__init__.py 5.16 KB
Newer Older
1
2
3
from typing import TYPE_CHECKING

from ..utils import DIFFUSERS_SLOW_IMPORT, _LazyModule, deprecate
4
from ..utils.import_utils import is_peft_available, is_torch_available, is_transformers_available
5
6
7
8
9
10


def text_encoder_lora_state_dict(text_encoder):
    deprecate(
        "text_encoder_load_state_dict in `models`",
        "0.27.0",
11
        "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
    )
    state_dict = {}

    for name, module in text_encoder_attn_modules(text_encoder):
        for k, v in module.q_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.q_proj.lora_linear_layer.{k}"] = v

        for k, v in module.k_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.k_proj.lora_linear_layer.{k}"] = v

        for k, v in module.v_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.v_proj.lora_linear_layer.{k}"] = v

        for k, v in module.out_proj.lora_linear_layer.state_dict().items():
            state_dict[f"{name}.out_proj.lora_linear_layer.{k}"] = v

    return state_dict


if is_transformers_available():

    def text_encoder_attn_modules(text_encoder):
        deprecate(
            "text_encoder_attn_modules in `models`",
            "0.27.0",
37
            "`text_encoder_lora_state_dict` is deprecated and will be removed in 0.27.0. Make sure to retrieve the weights using `get_peft_model`. See https://huggingface.co/docs/peft/v0.6.2/en/quicktour#peftmodel for more information.",
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
        )
        from transformers import CLIPTextModel, CLIPTextModelWithProjection

        attn_modules = []

        if isinstance(text_encoder, (CLIPTextModel, CLIPTextModelWithProjection)):
            for i, layer in enumerate(text_encoder.text_model.encoder.layers):
                name = f"text_model.encoder.layers.{i}.self_attn"
                mod = layer.self_attn
                attn_modules.append((name, mod))
        else:
            raise ValueError(f"do not know how to get attention modules for: {text_encoder.__class__.__name__}")

        return attn_modules


_import_structure = {}

if is_torch_available():
57
    _import_structure["single_file_model"] = ["FromOriginalModelMixin"]
hlky's avatar
hlky committed
58
    _import_structure["transformer_flux"] = ["FluxTransformer2DLoadersMixin"]
59
    _import_structure["transformer_sd3"] = ["SD3Transformer2DLoadersMixin"]
60
61
62
    _import_structure["unet"] = ["UNet2DConditionLoadersMixin"]
    _import_structure["utils"] = ["AttnProcsLayers"]
    if is_transformers_available():
63
        _import_structure["single_file"] = ["FromSingleFileMixin"]
64
65
66
67
        _import_structure["lora_pipeline"] = [
            "AmusedLoraLoaderMixin",
            "StableDiffusionLoraLoaderMixin",
            "SD3LoraLoaderMixin",
68
            "AuraFlowLoraLoaderMixin",
69
            "StableDiffusionXLLoraLoaderMixin",
Aryan's avatar
Aryan committed
70
            "LTXVideoLoraLoaderMixin",
71
            "LoraLoaderMixin",
Sayak Paul's avatar
Sayak Paul committed
72
            "FluxLoraLoaderMixin",
Aryan's avatar
Aryan committed
73
            "CogVideoXLoraLoaderMixin",
Aryan's avatar
Aryan committed
74
            "CogView4LoraLoaderMixin",
75
            "Mochi1LoraLoaderMixin",
76
            "HunyuanVideoLoraLoaderMixin",
77
            "SanaLoraLoaderMixin",
78
            "Lumina2LoraLoaderMixin",
Aryan's avatar
Aryan committed
79
            "WanLoraLoaderMixin",
80
            "HiDreamImageLoraLoaderMixin",
81
        ]
82
        _import_structure["textual_inversion"] = ["TextualInversionLoaderMixin"]
83
84
        _import_structure["ip_adapter"] = [
            "IPAdapterMixin",
hlky's avatar
hlky committed
85
            "FluxIPAdapterMixin",
86
87
            "SD3IPAdapterMixin",
        ]
88

89
90
_import_structure["peft"] = ["PeftAdapterMixin"]

91
92
93

if TYPE_CHECKING or DIFFUSERS_SLOW_IMPORT:
    if is_torch_available():
94
        from .single_file_model import FromOriginalModelMixin
hlky's avatar
hlky committed
95
        from .transformer_flux import FluxTransformer2DLoadersMixin
96
        from .transformer_sd3 import SD3Transformer2DLoadersMixin
97
98
99
100
        from .unet import UNet2DConditionLoadersMixin
        from .utils import AttnProcsLayers

        if is_transformers_available():
101
            from .ip_adapter import (
hlky's avatar
hlky committed
102
                FluxIPAdapterMixin,
103
104
105
                IPAdapterMixin,
                SD3IPAdapterMixin,
            )
106
107
            from .lora_pipeline import (
                AmusedLoraLoaderMixin,
108
                AuraFlowLoraLoaderMixin,
Aryan's avatar
Aryan committed
109
                CogVideoXLoraLoaderMixin,
Aryan's avatar
Aryan committed
110
                CogView4LoraLoaderMixin,
Sayak Paul's avatar
Sayak Paul committed
111
                FluxLoraLoaderMixin,
112
                HiDreamImageLoraLoaderMixin,
113
                HunyuanVideoLoraLoaderMixin,
114
                LoraLoaderMixin,
Aryan's avatar
Aryan committed
115
                LTXVideoLoraLoaderMixin,
116
                Lumina2LoraLoaderMixin,
117
                Mochi1LoraLoaderMixin,
118
                SanaLoraLoaderMixin,
119
120
121
                SD3LoraLoaderMixin,
                StableDiffusionLoraLoaderMixin,
                StableDiffusionXLLoraLoaderMixin,
Aryan's avatar
Aryan committed
122
                WanLoraLoaderMixin,
123
            )
124
125
            from .single_file import FromSingleFileMixin
            from .textual_inversion import TextualInversionLoaderMixin
126
127

    from .peft import PeftAdapterMixin
128
129
130
131
else:
    import sys

    sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)