pipeline_utils.py 96.1 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import enum
17
import fnmatch
18
19
20
import importlib
import inspect
import os
21
import re
22
import sys
23
24
from dataclasses import dataclass
from pathlib import Path
25
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
26
27

import numpy as np
Anh71me's avatar
Anh71me committed
28
import PIL.Image
29
import requests
30
import torch
31
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
32
    DDUFEntry,
33
34
35
36
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
Marc Sun's avatar
Marc Sun committed
37
    read_dduf_file,
38
39
    snapshot_download,
)
40
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
41
from packaging import version
42
from requests.exceptions import HTTPError
43
44
from tqdm.auto import tqdm

45
from .. import __version__
46
from ..configuration_utils import ConfigMixin
47
48
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
49
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
50
from ..quantizers.bitsandbytes.utils import _check_bnb_status
51
52
53
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
54
    DEPRECATED_REVISION_ARGS,
55
    BaseOutput,
56
    PushToHubMixin,
57
    is_accelerate_available,
58
    is_accelerate_version,
Mengqing Cao's avatar
Mengqing Cao committed
59
    is_torch_npu_available,
60
    is_torch_version,
61
    is_transformers_version,
62
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
63
    numpy_to_pil,
64
)
65
from ..utils.hub_utils import _check_legacy_sharding_variant_format, load_or_create_model_card, populate_model_card
Dhruv Nair's avatar
Dhruv Nair committed
66
from ..utils.torch_utils import is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
67
68
69
70
71


if is_torch_npu_available():
    import torch_npu  # noqa: F401

72
73
74
75
76
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
Marc Sun's avatar
Marc Sun committed
77
    _download_dduf_file,
78
    _fetch_class_library_tuple,
79
    _get_custom_components_and_folders,
80
    _get_custom_pipeline_class,
81
    _get_final_device_map,
82
    _get_ignore_patterns,
83
    _get_pipeline_class,
84
    _identify_model_variants,
Marc Sun's avatar
Marc Sun committed
85
    _maybe_raise_error_for_incorrect_transformers,
86
87
    _maybe_raise_warning_for_inpainting,
    _resolve_custom_pipeline_and_cls,
88
    _unwrap_model,
89
    _update_init_kwargs_with_connected_pipeline,
90
91
92
93
94
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
95
96


97
98
99
100
if is_accelerate_available():
    import accelerate


101
102
103
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
104

105
106
SUPPORTED_DEVICE_MAP = ["balanced"]

107
108
109
110
111
112
113
114
115
116
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
117
118
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
119
120
121
122
123
124
125
126
127
128
129
130
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
131
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
132
133
134
135
136
    """

    audios: np.ndarray


137
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
138
    r"""
Steven Liu's avatar
Steven Liu committed
139
    Base class for all pipelines.
140

Steven Liu's avatar
Steven Liu committed
141
142
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
143
144

        - move all PyTorch modules to the device of your choice
145
        - enable/disable the progress bar for the denoising iteration
146
147
148

    Class attributes:

Steven Liu's avatar
Steven Liu committed
149
150
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
151
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
152
          pipeline to function (should be overridden by subclasses).
153
    """
154

155
    config_name = "model_index.json"
156
    model_cpu_offload_seq = None
157
    hf_device_map = None
158
    _optional_components = []
159
    _exclude_from_cpu_offload = []
160
    _load_connected_pipes = False
161
    _is_onnx = False
162
163
164
165

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
166
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
167
168
                register_dict = {name: (None, None)}
            else:
169
                library, class_name = _fetch_class_library_tuple(module)
170
171
172
173
174
175
176
177
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

178
    def __setattr__(self, name: str, value: Any):
179
        if name in self.__dict__ and hasattr(self.config, name):
180
181
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
182
                if value is not None and self.config[name][0] is not None:
183
                    class_library_tuple = _fetch_class_library_tuple(value)
184
185
186
187
188
189
190
191
192
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

193
194
195
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
196
        safe_serialization: bool = True,
197
        variant: Optional[str] = None,
198
        max_shard_size: Optional[Union[int, str]] = None,
199
200
        push_to_hub: bool = False,
        **kwargs,
201
202
    ):
        """
Steven Liu's avatar
Steven Liu committed
203
204
205
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
206
207
208

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
209
                Directory to save a pipeline to. Will be created if it doesn't exist.
210
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
211
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
212
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
213
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
214
            max_shard_size (`int` or `str`, defaults to `None`):
215
216
217
218
219
220
                The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size
                lower than this size. If expressed as a string, needs to be digits followed by a unit (like `"5GB"`).
                If expressed as an integer, the unit is bytes. Note that this limit will be decreased after a certain
                period of time (starting from Oct 2024) to allow users to upgrade to the latest version of `diffusers`.
                This is to establish a common default size for this argument across different libraries in the Hugging
                Face ecosystem (`transformers`, and `accelerate`, for example).
221
222
223
224
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
Marc Sun's avatar
Marc Sun committed
225

226
227
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
228
229
        """
        model_index_dict = dict(self.config)
230
231
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
232
        model_index_dict.pop("_module", None)
233
        model_index_dict.pop("_name_or_path", None)
234

235
236
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
237
            private = kwargs.pop("private", None)
238
239
240
241
242
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

243
244
245
246
247
248
249
250
251
252
253
254
255
256
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

257
258
259
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
260
                sub_model = _unwrap_model(sub_model)
261
262
                model_cls = sub_model.__class__

263
264
265
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
266
267
268
269
270
271
272
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

273
274
275
276
277
278
279
280
281
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

282
            if save_method_name is None:
283
284
285
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
286
287
288
289
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

290
291
292
293
294
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
295
            save_method_accept_variant = "variant" in save_method_signature.parameters
296
            save_method_accept_max_shard_size = "max_shard_size" in save_method_signature.parameters
297
298

            save_kwargs = {}
299
            if save_method_accept_safe:
300
301
302
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant
303
304
            if save_method_accept_max_shard_size and max_shard_size is not None:
                # max_shard_size is expected to not be None in ModelMixin
305
                save_kwargs["max_shard_size"] = max_shard_size
306
307

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
308

309
310
311
        # finally save the config
        self.save_config(save_directory)

312
        if push_to_hub:
313
314
315
316
317
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

318
319
320
321
322
323
324
325
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
    def to(self, *args, **kwargs):
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
362
363
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
396
        pipeline_has_bnb = any(any((_check_bnb_status(module))) for _, module in self.components.items())
397

398
399
400
401
402
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

403
404
405
406
407
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
408
409
410
411
412
413
414
415
416
417
418

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
419
420
421
422
423
424
425

        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` to remove the existing device map from the pipeline."
            )

426
427
428
429
430
431
432
433
434
435
        if device and torch.device(device).type == "cuda":
            if pipeline_is_sequentially_offloaded and not pipeline_has_bnb:
                raise ValueError(
                    "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
                )
            # PR: https://github.com/huggingface/accelerate/pull/3223/
            elif pipeline_has_bnb and is_accelerate_version("<", "1.1.0.dev0"):
                raise ValueError(
                    "You are trying to call `.to('cuda')` on a pipeline that has models quantized with `bitsandbytes`. Your current `accelerate` installation does not support it. Please upgrade the installation."
                )
436
437
438

        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
439
        if pipeline_is_offloaded and device and torch.device(device).type == "cuda":
440
441
442
443
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

444
        module_names, _ = self._get_signature_keys(self)
445
446
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
447

448
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
449
        for module in modules:
450
            _, is_loaded_in_4bit_bnb, is_loaded_in_8bit_bnb = _check_bnb_status(module)
Patrick von Platen's avatar
Patrick von Platen committed
451

452
            if (is_loaded_in_4bit_bnb or is_loaded_in_8bit_bnb) and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
453
                logger.warning(
454
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` {'4bit' if is_loaded_in_4bit_bnb else '8bit'} and conversion to {dtype} is not supported. Module is still in {'4bit' if is_loaded_in_4bit_bnb else '8bit'} precision."
Patrick von Platen's avatar
Patrick von Platen committed
455
456
                )

457
            if is_loaded_in_8bit_bnb and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
458
                logger.warning(
459
                    f"The module '{module.__class__.__name__}' has been loaded in `bitsandbytes` 8bit and moving it to {device} via `.to()` is not supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
460
                )
461
462
463
464
465
466

            # This can happen for `transformer` models. CPU placement was added in
            # https://github.com/huggingface/transformers/pull/33122. So, we guard this accordingly.
            if is_loaded_in_4bit_bnb and device is not None and is_transformers_version(">", "4.44.0"):
                module.to(device=device)
            elif not is_loaded_in_4bit_bnb and not is_loaded_in_8bit_bnb:
467
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
468

469
470
            if (
                module.dtype == torch.float16
471
                and str(device) in ["cpu"]
472
473
474
475
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
476
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
477
478
479
480
481
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
482
483
484
485
486
487
488
489
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
490
        module_names, _ = self._get_signature_keys(self)
491
492
493
494
495
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
496

497
498
        return torch.device("cpu")

499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

514
    @classmethod
515
    @validate_hf_hub_args
516
517
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
518
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
519

Steven Liu's avatar
Steven Liu committed
520
        The pipeline is set in evaluation mode (`model.eval()`) by default.
521

Steven Liu's avatar
Steven Liu committed
522
        If you get the error message below, you need to finetune the weights for your downstream task:
523

Steven Liu's avatar
Steven Liu committed
524
        ```
525
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at stable-diffusion-v1-5/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
Steven Liu's avatar
Steven Liu committed
526
527
528
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
529
530
531
532
533

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
534
535
536
537
538
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
Marc Sun's avatar
Marc Sun committed
539
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing a dduf file
540
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
541
542
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
543
544
545
546
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
547
                🧪 This is an experimental feature and may change in the future.
548
549
550
551
552

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
553
554
555
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
556
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
557
558
559
560
561
562
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
563
564
565
566
567
568
569

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
570
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
571
572
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
573

574
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
575
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
576
577
578
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
579
580
581
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
582
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
583
584
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
585
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
586
587
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
588
            custom_revision (`str`, *optional*):
589
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
590
591
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
592
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
593
594
595
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
596
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
597
598
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
599
600
                same device.

Steven Liu's avatar
Steven Liu committed
601
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
602
603
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
604
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
605
606
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
607
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
608
                The path to offload weights if device_map contains the value `"disk"`.
609
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
610
611
612
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
613
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
614
615
616
617
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
618
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
619
620
621
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
622
623
624
625
626
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
627
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
628
629
630
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
631
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
632
633
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
634
635
            dduf_file(`str`, *optional*):
                Load weights from the specified dduf file.
636
637
638

        <Tip>

Steven Liu's avatar
Steven Liu committed
639
640
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
641
642
643
644
645
646
647
648
649
650
651
652
653
654

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
655
        >>> pipeline = DiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
656
657
658
659
660
661
662
663

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
664
665
666
        # Copy the kwargs to re-use during loading connected pipeline.
        kwargs_copied = kwargs.copy()

667
        cache_dir = kwargs.pop("cache_dir", None)
668
669
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
670
671
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
672
        revision = kwargs.pop("revision", None)
673
        from_flax = kwargs.pop("from_flax", False)
674
675
676
677
678
679
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
680
681
682
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
683
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
684
        variant = kwargs.pop("variant", None)
Marc Sun's avatar
Marc Sun committed
685
        dduf_file = kwargs.pop("dduf_file", None)
686
        use_safetensors = kwargs.pop("use_safetensors", None)
687
        use_onnx = kwargs.pop("use_onnx", None)
688
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
689

690
691
692
693
694
695
696
697
698
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

699
700
701
702
703
704
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

705
706
707
708
709
710
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

711
        if device_map is not None and not is_accelerate_available():
712
            raise NotImplementedError(
713
714
715
716
717
718
719
720
721
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
722
723
            )

724
725
726
727
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

728
729
730
731
732
733
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

Marc Sun's avatar
Marc Sun committed
734
735
736
737
738
739
        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")

740
741
742
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
743
744
745
746
747
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
748
            cached_folder = cls.download(
749
750
751
752
753
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
754
                token=token,
755
                revision=revision,
756
                from_flax=from_flax,
757
                use_safetensors=use_safetensors,
758
                use_onnx=use_onnx,
759
                custom_pipeline=custom_pipeline,
760
                custom_revision=custom_revision,
761
                variant=variant,
Marc Sun's avatar
Marc Sun committed
762
                dduf_file=dduf_file,
763
                load_connected_pipeline=load_connected_pipeline,
764
                **kwargs,
765
766
767
768
            )
        else:
            cached_folder = pretrained_model_name_or_path

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
        # The variant filenames can have the legacy sharding checkpoint format that we check and throw
        # a warning if detected.
        if variant is not None and _check_legacy_sharding_variant_format(folder=cached_folder, variant=variant):
            warn_msg = (
                f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                "Please check your files carefully:\n\n"
                "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                "If you find any files in the deprecated format:\n"
                "1. Remove all existing checkpoint files for this variant.\n"
                "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                "This will ensure you're using the most up-to-date and compatible checkpoint format."
            )
            logger.warning(warn_msg)

Marc Sun's avatar
Marc Sun committed
784
785
786
787
788
789
790
791
792
793
794
        dduf_entries = None
        if dduf_file:
            dduf_file_path = os.path.join(cached_folder, dduf_file)
            dduf_entries = read_dduf_file(dduf_file_path)
            # The reader contains already all the files needed, no need to check it again
            cached_folder = ""

        config_dict = cls.load_config(cached_folder, dduf_entries=dduf_entries)

        if dduf_file:
            _maybe_raise_error_for_incorrect_transformers(config_dict)
795

Patrick von Platen's avatar
Patrick von Platen committed
796
797
798
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

799
        # 2. Define which model components should load variants
800
801
802
803
        # We retrieve the information by matching whether variant model checkpoints exist in the subfolders.
        # Example: `diffusion_pytorch_model.safetensors` -> `diffusion_pytorch_model.fp16.safetensors`
        # with variant being `"fp16"`.
        model_variants = _identify_model_variants(folder=cached_folder, variant=variant, config=config_dict)
804
805
806
        if len(model_variants) == 0 and variant is not None:
            error_message = f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
            raise ValueError(error_message)
807

808
        # 3. Load the pipeline class, if using custom module then load it from the hub
809
        # if we load from explicit class, let's use it
810
811
812
        custom_pipeline, custom_class_name = _resolve_custom_pipeline_and_cls(
            folder=cached_folder, config=config_dict, custom_pipeline=custom_pipeline
        )
813
        pipeline_class = _get_pipeline_class(
814
            cls,
815
            config=config_dict,
816
817
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
818
            class_name=custom_class_name,
819
820
            cache_dir=cache_dir,
            revision=custom_revision,
821
        )
822

823
824
825
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

826
        # DEPRECATED: To be removed in 1.0.0
827
828
829
830
831
832
833
        # we are deprecating the `StableDiffusionInpaintPipelineLegacy` pipeline which gets loaded
        # when a user requests for a `StableDiffusionInpaintPipeline` with `diffusers` version being <= 0.5.1.
        _maybe_raise_warning_for_inpainting(
            pipeline_class=pipeline_class,
            pretrained_model_name_or_path=pretrained_model_name_or_path,
            config=config_dict,
        )
834

835
836
837
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

838
839
840
841
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
842
        expected_types = pipeline_class._get_signature_types()
843
844
845
846
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

847
848
849
850
851
852
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
853
854
855
856
857
858
859
860
861
862
863
864
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
        for key in init_dict.keys():
            if key not in passed_class_obj:
                continue
            if "scheduler" in key:
                continue

            class_obj = passed_class_obj[key]
            _expected_class_types = []
            for expected_type in expected_types[key]:
                if isinstance(expected_type, enum.EnumMeta):
                    _expected_class_types.extend(expected_type.__members__.keys())
                else:
                    _expected_class_types.append(expected_type.__name__)

            _is_valid_type = class_obj.__class__.__name__ in _expected_class_types
            if not _is_valid_type:
                logger.warning(
                    f"Expected types for {key}: {_expected_class_types}, got {class_obj.__class__.__name__}."
                )

885
886
887
888
889
890
891
892
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

893
        # 5. Throw nice warnings / errors for fast accelerate loading
894
895
896
897
898
899
900
901
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
923
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
924
            # 7.1 device_map shenanigans
925
926
927
928
929
930
931
            if final_device_map is not None and len(final_device_map) > 0:
                component_device = final_device_map.get(name, None)
                if component_device is not None:
                    current_device_map = {"": component_device}
                else:
                    current_device_map = None

932
            # 7.2 - now that JAX/Flax is an official framework of the library, we might load from Flax names
933
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
934

935
            # 7.3 Define all importable classes
936
            is_pipeline_module = hasattr(pipelines, library_name)
937
            importable_classes = ALL_IMPORTABLE_CLASSES
938
939
            loaded_sub_model = None

940
            # 7.4 Use passed sub model or load class_name from library_name
941
            if name in passed_class_obj:
942
943
944
945
946
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
947
948
949

                loaded_sub_model = passed_class_obj[name]
            else:
950
951
952
953
954
955
956
957
958
959
960
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
961
                    device_map=current_device_map,
962
963
964
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
965
966
967
968
969
970
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
971
                    use_safetensors=use_safetensors,
Marc Sun's avatar
Marc Sun committed
972
                    dduf_entries=dduf_entries,
973
                )
974
975
976
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
977
978
979

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

980
        # 8. Handle connected pipelines.
981
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
982
983
984
985
986
987
988
            init_kwargs = _update_init_kwargs_with_connected_pipeline(
                init_kwargs=init_kwargs,
                passed_pipe_kwargs=passed_pipe_kwargs,
                passed_class_objs=passed_class_obj,
                folder=cached_folder,
                **kwargs_copied,
            )
989

990
        # 9. Potentially add passed objects if expected
991
992
993
994
995
996
997
998
999
1000
1001
1002
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

1003
        # 10. Instantiate the pipeline
1004
        model = pipeline_class(**init_kwargs)
1005

1006
        # 11. Save where the model was instantiated from
1007
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
1008
1009
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
1010
1011
        return model

1012
1013
1014
1015
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1038
1039
1040
1041
1042
1043
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1044
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1045
1046
        self._all_hooks = []

1047
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1048
1049
1050
1051
1052
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
1053
1054
1055
1056
1057
1058
1059

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1060
        """
1061
1062
1063
1064
1065
1066
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1077
1078
        self.remove_all_hooks()

1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1089
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1090
1091
1092

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1093
        self._offload_device = device
1094

1095
1096
1097
1098
        self.to("cpu", silence_dtype_warnings=True)
        device_mod = getattr(torch, device.type, None)
        if hasattr(device_mod, "empty_cache") and device_mod.is_available():
            device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1099
1100
1101

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1102
        self._all_hooks = []
1103
1104
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1105
            model = all_model_components.pop(model_str, None)
1106

1107
1108
1109
            if not isinstance(model, torch.nn.Module):
                continue

1110
1111
1112
1113
1114
1115
1116
1117
            # This is because the model would already be placed on a CUDA device.
            _, _, is_loaded_in_8bit_bnb = _check_bnb_status(model)
            if is_loaded_in_8bit_bnb:
                logger.info(
                    f"Skipping the hook placement for the {model.__class__.__name__} as it is loaded in `bitsandbytes` 8bit."
                )
                continue

1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1136
1137
1138
1139
        Function that offloads all components, removes all model hooks that were added when using
        `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
        is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
        functions correctly when applying enable_model_cpu_offload.
1140
1141
1142
1143
1144
1145
        """
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1146
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1147

1148
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1149
        r"""
1150
1151
1152
1153
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
1154
        `enable_model_cpu_offload`, but performance is lower.
1155
1156
1157
1158
1159
1160
1161

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1162
1163
1164
1165
1166
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1167
        self.remove_all_hooks()
1168

1169
1170
1171
1172
1173
1174
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1185
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1186
1187
1188

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1189
        self._offload_device = device
1190
1191
1192

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1193
1194
1195
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1222
    @classmethod
1223
    @validate_hf_hub_args
1224
1225
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1226
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1227
1228

        Parameters:
Steven Liu's avatar
Steven Liu committed
1229
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1230
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1231
                hosted on the Hub.
1232
1233
1234
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1235
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1236
1237
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1238
1239

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1240
1241
1242
1243
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1244

Steven Liu's avatar
Steven Liu committed
1245
1246
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1247

Steven Liu's avatar
Steven Liu committed
1248
                <Tip warning={true}>
1249

Steven Liu's avatar
Steven Liu committed
1250
                🧪 This is an experimental feature and may change in the future.
1251

Steven Liu's avatar
Steven Liu committed
1252
                </Tip>
1253

Steven Liu's avatar
Steven Liu committed
1254
1255
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1256
1257
1258
1259

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
1260

1261
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1262
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1263
1264
1265
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1266
1267
1268
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1269
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1270
1271
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1272
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1273
1274
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1275
            custom_revision (`str`, *optional*, defaults to `"main"`):
1276
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1277
1278
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1279
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1280
1281
1282
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1283
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1284
1285
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
Marc Sun's avatar
Marc Sun committed
1286
1287
            dduf_file(`str`, *optional*):
                Load weights from the specified DDUF file.
1288
1289
1290
1291
1292
1293
1294
1295
1296
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1297
1298
1299
1300
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1301
1302
1303
1304

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1305
1306
1307

        <Tip>

Steven Liu's avatar
Steven Liu committed
1308
1309
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1310
1311
1312
1313

        </Tip>

        """
1314
        cache_dir = kwargs.pop("cache_dir", None)
1315
1316
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1317
1318
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1319
1320
1321
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1322
        custom_revision = kwargs.pop("custom_revision", None)
1323
        variant = kwargs.pop("variant", None)
1324
        use_safetensors = kwargs.pop("use_safetensors", None)
1325
        use_onnx = kwargs.pop("use_onnx", None)
1326
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1327
        trust_remote_code = kwargs.pop("trust_remote_code", False)
Marc Sun's avatar
Marc Sun committed
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
        dduf_file: Optional[Dict[str, DDUFEntry]] = kwargs.pop("dduf_file", None)

        if dduf_file:
            if custom_pipeline:
                raise NotImplementedError("Custom pipelines are not supported with DDUF at the moment.")
            if load_connected_pipeline:
                raise NotImplementedError("Connected pipelines are not supported with DDUF at the moment.")
            return _download_dduf_file(
                pretrained_model_name=pretrained_model_name,
                dduf_file=dduf_file,
                pipeline_class_name=cls.__name__,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )
1345
1346
1347

        allow_pickle = False
        if use_safetensors is None:
1348
            use_safetensors = True
1349
            allow_pickle = True
1350
1351
1352
1353

        allow_patterns = None
        ignore_patterns = None

1354
        model_info_call_error: Optional[Exception] = None
1355
1356
        if not local_files_only:
            try:
1357
                info = model_info(pretrained_model_name, token=token, revision=revision)
1358
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1359
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1360
                local_files_only = True
1361
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1362

1363
        if not local_files_only:
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
            filenames = {sibling.rfilename for sibling in info.siblings}
            if variant is not None and _check_legacy_sharding_variant_format(filenames=filenames, variant=variant):
                warn_msg = (
                    f"Warning: The repository contains sharded checkpoints for variant '{variant}' maybe in a deprecated format. "
                    "Please check your files carefully:\n\n"
                    "- Correct format example: diffusion_pytorch_model.fp16-00003-of-00003.safetensors\n"
                    "- Deprecated format example: diffusion_pytorch_model-00001-of-00002.fp16.safetensors\n\n"
                    "If you find any files in the deprecated format:\n"
                    "1. Remove all existing checkpoint files for this variant.\n"
                    "2. Re-obtain the correct files by running `save_pretrained()`.\n\n"
                    "This will ensure you're using the most up-to-date and compatible checkpoint format."
                )
                logger.warning(warn_msg)

            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

1380
1381
1382
1383
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1384
                revision=revision,
1385
1386
                proxies=proxies,
                force_download=force_download,
1387
                token=token,
1388
1389
1390
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1391
1392
1393
1394
1395
1396
            ignore_filenames = config_dict.pop("_ignore_files", [])

            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1397
1398
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1399
            ) >= version.parse("0.22.0"):
1400
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames)
1401

1402
1403
1404
            custom_components, folder_names = _get_custom_components_and_folders(
                pretrained_model_name, config_dict, filenames, variant_filenames, variant
            )
1405
            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
1406

1407
1408
1409
1410
1411
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

1412
1413
1414
1415
1416
            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1417
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1418
1419
1420
1421
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
1422
            # also allow downloading config.json files with the model
1423
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1424
1425
1426
1427
1428
1429
1430
            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1448
1449
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1450
1451
1452
1453
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1454
1455
1456
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1457
1458
                cache_dir=cache_dir,
                revision=custom_revision,
1459
1460
1461
1462
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
            # retrieve all patterns that should not be downloaded and error out when needed
            ignore_patterns = _get_ignore_patterns(
                passed_components,
                model_folder_names,
                model_filenames,
                variant_filenames,
                use_safetensors,
                from_flax,
                allow_pickle,
                use_onnx,
                pipeline_class._is_onnx,
                variant,
            )
1476

1477
1478
1479
1480
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1481
1482
1483
1484

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1485
1486
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1487
1488
1489
1490
1491
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1492

1493
1494
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1495

1496
            if pipeline_is_cached and not force_download:
1497
1498
1499
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1500

1501
1502
1503
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1504
1505

        # download all allow_patterns - ignore_patterns
1506
        try:
1507
            cached_folder = snapshot_download(
1508
1509
1510
1511
                pretrained_model_name,
                cache_dir=cache_dir,
                proxies=proxies,
                local_files_only=local_files_only,
1512
                token=token,
1513
1514
1515
1516
1517
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1518

1519
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1520
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1521

1522
1523
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1524
1525

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1526
1527
1528
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1529
1530
1531
1532
1533
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1534
                        "token": token,
1535
1536
1537
1538
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1539
1540
1541

            return cached_folder

1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1553
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1554
1555
1556
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1557

1558
1559
    @classmethod
    def _get_signature_keys(cls, obj):
1560
1561
1562
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1563
        expected_modules = set(required_parameters.keys()) - {"self"}
1564
1565
1566
1567
1568
1569
1570

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1571
1572
        return expected_modules, optional_parameters

1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1585
1586
1587
1588
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1589
1590
1591
1592
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

1603
        >>> text2img = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1616
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1617
1618
1619
1620
1621
1622
1623
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1624
        Convert a NumPy image or a batch of images to a PIL image.
1625
        """
Patrick von Platen's avatar
Patrick von Platen committed
1626
        return numpy_to_pil(images)
1627

lsb's avatar
lsb committed
1628
    @torch.compiler.disable
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1647
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1648
        r"""
1649
1650
1651
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1652

Steven Liu's avatar
Steven Liu committed
1653
        <Tip warning={true}>
1654

Steven Liu's avatar
Steven Liu committed
1655
1656
1657
1658
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1679
        """
1680
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1681
1682
1683

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1684
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1685
1686
1687
        """
        self.set_use_memory_efficient_attention_xformers(False)

1688
1689
1690
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1691
1692
1693
1694
1695
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1696
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1697
1698
1699
1700

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1701
1702
1703
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1704

1705
1706
        for module in modules:
            fn_recursive_set_mem_eff(module)
1707
1708
1709

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1710
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1721
1722
1723
1724

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1725
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1726
1727
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1728
1729
1730
1731
1732
1733
1734
1735

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
1736
        ...     "stable-diffusion-v1-5/stable-diffusion-v1-5",
1737
1738
1739
1740
1741
1742
1743
1744
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1745
1746
1747
1748
1749
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1750
1751
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1752
1753
1754
1755
1756
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1757
1758
1759
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1760

1761
1762
        for module in modules:
            module.set_attention_slice(slice_size)
1763

1764
1765
1766
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
1767
1768
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

1783
        >>> pipe = StableDiffusionPipeline.from_pretrained("stable-diffusion-v1-5/stable-diffusion-v1-5")
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
        torch_dtype = kwargs.pop("torch_dtype", None)

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
1827
                    logger.warning(
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

        missing_modules = (
            set(expected_modules)
            - set(pipeline._optional_components)
            - set(pipeline_kwargs.keys())
            - set(true_optional_modules)
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
1950
1951
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False