]] * image_count
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)

        assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2

    def test_vae_tiling(self):
        components = self.get_dummy_components()

        # make sure here that pndm scheduler skips prk
        if "safety_checker" in components:
            components["safety_checker"] = None
        pipe = self.pipeline_class(**components)
126
        pipe = pipe.to(torch_device)
127
128
129
130
131
132
133
134
135
136
137
138
139
140
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False

        # Test that tiled decode at 512x512 yields the same result as the non-tiled decode
        output_1 = pipe(**inputs)[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
        output_2 = pipe(**inputs)[0]

141
        assert np.abs(to_np(output_2) - to_np(output_1)).max() < 5e-1
142
143

        # test that tiled decode works with various shapes
144
        shapes = [(1, 4, 73, 97), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
145
146
147
148
        with torch.no_grad():
            for shape in shapes:
                zeros = torch.zeros(shape).to(torch_device)
                pipe.vae.decode(zeros)
149

150
    # MPS currently doesn't support ComplexFloats, which are required for FreeU - see https://github.com/huggingface/diffusers/issues/7569.
151
    @skip_mps
152
    def test_freeu(self):
153
154
155
156
157
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

158
        # Normal inference
159
160
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
161
        inputs["output_type"] = "np"
162
163
        output = pipe(**inputs)[0]

164
        # FreeU-enabled inference
165
166
167
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
168
        inputs["output_type"] = "np"
169
170
        output_freeu = pipe(**inputs)[0]

171
        # FreeU-disabled inference
172
173
174
175
176
177
178
179
        pipe.disable_freeu()
        freeu_keys = {"s1", "s2", "b1", "b2"}
        for upsample_block in pipe.unet.up_blocks:
            for key in freeu_keys:
                assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."

        inputs = self.get_dummy_inputs(torch_device)
        inputs["return_dict"] = False
Dhruv Nair's avatar
Dhruv Nair committed
180
        inputs["output_type"] = "np"
181
        output_no_freeu = pipe(**inputs)[0]
182
183
184
185

        assert not np.allclose(
            output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]
        ), "Enabling of FreeU should lead to different results."
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        assert np.allclose(
            output, output_no_freeu, atol=1e-2
        ), f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}."

    def test_fused_qkv_projections(self):
        device = "cpu"  # ensure determinism for the device-dependent torch.Generator
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image = pipe(**inputs)[0]
        original_image_slice = image[0, -3:, -3:, -1]

        pipe.fuse_qkv_projections()
203
204
205
206
207
208
209
210
211
212
213
214
215
        for _, component in pipe.components.items():
            if (
                isinstance(component, nn.Module)
                and hasattr(component, "original_attn_processors")
                and component.original_attn_processors is not None
            ):
                assert check_qkv_fusion_processors_exist(
                    component
                ), "Something wrong with the fused attention processors. Expected all the attention processors to be fused."
                assert check_qkv_fusion_matches_attn_procs_length(
                    component, component.original_attn_processors
                ), "Something wrong with the attention processors concerning the fused QKV projections."

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_fused = pipe(**inputs)[0]
        image_slice_fused = image_fused[0, -3:, -3:, -1]

        pipe.unfuse_qkv_projections()
        inputs = self.get_dummy_inputs(device)
        inputs["return_dict"] = False
        image_disabled = pipe(**inputs)[0]
        image_slice_disabled = image_disabled[0, -3:, -3:, -1]

        assert np.allclose(
            original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2
        ), "Fusion of QKV projections shouldn't affect the outputs."
        assert np.allclose(
            image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
        assert np.allclose(
            original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2
        ), "Original outputs should match when fused QKV projections are disabled."


Aryan's avatar
Aryan committed
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
class IPAdapterTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for pipelines that support IP Adapters.
    """

    def test_pipeline_signature(self):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        assert issubclass(self.pipeline_class, IPAdapterMixin)
        self.assertIn(
            "ip_adapter_image",
            parameters,
            "`ip_adapter_image` argument must be supported by the `__call__` method",
        )
        self.assertIn(
            "ip_adapter_image_embeds",
            parameters,
            "`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
        )

    def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
        return torch.randn((2, 1, cross_attention_dim), device=torch_device)

262
263
264
    def _get_dummy_faceid_image_embeds(self, cross_attention_dim: int = 32):
        return torch.randn((2, 1, 1, cross_attention_dim), device=torch_device)

265
266
267
268
269
    def _get_dummy_masks(self, input_size: int = 64):
        _masks = torch.zeros((1, 1, input_size, input_size), device=torch_device)
        _masks[0, :, :, : int(input_size / 2)] = 1
        return _masks

Aryan's avatar
Aryan committed
270
271
272
273
274
275
276
277
278
    def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters
        if "image" in parameters.keys() and "strength" in parameters.keys():
            inputs["num_inference_steps"] = 4

        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

279
280
281
282
283
284
285
286
287
    def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
        r"""Tests for IP-Adapter.

        The following scenarios are tested:
          - Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
          - Multi IP-Adapter with scale=0 should produce same output as no IP-Adapter.
          - Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
          - Multi IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
        """
288
289
290
291
        # Raising the tolerance for this test when it's run on a CPU because we
        # compare against static slices and that can be shaky (with a VVVV low probability).
        expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff

Aryan's avatar
Aryan committed
292
293
294
295
296
297
298
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
299
300
301
302
        if expected_pipe_slice is None:
            output_without_adapter = pipe(**inputs)[0]
        else:
            output_without_adapter = expected_pipe_slice
Aryan's avatar
Aryan committed
303

304
        # 1. Single IP-Adapter test cases
Aryan's avatar
Aryan committed
305
306
307
308
309
310
311
312
        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
313
314
        if expected_pipe_slice is not None:
            output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
315
316
317
318
319
320

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
321
322
        if expected_pipe_slice is not None:
            output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
323
324
325
326
327
328
329
330
331
332
333
334
335

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
        )

336
        # 2. Multi IP-Adapter test cases
Aryan's avatar
Aryan committed
337
338
339
340
341
342
343
344
345
        adapter_state_dict_1 = create_ip_adapter_state_dict(pipe.unet)
        adapter_state_dict_2 = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])

        # forward pass with multi ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([0.0, 0.0])
        output_without_multi_adapter_scale = pipe(**inputs)[0]
346
347
        if expected_pipe_slice is not None:
            output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
348
349
350
351
352
353

        # forward pass with multi ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
        pipe.set_ip_adapter_scale([42.0, 42.0])
        output_with_multi_adapter_scale = pipe(**inputs)[0]
354
355
        if expected_pipe_slice is not None:
            output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
Aryan's avatar
Aryan committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371

        max_diff_without_multi_adapter_scale = np.abs(
            output_without_multi_adapter_scale - output_without_adapter
        ).max()
        max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
        self.assertLess(
            max_diff_without_multi_adapter_scale,
            expected_max_diff,
            "Output without multi-ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_multi_adapter_scale,
            1e-2,
            "Output with multi-ip-adapter scale must be different from normal inference",
        )

372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
    def test_ip_adapter_cfg(self, expected_max_diff: float = 1e-4):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        if "guidance_scale" not in parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)
        pipe.set_ip_adapter_scale(1.0)

        # forward pass with CFG not applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)[0].unsqueeze(0)]
        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        # forward pass with CFG applied
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
    def test_ip_adapter_masks(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
        sample_size = pipe.unet.config.get("sample_size", 32)
        block_out_channels = pipe.vae.config.get("block_out_channels", [128, 256, 512, 512])
        input_size = sample_size * (2 ** (len(block_out_channels) - 1))

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]
        output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()

        adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter and masks, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter and masks, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
        inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
        )

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
    def test_ip_adapter_faceid(self, expected_max_diff: float = 1e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        output_without_adapter = pipe(**inputs)[0]
        output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()

        adapter_state_dict = create_ip_adapter_faceid_state_dict(pipe.unet)
        pipe.unet._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
        )

Aryan's avatar
Aryan committed
486

hlky's avatar
hlky committed
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
class FluxIPAdapterTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for pipelines that support IP Adapters.
    """

    def test_pipeline_signature(self):
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

        assert issubclass(self.pipeline_class, FluxIPAdapterMixin)
        self.assertIn(
            "ip_adapter_image",
            parameters,
            "`ip_adapter_image` argument must be supported by the `__call__` method",
        )
        self.assertIn(
            "ip_adapter_image_embeds",
            parameters,
            "`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
        )

    def _get_dummy_image_embeds(self, image_embed_dim: int = 768):
        return torch.randn((1, 1, image_embed_dim), device=torch_device)

    def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
        inputs["negative_prompt"] = ""
        inputs["true_cfg_scale"] = 4.0
        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

    def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
        r"""Tests for IP-Adapter.

        The following scenarios are tested:
          - Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
          - Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
        """
        # Raising the tolerance for this test when it's run on a CPU because we
        # compare against static slices and that can be shaky (with a VVVV low probability).
        expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components).to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        image_embed_dim = pipe.transformer.config.pooled_projection_dim

        # forward pass without ip adapter
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        if expected_pipe_slice is None:
            output_without_adapter = pipe(**inputs)[0]
        else:
            output_without_adapter = expected_pipe_slice

        adapter_state_dict = create_flux_ip_adapter_state_dict(pipe.transformer)
        pipe.transformer._load_ip_adapter_weights(adapter_state_dict)

        # forward pass with single ip adapter, but scale=0 which should have no effect
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        pipe.set_ip_adapter_scale(0.0)
        output_without_adapter_scale = pipe(**inputs)[0]
        if expected_pipe_slice is not None:
            output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()

        # forward pass with single ip adapter, but with scale of adapter weights
        inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
        inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
        pipe.set_ip_adapter_scale(42.0)
        output_with_adapter_scale = pipe(**inputs)[0]
        if expected_pipe_slice is not None:
            output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()

        max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
        max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()

        self.assertLess(
            max_diff_without_adapter_scale,
            expected_max_diff,
            "Output without ip-adapter must be same as normal inference",
        )
        self.assertGreater(
            max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
        )


575
576
577
578
579
580
581
582
583
584
585
586
587
588
class PipelineLatentTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that has vae, e.g.
    equivalence of different input and output types, etc.
    """

    @property
    def image_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_params` in the child test class. "
            "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
        )

589
590
591
592
593
594
595
    @property
    def image_latents_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_latents_params` in the child test class. "
            "`image_latents_params` are tested for if passing latents directly are producing same results"
        )

596
597
598
    def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
        inputs = self.get_dummy_inputs(device, seed)

599
600
601
602
603
604
605
606
607
608
609
610
        def convert_to_pt(image):
            if isinstance(image, torch.Tensor):
                input_image = image
            elif isinstance(image, np.ndarray):
                input_image = VaeImageProcessor.numpy_to_pt(image)
            elif isinstance(image, PIL.Image.Image):
                input_image = VaeImageProcessor.pil_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pt(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {type(image)}")
            return input_image

611
612
613
614
615
616
617
618
619
620
621
622
623
624
        def convert_pt_to_type(image, input_image_type):
            if input_image_type == "pt":
                input_image = image
            elif input_image_type == "np":
                input_image = VaeImageProcessor.pt_to_numpy(image)
            elif input_image_type == "pil":
                input_image = VaeImageProcessor.pt_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pil(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {input_image_type}.")
            return input_image

        for image_param in self.image_params:
            if image_param in inputs.keys():
625
626
627
                inputs[image_param] = convert_pt_to_type(
                    convert_to_pt(inputs[image_param]).to(device), input_image_type
                )
628
629
630
631
632

        inputs["output_type"] = output_type

        return inputs

633
    def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
634
635
636
        self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)

    def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
637
638
639
640
641
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

642
643
644
645
646
647
648
649
650
        output_pt = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
        )[0]
        output_np = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
        )[0]
        output_pil = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
        )[0]
651
652

        max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
653
654
655
        self.assertLess(
            max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
        )
656
657

        max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
658
        self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677

    def test_pt_np_pil_inputs_equivalent(self):
        if len(self.image_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
        out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
        out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]

        max_diff = np.abs(out_input_pt - out_input_np).max()
        self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
        max_diff = np.abs(out_input_pil - out_input_np).max()
        self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")

678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
    def test_latents_input(self):
        if len(self.image_latents_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]

        vae = components["vae"]
        inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
        generator = inputs["generator"]
        for image_param in self.image_latents_params:
            if image_param in inputs.keys():
                inputs[image_param] = (
                    vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
                )
        out_latents_inputs = pipe(**inputs)[0]

        max_diff = np.abs(out - out_latents_inputs).max()
        self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")

703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
    def test_multi_vae(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        block_out_channels = pipe.vae.config.block_out_channels
        norm_num_groups = pipe.vae.config.norm_num_groups

        vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
        configs = [
            get_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
            get_consistency_vae_config(block_out_channels, norm_num_groups),
            get_autoencoder_tiny_config(block_out_channels),
        ]

        out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

        for vae_cls, config in zip(vae_classes, configs):
            vae = vae_cls(**config)
            vae = vae.to(torch_device)
            components["vae"] = vae
            vae_pipe = self.pipeline_class(**components)
            out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]

            assert out_vae_np.shape == out_np.shape

731

732
733
734
735
736
737
@require_torch
class PipelineFromPipeTesterMixin:
    @property
    def original_pipeline_class(self):
        if "xl" in self.pipeline_class.__name__.lower():
            original_pipeline_class = StableDiffusionXLPipeline
Álvaro Somoza's avatar
Álvaro Somoza committed
738
739
        elif "kolors" in self.pipeline_class.__name__.lower():
            original_pipeline_class = KolorsPipeline
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
        else:
            original_pipeline_class = StableDiffusionPipeline

        return original_pipeline_class

    def get_dummy_inputs_pipe(self, device, seed=0):
        inputs = self.get_dummy_inputs(device, seed=seed)
        inputs["output_type"] = "np"
        inputs["return_dict"] = False
        return inputs

    def get_dummy_inputs_for_pipe_original(self, device, seed=0):
        inputs = {}
        for k, v in self.get_dummy_inputs_pipe(device, seed=seed).items():
            if k in set(inspect.signature(self.original_pipeline_class.__call__).parameters.keys()):
                inputs[k] = v
        return inputs

    def test_from_pipe_consistent_config(self):
        if self.original_pipeline_class == StableDiffusionPipeline:
            original_repo = "hf-internal-testing/tiny-stable-diffusion-pipe"
            original_kwargs = {"requires_safety_checker": False}
        elif self.original_pipeline_class == StableDiffusionXLPipeline:
            original_repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
            original_kwargs = {"requires_aesthetics_score": True, "force_zeros_for_empty_prompt": False}
Álvaro Somoza's avatar
Álvaro Somoza committed
765
766
767
        elif self.original_pipeline_class == KolorsPipeline:
            original_repo = "hf-internal-testing/tiny-kolors-pipe"
            original_kwargs = {"force_zeros_for_empty_prompt": False}
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
        else:
            raise ValueError(
                "original_pipeline_class must be either StableDiffusionPipeline or StableDiffusionXLPipeline"
            )

        # create original_pipeline_class(sd/sdxl)
        pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)

        # original_pipeline_class(sd/sdxl) -> pipeline_class
        pipe_components = self.get_dummy_components()
        pipe_additional_components = {}
        for name, component in pipe_components.items():
            if name not in pipe_original.components:
                pipe_additional_components[name] = component

        pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)

        # pipeline_class -> original_pipeline_class(sd/sdxl)
        original_pipe_additional_components = {}
        for name, component in pipe_original.components.items():
            if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
                original_pipe_additional_components[name] = component

        pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)

        # compare the config
        original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
        original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
        assert original_config_2 == original_config

    def test_from_pipe_consistent_forward_pass(self, expected_max_diff=1e-3):
        components = self.get_dummy_components()
        original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)

        # pipeline components that are also expected to be in the original pipeline
        original_pipe_components = {}
        # additional components that are not in the pipeline, but expected in the original pipeline
        original_pipe_additional_components = {}
        # additional components that are in the pipeline, but not expected in the original pipeline
        current_pipe_additional_components = {}

        for name, component in components.items():
            if name in original_expected_modules:
                original_pipe_components[name] = component
            else:
                current_pipe_additional_components[name] = component
        for name in original_expected_modules:
            if name not in original_pipe_components:
                if name in self.original_pipeline_class._optional_components:
                    original_pipe_additional_components[name] = None
                else:
                    raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")

        pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
        for component in pipe_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe_original.to(torch_device)
        pipe_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
        output_original = pipe_original(**inputs)[0]

        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output = pipe(**inputs)[0]

        pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
        pipe_from_original.to(torch_device)
        pipe_from_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output_from_original = pipe_from_original(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
        self.assertLess(
            max_diff,
            expected_max_diff,
            "The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
        )

        inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
        output_original_2 = pipe_original(**inputs)[0]

        max_diff = np.abs(to_np(output_original) - to_np(output_original_2)).max()
        self.assertLess(max_diff, expected_max_diff, "`from_pipe` should not change the output of original pipeline.")

        for component in pipe_original.components.values():
            if hasattr(component, "attn_processors"):
                assert all(
                    type(proc) == AttnProcessor for proc in component.attn_processors.values()
                ), "`from_pipe` changed the attention processor in original pipeline."

864
865
    @require_accelerator
    @require_accelerate_version_greater("0.14.0")
866
867
868
869
870
871
    def test_from_pipe_consistent_forward_pass_cpu_offload(self, expected_max_diff=1e-3):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
872
        pipe.enable_model_cpu_offload(device=torch_device)
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output = pipe(**inputs)[0]

        original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)
        # pipeline components that are also expected to be in the original pipeline
        original_pipe_components = {}
        # additional components that are not in the pipeline, but expected in the original pipeline
        original_pipe_additional_components = {}
        # additional components that are in the pipeline, but not expected in the original pipeline
        current_pipe_additional_components = {}
        for name, component in components.items():
            if name in original_expected_modules:
                original_pipe_components[name] = component
            else:
                current_pipe_additional_components[name] = component
        for name in original_expected_modules:
            if name not in original_pipe_components:
                if name in self.original_pipeline_class._optional_components:
                    original_pipe_additional_components[name] = None
                else:
                    raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")

        pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
        for component in pipe_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe_original.set_progress_bar_config(disable=None)
901

902
        pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
903
904
905
906
        for component in pipe_from_original.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

907
        pipe_from_original.enable_model_cpu_offload(device=torch_device)
908
909
910
911
912
913
914
915
916
917
918
919
        pipe_from_original.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs_pipe(torch_device)
        output_from_original = pipe_from_original(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
        self.assertLess(
            max_diff,
            expected_max_diff,
            "The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
        )


920
921
922
923
924
925
926
927
@require_torch
class PipelineKarrasSchedulerTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
    equivalence of dict and tuple outputs, etc.
    """

928
929
930
    def test_karras_schedulers_shape(
        self, num_inference_steps_for_strength=4, num_inference_steps_for_strength_for_iterations=5
    ):
931
932
933
934
935
936
937
938
939
940
941
942
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        # make sure that PNDM does not need warm-up
        pipe.scheduler.register_to_config(skip_prk_steps=True)

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        inputs = self.get_dummy_inputs(torch_device)
        inputs["num_inference_steps"] = 2

        if "strength" in inputs:
943
            inputs["num_inference_steps"] = num_inference_steps_for_strength
944
945
946
947
948
            inputs["strength"] = 0.5

        outputs = []
        for scheduler_enum in KarrasDiffusionSchedulers:
            if "KDPM2" in scheduler_enum.name:
949
                inputs["num_inference_steps"] = num_inference_steps_for_strength_for_iterations
950
951
952
953
954
955
956
957
958
959
960
961

            scheduler_cls = getattr(diffusers, scheduler_enum.name)
            pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
            output = pipe(**inputs)[0]
            outputs.append(output)

            if "KDPM2" in scheduler_enum.name:
                inputs["num_inference_steps"] = 2

        assert check_same_shape(outputs)


962
963
964
965
966
967
968
969
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

970
971
972
973
974
975
976
977
978
979
980
981
982
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
        ]
    )
983

984
985
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
986

987
988
    test_xformers_attention = True

989
990
991
992
993
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

1013
1014
1015
1016
1017
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
1018
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

1042
1043
1044
1045
1046
1047
1048
1049
1050
    @property
    def callback_cfg_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `callback_cfg_params` in the child test class that requires to run test_callback_cfg. "
            "`callback_cfg_params` are the parameters that needs to be passed to the pipeline's callback "
            "function when dynamically adjusting `guidance_scale`. They are variables that require special"
            "treatment when `do_classifier_free_guidance` is `True`. `pipeline_params.py` provides some common"
            " sets of parameters such as `TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS`. If your pipeline's "
            "set of cfg arguments has minor changes from one of the common sets of cfg arguments, "
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1051
            "do not make modifications to the existing common sets of cfg arguments. I.e. for inpaint pipeline, you "
1052
1053
1054
1055
            " need to adjust batch size of `mask` and `masked_image_latents` so should set the attribute as"
            "`callback_cfg_params = TEXT_TO_IMAGE_CFG_PARAMS.union({'mask', 'masked_image_latents'})`"
        )

1056
1057
1058
1059
1060
1061
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

1062
1063
1064
1065
1066
1067
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1068
    def test_save_load_local(self, expected_max_difference=5e-4):
1069
1070
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1071
1072
1073
1074
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1075
1076
1077
1078
1079
1080
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

1081
1082
1083
        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

1084
        with tempfile.TemporaryDirectory() as tmpdir:
1085
            pipe.save_pretrained(tmpdir, safe_serialization=False)
1086
1087
1088
1089

            with CaptureLogger(logger) as cap_logger:
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)

1090
1091
1092
1093
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()

1094
1095
1096
1097
            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

1098
1099
1100
1101
1102
1103
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

1104
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1105
        self.assertLess(max_diff, expected_max_difference)
1106

1107
1108
1109
1110
1111
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

1112
1113
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
1129

1130
1131
1132
1133
1134
1135
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
1136

1137
        for param in self.required_optional_params:
1138
1139
1140
1141
1142
1143
1144
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
1145

1146
    def test_inference_batch_consistent(self, batch_sizes=[2]):
1147
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
1148

1149
    def _test_inference_batch_consistent(
Will Berman's avatar
Will Berman committed
1150
        self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
1151
    ):
1152
1153
1154
1155
1156
1157
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
1158
        inputs["generator"] = self.get_generator(0)
1159
1160
1161
1162

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

1163
1164
        # prepare batched inputs
        batched_inputs = []
1165
        for batch_size in batch_sizes:
1166
1167
            batched_input = {}
            batched_input.update(inputs)
1168

1169
1170
1171
            for name in self.batch_params:
                if name not in inputs:
                    continue
1172

1173
1174
1175
1176
1177
                value = inputs[name]
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
1178

1179
1180
                    # make last batch super long
                    batched_input[name][-1] = 100 * "very long"
1181

1182
1183
                else:
                    batched_input[name] = batch_size * [value]
1184

Will Berman's avatar
Will Berman committed
1185
            if batch_generator and "generator" in inputs:
1186
                batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
1187

1188
1189
            if "batch_size" in inputs:
                batched_input["batch_size"] = batch_size
1190

1191
            batched_inputs.append(batched_input)
1192
1193

        logger.setLevel(level=diffusers.logging.WARNING)
1194
1195
1196
        for batch_size, batched_input in zip(batch_sizes, batched_inputs):
            output = pipe(**batched_input)
            assert len(output[0]) == batch_size
1197

1198
1199
    def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
        self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
1200
1201

    def _test_inference_batch_single_identical(
1202
        self,
1203
        batch_size=2,
1204
        expected_max_diff=1e-4,
1205
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
1206
    ):
1207
1208
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1209
1210
1211
1212
        for components in pipe.components.values():
            if hasattr(components, "set_default_attn_processor"):
                components.set_default_attn_processor()

1213
1214
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
1215
1216
1217
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is has been used in self.get_dummy_inputs
        inputs["generator"] = self.get_generator(0)
1218
1219
1220
1221
1222
1223

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
1224
        batched_inputs.update(inputs)
1225

1226
1227
1228
        for name in self.batch_params:
            if name not in inputs:
                continue
1229

1230
1231
1232
1233
1234
            value = inputs[name]
            if name == "prompt":
                len_prompt = len(value)
                batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
                batched_inputs[name][-1] = 100 * "very long"
1235

1236
1237
            else:
                batched_inputs[name] = batch_size * [value]
1238

1239
1240
        if "generator" in inputs:
            batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
1241

1242
1243
1244
1245
1246
        if "batch_size" in inputs:
            batched_inputs["batch_size"] = batch_size

        for arg in additional_params_copy_to_batched_inputs:
            batched_inputs[arg] = inputs[arg]
1247
1248

        output = pipe(**inputs)
1249
        output_batch = pipe(**batched_inputs)
1250

1251
        assert output_batch[0].shape[0] == batch_size
1252

YiYi Xu's avatar
YiYi Xu committed
1253
        max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
1254
        assert max_diff < expected_max_diff
1255

1256
    def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4):
1257
1258
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1259
1260
1261
1262
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1263
1264
1265
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1266
        generator_device = "cpu"
1267
1268
1269
1270
1271
        if expected_slice is None:
            output = pipe(**self.get_dummy_inputs(generator_device))[0]
        else:
            output = expected_slice

1272
        output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
1273

1274
1275
1276
1277
1278
1279
1280
1281
        if expected_slice is None:
            max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
        else:
            if output_tuple.ndim != 5:
                max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max()
            else:
                max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max()

1282
        self.assertLess(max_diff, expected_max_difference)
1283
1284
1285

    def test_components_function(self):
        init_components = self.get_dummy_components()
Kashif Rasul's avatar
Kashif Rasul committed
1286
1287
        init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))}

1288
1289
1290
1291
1292
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

1293
1294
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
1295
    def test_float16_inference(self, expected_max_diff=5e-2):
1296
1297
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1298
1299
1300
1301
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1302
1303
1304
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

YiYi Xu's avatar
YiYi Xu committed
1305
        components = self.get_dummy_components()
1306
        pipe_fp16 = self.pipeline_class(**components)
1307
1308
1309
1310
        for component in pipe_fp16.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

1311
        pipe_fp16.to(torch_device, torch.float16)
1312
1313
        pipe_fp16.set_progress_bar_config(disable=None)

1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
        inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in inputs:
            inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)[0]

        fp16_inputs = self.get_dummy_inputs(torch_device)
        # Reset generator in case it is used inside dummy inputs
        if "generator" in fp16_inputs:
            fp16_inputs["generator"] = self.get_generator(0)

        output_fp16 = pipe_fp16(**fp16_inputs)[0]
1327

1328
        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
1329
        self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
1330

1331
1332
    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
1333
    def test_save_load_float16(self, expected_max_diff=1e-2):
1334
1335
1336
1337
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
1338

1339
        pipe = self.pipeline_class(**components)
1340
1341
1342
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1343
1344
1345
1346
1347
1348
1349
1350
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
1351
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
1352
1353
1354
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]
1367
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1368
1369
1370
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )
1371

1372
    def test_save_load_optional_components(self, expected_max_difference=1e-4):
1373
1374
1375
1376
1377
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1378
1379
1380
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1381
1382
1383
1384
1385
1386
1387
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

Dhruv Nair's avatar
Dhruv Nair committed
1388
1389
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1390
1391
1392
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
1393
            pipe.save_pretrained(tmpdir, safe_serialization=False)
1394
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
1395
1396
1397
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
1398
1399
1400
1401
1402
1403
1404
1405
1406
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

Dhruv Nair's avatar
Dhruv Nair committed
1407
        inputs = self.get_dummy_inputs(generator_device)
1408
1409
        output_loaded = pipe_loaded(**inputs)[0]

1410
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
1411
        self.assertLess(max_diff, expected_max_difference)
1412

1413
    @require_accelerator
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

1426
        pipe.to(torch_device)
1427
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
1428
        self.assertTrue(all(device == torch_device for device in model_devices))
1429

1430
        output_cuda = pipe(**self.get_dummy_inputs(torch_device))[0]
1431
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
1432

1433
1434
1435
1436
1437
1438
1439
1440
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

1441
        pipe.to(dtype=torch.float16)
1442
1443
1444
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

1445
1446
    def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
        self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
1447

1448
1449
1450
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
1451
1452
1453
1454
1455
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1456
1457
1458
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1459
1460
1461
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1462
1463
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1464
1465
1466
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
1467
        inputs = self.get_dummy_inputs(generator_device)
1468
1469
1470
1471
1472
        output_with_slicing1 = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=2)
        inputs = self.get_dummy_inputs(generator_device)
        output_with_slicing2 = pipe(**inputs)[0]
1473

1474
        if test_max_difference:
1475
1476
1477
1478
1479
1480
1481
            max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
            max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
            self.assertLess(
                max(max_diff1, max_diff2),
                expected_max_diff,
                "Attention slicing should not affect the inference results",
            )
1482

1483
        if test_mean_pixel_difference:
1484
1485
            assert_mean_pixel_difference(to_np(output_with_slicing1[0]), to_np(output_without_slicing[0]))
            assert_mean_pixel_difference(to_np(output_with_slicing2[0]), to_np(output_without_slicing[0]))
1486

1487
1488
    @require_accelerator
    @require_accelerate_version_greater("0.14.0")
1489
    def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
1490
1491
        import accelerate

1492
1493
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1494
1495
1496
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1497
1498
1499
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

1500
1501
        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
1502
1503
        output_without_offload = pipe(**inputs)[0]

1504
1505
        pipe.enable_sequential_cpu_offload(device=torch_device)
        assert pipe._execution_device.type == torch_device
1506
1507
1508
1509
1510
1511
1512

        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")

1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
        offloaded_modules = {
            k: v
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
        }
        # 1. all offloaded modules should be saved to cpu and moved to meta device
        self.assertTrue(
            all(v.device.type == "meta" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
        )
        # 2. all offloaded modules should have hook installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. all offloaded modules should have correct hooks installed, should be either one of these two
        #    - `AlignDevicesHook`
        #    - a SequentialHook` that contains `AlignDevicesHook`
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook"):
                if isinstance(v._hf_hook, accelerate.hooks.SequentialHook):
                    # if it is a `SequentialHook`, we loop through its `hooks` attribute to check if it only contains `AlignDevicesHook`
                    for hook in v._hf_hook.hooks:
                        if not isinstance(hook, accelerate.hooks.AlignDevicesHook):
                            offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0])
                elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
                    offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
        )

1548
1549
    @require_accelerator
    @require_accelerate_version_greater("0.17.0")
1550
    def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
1551
1552
        import accelerate

1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(generator_device)
        output_without_offload = pipe(**inputs)[0]

1567
1568
        pipe.enable_model_cpu_offload(device=torch_device)
        assert pipe._execution_device.type == torch_device
1569

1570
        inputs = self.get_dummy_inputs(generator_device)
1571
1572
        output_with_offload = pipe(**inputs)[0]

1573
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1574
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
1575
1576
1577
1578

        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
        offloaded_modules = {
            k: v
1579
1580
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
        }
        # 1. check if all offloaded modules are saved to cpu
        self.assertTrue(
            all(v.device.type == "cpu" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
        )
        # 2. check if all offloaded modules have hooks installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. check if all offloaded modules have correct type of hooks installed, should be `CpuOffload`
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
                offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1601
        )
1602

1603
1604
    @require_accelerator
    @require_accelerate_version_greater("0.17.0")
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
    def test_cpu_offload_forward_pass_twice(self, expected_max_diff=2e-4):
        import accelerate

        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.set_progress_bar_config(disable=None)

1618
        pipe.enable_model_cpu_offload(device=torch_device)
1619
1620
1621
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

1622
        pipe.enable_model_cpu_offload(device=torch_device)
1623
1624
1625
1626
1627
1628
1629
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload_twice = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
        self.assertLess(
            max_diff, expected_max_diff, "running CPU offloading 2nd time should not affect the inference results"
        )
1630
1631

        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
YiYi Xu's avatar
YiYi Xu committed
1632
1633
        offloaded_modules = {
            k: v
1634
1635
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
YiYi Xu's avatar
YiYi Xu committed
1636
        }
1637
        # 1. check if all offloaded modules are saved to cpu
YiYi Xu's avatar
YiYi Xu committed
1638
1639
1640
        self.assertTrue(
            all(v.device.type == "cpu" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
1641
        )
1642
1643
1644
1645
1646
1647
        # 2. check if all offloaded modules have hooks installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. check if all offloaded modules have correct type of hooks installed, should be `CpuOffload`
YiYi Xu's avatar
YiYi Xu committed
1648
1649
1650
1651
1652
1653
1654
1655
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
            if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
                offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)

        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1656
1657
        )

1658
1659
    @require_accelerator
    @require_accelerate_version_greater("0.14.0")
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
    def test_sequential_offload_forward_pass_twice(self, expected_max_diff=2e-4):
        import accelerate

        generator_device = "cpu"
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.set_progress_bar_config(disable=None)

1673
        pipe.enable_sequential_cpu_offload(device=torch_device)
1674
1675
1676
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload = pipe(**inputs)[0]

1677
        pipe.enable_sequential_cpu_offload(device=torch_device)
1678
1679
1680
1681
1682
1683
1684
        inputs = self.get_dummy_inputs(generator_device)
        output_with_offload_twice = pipe(**inputs)[0]

        max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
        self.assertLess(
            max_diff, expected_max_diff, "running sequential offloading second time should have the inference results"
        )
1685
1686

        # make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
YiYi Xu's avatar
YiYi Xu committed
1687
1688
        offloaded_modules = {
            k: v
1689
1690
            for k, v in pipe.components.items()
            if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
YiYi Xu's avatar
YiYi Xu committed
1691
        }
1692
        # 1. check if all offloaded modules are moved to meta device
YiYi Xu's avatar
YiYi Xu committed
1693
1694
1695
        self.assertTrue(
            all(v.device.type == "meta" for v in offloaded_modules.values()),
            f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
1696
        )
1697
1698
1699
1700
1701
1702
1703
1704
        # 2. check if all offloaded modules have hook installed
        self.assertTrue(
            all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
            f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
        )
        # 3. check if all offloaded modules have correct hooks installed, should be either one of these two
        #    - `AlignDevicesHook`
        #    - a SequentialHook` that contains `AlignDevicesHook`
YiYi Xu's avatar
YiYi Xu committed
1705
1706
        offloaded_modules_with_incorrect_hooks = {}
        for k, v in offloaded_modules.items():
1707
1708
1709
1710
1711
1712
1713
1714
            if hasattr(v, "_hf_hook"):
                if isinstance(v._hf_hook, accelerate.hooks.SequentialHook):
                    # if it is a `SequentialHook`, we loop through its `hooks` attribute to check if it only contains `AlignDevicesHook`
                    for hook in v._hf_hook.hooks:
                        if not isinstance(hook, accelerate.hooks.AlignDevicesHook):
                            offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0])
                elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
                    offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
1715

YiYi Xu's avatar
YiYi Xu committed
1716
1717
1718
        self.assertTrue(
            len(offloaded_modules_with_incorrect_hooks) == 0,
            f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
1719
1720
        )

1721
1722
1723
1724
    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
1725
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
1726
1727
        self._test_xformers_attention_forwardGenerator_pass()

1728
1729
1730
    def _test_xformers_attention_forwardGenerator_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
    ):
1731
1732
1733
1734
1735
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
1736
1737
1738
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
1739
1740
1741
1742
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
1743
        output_without_offload = pipe(**inputs)[0]
1744
1745
1746
        output_without_offload = (
            output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
        )
1747
1748
1749

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
1750
        output_with_offload = pipe(**inputs)[0]
1751
1752
1753
        output_with_offload = (
            output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
        )
1754

Will Berman's avatar
Will Berman committed
1755
        if test_max_difference:
1756
            max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
1757
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
1758

1759
1760
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
1761

1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

1784
                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
1785
1786
1787

                assert images.shape[0] == batch_size * num_images_per_prompt

1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
    def test_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        inputs["guidance_scale"] = 1.0
        out_no_cfg = pipe(**inputs)[0]

        inputs["guidance_scale"] = 7.5
        out_cfg = pipe(**inputs)[0]

        assert out_cfg.shape == out_no_cfg.shape

1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
    def test_callback_inputs(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_inputs_subset(pipe, i, t, callback_kwargs):
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1827
            # iterate over callback args
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        def callback_inputs_all(pipe, i, t, callback_kwargs):
            for tensor_name in pipe._callback_tensor_inputs:
                assert tensor_name in callback_kwargs

M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1838
            # iterate over callback args
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
            for tensor_name, tensor_value in callback_kwargs.items():
                # check that we're only passing in allowed tensor inputs
                assert tensor_name in pipe._callback_tensor_inputs

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # Test passing in a subset
        inputs["callback_on_step_end"] = callback_inputs_subset
        inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        # Test passing in a everything
        inputs["callback_on_step_end"] = callback_inputs_all
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]

        def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
            is_last = i == (pipe.num_timesteps - 1)
            if is_last:
                callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
            return callback_kwargs

        inputs["callback_on_step_end"] = callback_inputs_change_tensor
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        inputs["output_type"] = "latent"
        output = pipe(**inputs)[0]
        assert output.abs().sum() == 0

    def test_callback_cfg(self):
        sig = inspect.signature(self.pipeline_class.__call__)
        has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
        has_callback_step_end = "callback_on_step_end" in sig.parameters

        if not (has_callback_tensor_inputs and has_callback_step_end):
            return

        if "guidance_scale" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        self.assertTrue(
            hasattr(pipe, "_callback_tensor_inputs"),
            f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
        )

        def callback_increase_guidance(pipe, i, t, callback_kwargs):
            pipe._guidance_scale += 1.0

            return callback_kwargs

        inputs = self.get_dummy_inputs(torch_device)

        # use cfg guidance because some pipelines modify the shape of the latents
        # outside of the denoising loop
        inputs["guidance_scale"] = 2.0
        inputs["callback_on_step_end"] = callback_increase_guidance
        inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
        _ = pipe(**inputs)[0]

        # we increase the guidance scale by 1.0 at every step
        # check that the guidance scale is increased by the number of scheduler timesteps
        # accounts for models that modify the number of inference steps based on strength
        assert pipe.guidance_scale == (inputs["guidance_scale"] + pipe.num_timesteps)

1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
    def test_serialization_with_variants(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        model_components = [
            component_name for component_name, component in pipe.components.items() if isinstance(component, nn.Module)
        ]
        variant = "fp16"

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)

            with open(f"{tmpdir}/model_index.json", "r") as f:
                config = json.load(f)

            for subfolder in os.listdir(tmpdir):
                if not os.path.isfile(subfolder) and subfolder in model_components:
                    folder_path = os.path.join(tmpdir, subfolder)
                    is_folder = os.path.isdir(folder_path) and subfolder in config
                    assert is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))

    def test_loading_with_variants(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        variant = "fp16"

        def is_nan(tensor):
            if tensor.ndimension() == 0:
                has_nan = torch.isnan(tensor).item()
            else:
                has_nan = torch.isnan(tensor).any()
            return has_nan

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, variant=variant)

            model_components_pipe = {
                component_name: component
                for component_name, component in pipe.components.items()
                if isinstance(component, nn.Module)
            }
            model_components_pipe_loaded = {
                component_name: component
                for component_name, component in pipe_loaded.components.items()
                if isinstance(component, nn.Module)
            }
            for component_name in model_components_pipe:
                pipe_component = model_components_pipe[component_name]
                pipe_loaded_component = model_components_pipe_loaded[component_name]
                for p1, p2 in zip(pipe_component.parameters(), pipe_loaded_component.parameters()):
                    # nan check for luminanext (mps).
                    if not (is_nan(p1) and is_nan(p2)):
                        self.assertTrue(torch.equal(p1, p2))

    def test_loading_with_incorrect_variants_raises_error(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        variant = "fp16"

        with tempfile.TemporaryDirectory() as tmpdir:
            # Don't save with variants.
            pipe.save_pretrained(tmpdir, safe_serialization=False)

            with self.assertRaises(ValueError) as error:
                _ = self.pipeline_class.from_pretrained(tmpdir, variant=variant)

            assert f"You are trying to load the model files of the `variant={variant}`" in str(error.exception)

1978
1979
1980
1981
1982
1983
1984
1985
1986
    def test_StableDiffusionMixin_component(self):
        """Any pipeline that have LDMFuncMixin should have vae and unet components."""
        if not issubclass(self.pipeline_class, StableDiffusionMixin):
            return
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        self.assertTrue(hasattr(pipe, "vae") and isinstance(pipe.vae, (AutoencoderKL, AutoencoderTiny)))
        self.assertTrue(
            hasattr(pipe, "unet")
1987
1988
1989
1990
            and isinstance(
                pipe.unet,
                (UNet2DConditionModel, UNet3DConditionModel, I2VGenXLUNet, UNetMotionModel, UNetControlNetXSModel),
            )
1991
1992
        )

1993

1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):
    identifier = uuid.uuid4()
    repo_id = f"test-pipeline-{identifier}"
    org_repo_id = f"valid_org/{repo_id}-org"

    def get_pipeline_components(self):
        unet = UNet2DConditionModel(
            block_out_channels=(32, 64),
            layers_per_block=2,
            sample_size=32,
            in_channels=4,
            out_channels=4,
            down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
            up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
            cross_attention_dim=32,
        )

        scheduler = DDIMScheduler(
            beta_start=0.00085,
            beta_end=0.012,
            beta_schedule="scaled_linear",
            clip_sample=False,
            set_alpha_to_one=False,
        )

        vae = AutoencoderKL(
            block_out_channels=[32, 64],
            in_channels=3,
            out_channels=3,
            down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
            up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
            latent_channels=4,
        )

        text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
        )
        text_encoder = CLIPTextModel(text_encoder_config)

        with tempfile.TemporaryDirectory() as tmpdir:
            dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2}
            vocab_path = os.path.join(tmpdir, "vocab.json")
            with open(vocab_path, "w") as f:
                json.dump(dummy_vocab, f)

            merges = "Ġ t\nĠt h"
            merges_path = os.path.join(tmpdir, "merges.txt")
            with open(merges_path, "w") as f:
                f.writelines(merges)
            tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path)

        components = {
            "unet": unet,
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
            "safety_checker": None,
            "feature_extractor": None,
        }
        return components

    def test_push_to_hub(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)

    def test_push_to_hub_in_organization(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.org_repo_id, token=TOKEN)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        unet = components["unet"]
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(token=TOKEN, repo_id=self.org_repo_id)

        # Push to hub via save_pretrained
        with tempfile.TemporaryDirectory() as tmp_dir:
            pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)

        new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
        for p1, p2 in zip(unet.parameters(), new_model.parameters()):
            self.assertTrue(torch.equal(p1, p2))

        # Reset repo
        delete_repo(self.org_repo_id, token=TOKEN)
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126

    @unittest.skipIf(
        not is_jinja_available(),
        reason="Model card tests cannot be performed without Jinja installed.",
    )
    def test_push_to_hub_library_name(self):
        components = self.get_pipeline_components()
        pipeline = StableDiffusionPipeline(**components)
        pipeline.push_to_hub(self.repo_id, token=TOKEN)

        model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
        assert model_card.library_name == "diffusers"

        # Reset repo
        delete_repo(self.repo_id, token=TOKEN)
2127
2128


2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
# For SDXL and its derivative pipelines (such as ControlNet), we have the text encoders
# and the tokenizers as optional components. So, we need to override the `test_save_load_optional_components()`
# test for all such pipelines. This requires us to use a custom `encode_prompt()` function.
class SDXLOptionalComponentsTesterMixin:
    def encode_prompt(
        self, tokenizers, text_encoders, prompt: str, num_images_per_prompt: int = 1, negative_prompt: str = None
    ):
        device = text_encoders[0].device

        if isinstance(prompt, str):
            prompt = [prompt]
        batch_size = len(prompt)

        prompt_embeds_list = []
        for tokenizer, text_encoder in zip(tokenizers, text_encoders):
            text_inputs = tokenizer(
                prompt,
                padding="max_length",
                max_length=tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )

            text_input_ids = text_inputs.input_ids

            prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
            pooled_prompt_embeds = prompt_embeds[0]
            prompt_embeds = prompt_embeds.hidden_states[-2]
            prompt_embeds_list.append(prompt_embeds)

        prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)

        if negative_prompt is None:
            negative_prompt_embeds = torch.zeros_like(prompt_embeds)
            negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
        else:
            negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt

            negative_prompt_embeds_list = []
            for tokenizer, text_encoder in zip(tokenizers, text_encoders):
                uncond_input = tokenizer(
                    negative_prompt,
                    padding="max_length",
                    max_length=tokenizer.model_max_length,
                    truncation=True,
                    return_tensors="pt",
                )

                negative_prompt_embeds = text_encoder(uncond_input.input_ids.to(device), output_hidden_states=True)
                negative_pooled_prompt_embeds = negative_prompt_embeds[0]
                negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
                negative_prompt_embeds_list.append(negative_prompt_embeds)

            negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)

        bs_embed, seq_len, _ = prompt_embeds.shape

        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # for classifier-free guidance
        # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
        seq_len = negative_prompt_embeds.shape[1]

        negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
        negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        # for classifier-free guidance
        negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
            bs_embed * num_images_per_prompt, -1
        )

        return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds

    def _test_save_load_optional_components(self, expected_max_difference=1e-4):
        components = self.get_dummy_components()

        pipe = self.pipeline_class(**components)
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)

        tokenizer = components.pop("tokenizer")
        tokenizer_2 = components.pop("tokenizer_2")
        text_encoder = components.pop("text_encoder")
        text_encoder_2 = components.pop("text_encoder_2")

        tokenizers = [tokenizer, tokenizer_2] if tokenizer is not None else [tokenizer_2]
        text_encoders = [text_encoder, text_encoder_2] if text_encoder is not None else [text_encoder_2]
        prompt = inputs.pop("prompt")
        (
            prompt_embeds,
            negative_prompt_embeds,
            pooled_prompt_embeds,
            negative_pooled_prompt_embeds,
        ) = self.encode_prompt(tokenizers, text_encoders, prompt)
        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds
        inputs["pooled_prompt_embeds"] = pooled_prompt_embeds
        inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds

        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(generator_device)
        _ = inputs.pop("prompt")
        inputs["prompt_embeds"] = prompt_embeds
        inputs["negative_prompt_embeds"] = negative_prompt_embeds
        inputs["pooled_prompt_embeds"] = pooled_prompt_embeds
        inputs["negative_pooled_prompt_embeds"] = negative_pooled_prompt_embeds

        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)


2273
2274
2275
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
2276
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
2277
2278
2279
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
2280
    assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"