test_pipelines_common.py 29.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
import contextlib
import gc
import inspect
import io
import re
import tempfile
import unittest
from typing import Callable, Union

import numpy as np
11
import PIL
12
13
import torch

14
import diffusers
15
from diffusers import DiffusionPipeline
16
from diffusers.image_processor import VaeImageProcessor
17
from diffusers.utils import logging
18
from diffusers.utils.import_utils import is_accelerate_available, is_accelerate_version, is_xformers_available
19
20
21
from diffusers.utils.testing_utils import require_torch, torch_device


22
23
24
25
26
27
28
def to_np(tensor):
    if isinstance(tensor, torch.Tensor):
        tensor = tensor.detach().cpu().numpy()

    return tensor


29
30
31
32
33
34
35
36
37
38
39
40
41
42
class PipelineLatentTesterMixin:
    """
    This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
    It provides a set of common tests for PyTorch pipeline that has vae, e.g.
    equivalence of different input and output types, etc.
    """

    @property
    def image_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_params` in the child test class. "
            "`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
        )

43
44
45
46
47
48
49
    @property
    def image_latents_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `image_latents_params` in the child test class. "
            "`image_latents_params` are tested for if passing latents directly are producing same results"
        )

50
51
52
    def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
        inputs = self.get_dummy_inputs(device, seed)

53
54
55
56
57
58
59
60
61
62
63
64
        def convert_to_pt(image):
            if isinstance(image, torch.Tensor):
                input_image = image
            elif isinstance(image, np.ndarray):
                input_image = VaeImageProcessor.numpy_to_pt(image)
            elif isinstance(image, PIL.Image.Image):
                input_image = VaeImageProcessor.pil_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pt(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {type(image)}")
            return input_image

65
66
67
68
69
70
71
72
73
74
75
76
77
78
        def convert_pt_to_type(image, input_image_type):
            if input_image_type == "pt":
                input_image = image
            elif input_image_type == "np":
                input_image = VaeImageProcessor.pt_to_numpy(image)
            elif input_image_type == "pil":
                input_image = VaeImageProcessor.pt_to_numpy(image)
                input_image = VaeImageProcessor.numpy_to_pil(input_image)
            else:
                raise ValueError(f"unsupported input_image_type {input_image_type}.")
            return input_image

        for image_param in self.image_params:
            if image_param in inputs.keys():
79
80
81
                inputs[image_param] = convert_pt_to_type(
                    convert_to_pt(inputs[image_param]).to(device), input_image_type
                )
82
83
84
85
86

        inputs["output_type"] = output_type

        return inputs

87
    def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
88
89
90
        self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)

    def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
91
92
93
94
95
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

96
97
98
99
100
101
102
103
104
        output_pt = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
        )[0]
        output_np = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
        )[0]
        output_pil = pipe(
            **self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
        )[0]
105
106

        max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
107
108
109
        self.assertLess(
            max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
        )
110
111

        max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
112
        self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

    def test_pt_np_pil_inputs_equivalent(self):
        if len(self.image_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
        out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
        out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]

        max_diff = np.abs(out_input_pt - out_input_np).max()
        self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
        max_diff = np.abs(out_input_pil - out_input_np).max()
        self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
    def test_latents_input(self):
        if len(self.image_latents_params) == 0:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]

        vae = components["vae"]
        inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
        generator = inputs["generator"]
        for image_param in self.image_latents_params:
            if image_param in inputs.keys():
                inputs[image_param] = (
                    vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
                )
        out_latents_inputs = pipe(**inputs)[0]

        max_diff = np.abs(out - out_latents_inputs).max()
        self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")

157

158
159
160
161
162
163
164
165
@require_torch
class PipelineTesterMixin:
    """
    This mixin is designed to be used with unittest.TestCase classes.
    It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
    equivalence of dict and tuple outputs, etc.
    """

166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
    # Canonical parameters that are passed to `__call__` regardless
    # of the type of pipeline. They are always optional and have common
    # sense default values.
    required_optional_params = frozenset(
        [
            "num_inference_steps",
            "num_images_per_prompt",
            "generator",
            "latents",
            "output_type",
            "return_dict",
            "callback",
            "callback_steps",
        ]
    )
181

182
183
184
185
186
    # set these parameters to False in the child class if the pipeline does not support the corresponding functionality
    test_attention_slicing = True
    test_cpu_offload = True
    test_xformers_attention = True

187
188
189
190
191
    def get_generator(self, seed):
        device = torch_device if torch_device != "mps" else "cpu"
        generator = torch.Generator(device).manual_seed(seed)
        return generator

192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
    @property
    def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
        raise NotImplementedError(
            "You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_components(self):
        raise NotImplementedError(
            "You need to implement `get_dummy_components(self)` in the child test class. "
            "See existing pipeline tests for reference."
        )

    def get_dummy_inputs(self, device, seed=0):
        raise NotImplementedError(
            "You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
            "See existing pipeline tests for reference."
        )

211
212
213
214
215
    @property
    def params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `params` in the child test class. "
            "`params` are checked for if all values are present in `__call__`'s signature."
216
            " You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
            " e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to  "
            "image pipelines, including prompts and prompt embedding overrides."
            "If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
            "do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
            "with non-configurable height and width arguments should set the attribute as "
            "`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
            "See existing pipeline tests for reference."
        )

    @property
    def batch_params(self) -> frozenset:
        raise NotImplementedError(
            "You need to set the attribute `batch_params` in the child test class. "
            "`batch_params` are the parameters required to be batched when passed to the pipeline's "
            "`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
            "`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
            "set of batch arguments has minor changes from one of the common sets of batch arguments, "
            "do not make modifications to the existing common sets of batch arguments. I.e. a text to "
            "image pipeline `negative_prompt` is not batched should set the attribute as "
            "`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
            "See existing pipeline tests for reference."
        )

240
241
242
243
244
245
    def tearDown(self):
        # clean up the VRAM after each test in case of CUDA runtime errors
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

246
    def test_save_load_local(self, expected_max_difference=1e-4):
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

264
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
265
        self.assertLess(max_diff, expected_max_difference)
266

267
268
269
270
271
    def test_pipeline_call_signature(self):
        self.assertTrue(
            hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
        )

272
273
        parameters = inspect.signature(self.pipeline_class.__call__).parameters

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
        optional_parameters = set()

        for k, v in parameters.items():
            if v.default != inspect._empty:
                optional_parameters.add(k)

        parameters = set(parameters.keys())
        parameters.remove("self")
        parameters.discard("kwargs")  # kwargs can be added if arguments of pipeline call function are deprecated

        remaining_required_parameters = set()

        for param in self.params:
            if param not in parameters:
                remaining_required_parameters.add(param)
289

290
291
292
293
294
295
        self.assertTrue(
            len(remaining_required_parameters) == 0,
            f"Required parameters not present: {remaining_required_parameters}",
        )

        remaining_required_optional_parameters = set()
296

297
        for param in self.required_optional_params:
298
299
300
301
302
303
304
            if param not in optional_parameters:
                remaining_required_optional_parameters.add(param)

        self.assertTrue(
            len(remaining_required_optional_parameters) == 0,
            f"Required optional parameters not present: {remaining_required_optional_parameters}",
        )
305

306
307
    def test_inference_batch_consistent(self, batch_sizes=[2, 4, 13]):
        self._test_inference_batch_consistent(batch_sizes=batch_sizes)
308

309
310
311
    def _test_inference_batch_consistent(
        self, batch_sizes=[2, 4, 13], additional_params_copy_to_batched_inputs=["num_inference_steps"]
    ):
312
313
314
315
316
317
318
319
320
321
322
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
323
        for batch_size in batch_sizes:
324
325
            batched_inputs = {}
            for name, value in inputs.items():
326
                if name in self.batch_params:
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
                    # prompt is string
                    if name == "prompt":
                        len_prompt = len(value)
                        # make unequal batch sizes
                        batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                        # make last batch super long
                        batched_inputs[name][-1] = 2000 * "very long"
                    # or else we have images
                    else:
                        batched_inputs[name] = batch_size * [value]
                elif name == "batch_size":
                    batched_inputs[name] = batch_size
                else:
                    batched_inputs[name] = value

343
            for arg in additional_params_copy_to_batched_inputs:
344
345
                batched_inputs[arg] = inputs[arg]

YiYi Xu's avatar
YiYi Xu committed
346
            batched_inputs["output_type"] = "np"
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)

            assert len(output[0]) == batch_size

            batched_inputs["output_type"] = "np"

            if self.pipeline_class.__name__ == "DanceDiffusionPipeline":
                batched_inputs.pop("output_type")

            output = pipe(**batched_inputs)[0]

            assert output.shape[0] == batch_size

        logger.setLevel(level=diffusers.logging.WARNING)
365

366
367
    def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
        self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
368
369

    def _test_inference_batch_single_identical(
370
        self,
371
        batch_size=3,
372
373
374
        test_max_difference=None,
        test_mean_pixel_difference=None,
        relax_max_difference=False,
375
        expected_max_diff=1e-4,
376
        additional_params_copy_to_batched_inputs=["num_inference_steps"],
377
378
379
380
381
382
383
384
385
386
    ):
        if test_max_difference is None:
            # TODO(Pedro) - not sure why, but not at all reproducible at the moment it seems
            # make sure that batched and non-batched is identical
            test_max_difference = torch_device != "mps"

        if test_mean_pixel_difference is None:
            # TODO same as above
            test_mean_pixel_difference = torch_device != "mps"

387
388
389
390
391
392
393
394
395
396
397
398
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)

        logger = logging.get_logger(pipe.__module__)
        logger.setLevel(level=diffusers.logging.FATAL)

        # batchify inputs
        batched_inputs = {}
399
        batch_size = batch_size
400
        for name, value in inputs.items():
401
            if name in self.batch_params:
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
                # prompt is string
                if name == "prompt":
                    len_prompt = len(value)
                    # make unequal batch sizes
                    batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]

                    # make last batch super long
                    batched_inputs[name][-1] = 2000 * "very long"
                # or else we have images
                else:
                    batched_inputs[name] = batch_size * [value]
            elif name == "batch_size":
                batched_inputs[name] = batch_size
            elif name == "generator":
                batched_inputs[name] = [self.get_generator(i) for i in range(batch_size)]
            else:
                batched_inputs[name] = value

420
        for arg in additional_params_copy_to_batched_inputs:
421
            batched_inputs[arg] = inputs[arg]
422
423
424
425
426
427
428
429
430
431
432

        if self.pipeline_class.__name__ != "DanceDiffusionPipeline":
            batched_inputs["output_type"] = "np"

        output_batch = pipe(**batched_inputs)
        assert output_batch[0].shape[0] == batch_size

        inputs["generator"] = self.get_generator(0)

        output = pipe(**inputs)

433
        logger.setLevel(level=diffusers.logging.WARNING)
434
435
436
437
438
        if test_max_difference:
            if relax_max_difference:
                # Taking the median of the largest <n> differences
                # is resilient to outliers
                diff = np.abs(output_batch[0][0] - output[0][0])
Will Berman's avatar
Will Berman committed
439
                diff = diff.flatten()
440
441
442
443
                diff.sort()
                max_diff = np.median(diff[-5:])
            else:
                max_diff = np.abs(output_batch[0][0] - output[0][0]).max()
444
            assert max_diff < expected_max_diff
445
446
447

        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_batch[0][0], output[0][0])
448

449
    def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4):
450
451
452
453
454
455
456
457
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_tuple = pipe(**self.get_dummy_inputs(torch_device), return_dict=False)[0]

458
        max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
459
        self.assertLess(max_diff, expected_max_difference)
460
461
462
463
464
465
466
467
468

    def test_components_function(self):
        init_components = self.get_dummy_components()
        pipe = self.pipeline_class(**init_components)

        self.assertTrue(hasattr(pipe, "components"))
        self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
469
    def test_float16_inference(self, expected_max_diff=1e-2):
470
471
472
473
474
475
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        pipe_fp16 = self.pipeline_class(**components)
476
        pipe_fp16.to(torch_device, torch.float16)
477
478
479
480
481
        pipe_fp16.set_progress_bar_config(disable=None)

        output = pipe(**self.get_dummy_inputs(torch_device))[0]
        output_fp16 = pipe_fp16(**self.get_dummy_inputs(torch_device))[0]

482
        max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
483
        self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
484
485

    @unittest.skipIf(torch_device != "cuda", reason="float16 requires CUDA")
486
    def test_save_load_float16(self, expected_max_diff=1e-2):
487
488
489
490
491
492
493
494
495
496
497
498
499
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
500
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
501
502
503
504
505
506
507
508
509
510
511
512
513
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

514
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
515
516
517
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )
518

519
    def test_save_load_optional_components(self, expected_max_difference=1e-4):
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
        if not hasattr(self.pipeline_class, "_optional_components"):
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

550
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
551
        self.assertLess(max_diff, expected_max_difference)
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570

    @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices")
    def test_to_device(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        pipe.to("cpu")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cpu" for device in model_devices))

        output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
        self.assertTrue(np.isnan(output_cpu).sum() == 0)

        pipe.to("cuda")
        model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
        self.assertTrue(all(device == "cuda" for device in model_devices))

        output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0]
571
        self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0)
572

573
574
575
576
577
578
579
580
581
582
583
584
    def test_to_dtype(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.set_progress_bar_config(disable=None)

        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))

        pipe.to(torch_dtype=torch.float16)
        model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
        self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))

585
586
    def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
        self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
587

588
589
590
    def _test_attention_slicing_forward_pass(
        self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
    ):
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
        if not self.test_attention_slicing:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_slicing = pipe(**inputs)[0]

        pipe.enable_attention_slicing(slice_size=1)
        inputs = self.get_dummy_inputs(torch_device)
        output_with_slicing = pipe(**inputs)[0]

606
        if test_max_difference:
607
            max_diff = np.abs(to_np(output_with_slicing) - to_np(output_without_slicing)).max()
608
            self.assertLess(max_diff, expected_max_diff, "Attention slicing should not affect the inference results")
609

610
611
        if test_mean_pixel_difference:
            assert_mean_pixel_difference(output_with_slicing[0], output_without_slicing[0])
612
613

    @unittest.skipIf(
614
615
        torch_device != "cuda" or not is_accelerate_available() or is_accelerate_version("<", "0.14.0"),
        reason="CPU offload is only available with CUDA and `accelerate v0.14.0` or higher",
616
    )
617
    def test_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
        if not self.test_cpu_offload:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_sequential_cpu_offload()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

633
        max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
634
        self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
635
636
637
638
639

    @unittest.skipIf(
        torch_device != "cuda" or not is_xformers_available(),
        reason="XFormers attention is only available with CUDA and `xformers` installed",
    )
Kashif Rasul's avatar
Kashif Rasul committed
640
    def test_xformers_attention_forwardGenerator_pass(self):
Will Berman's avatar
Will Berman committed
641
642
        self._test_xformers_attention_forwardGenerator_pass()

643
    def _test_xformers_attention_forwardGenerator_pass(self, test_max_difference=True, expected_max_diff=1e-4):
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
        if not self.test_xformers_attention:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_without_offload = pipe(**inputs)[0]

        pipe.enable_xformers_memory_efficient_attention()
        inputs = self.get_dummy_inputs(torch_device)
        output_with_offload = pipe(**inputs)[0]

Will Berman's avatar
Will Berman committed
659
660
        if test_max_difference:
            max_diff = np.abs(output_with_offload - output_without_offload).max()
661
            self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
Will Berman's avatar
Will Berman committed
662
663

        assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685

    def test_progress_bar(self):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe.to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            stderr = stderr.getvalue()
            # we can't calculate the number of progress steps beforehand e.g. for strength-dependent img2img,
            # so we just match "5" in "#####| 1/5 [00:01<00:00]"
            max_steps = re.search("/(.*?) ", stderr).group(1)
            self.assertTrue(max_steps is not None and len(max_steps) > 0)
            self.assertTrue(
                f"{max_steps}/{max_steps}" in stderr, "Progress bar should be enabled and stopped at the max step"
            )

        pipe.set_progress_bar_config(disable=True)
        with io.StringIO() as stderr, contextlib.redirect_stderr(stderr):
            _ = pipe(**inputs)
            self.assertTrue(stderr.getvalue() == "", "Progress bar should be disabled")
686

687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
    def test_num_images_per_prompt(self):
        sig = inspect.signature(self.pipeline_class.__call__)

        if "num_images_per_prompt" not in sig.parameters:
            return

        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        batch_sizes = [1, 2]
        num_images_per_prompts = [1, 2]

        for batch_size in batch_sizes:
            for num_images_per_prompt in num_images_per_prompts:
                inputs = self.get_dummy_inputs(torch_device)

                for key in inputs.keys():
                    if key in self.batch_params:
                        inputs[key] = batch_size * [inputs[key]]

709
                images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
710
711
712

                assert images.shape[0] == batch_size * num_images_per_prompt

713
714
715
716

# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
717
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
718
719
720
    image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
    expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
    avg_diff = np.abs(image - expected_image).mean()
721
    assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"