"tests/lint/clangformat_linter.py" did not exist on "774d57539cd7d06f8ba66a6647aee6d19e0397ba"
test_models_vae.py 40.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
import torch
21
from datasets import load_dataset
22
from parameterized import parameterized
23

Will Berman's avatar
Will Berman committed
24
25
26
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
Suraj Patil's avatar
Suraj Patil committed
27
    AutoencoderKLTemporalDecoder,
28
    AutoencoderOobleck,
Will Berman's avatar
Will Berman committed
29
30
31
32
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    StableDiffusionPipeline,
)
33
from diffusers.utils.import_utils import is_xformers_available
Will Berman's avatar
Will Berman committed
34
from diffusers.utils.loading_utils import load_image
Dhruv Nair's avatar
Dhruv Nair committed
35
from diffusers.utils.testing_utils import (
Arsalan's avatar
Arsalan committed
36
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
37
38
39
    enable_full_determinism,
    floats_tensor,
    load_hf_numpy,
Arsalan's avatar
Arsalan committed
40
41
    require_torch_accelerator,
    require_torch_accelerator_with_fp16,
Dhruv Nair's avatar
Dhruv Nair committed
42
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
43
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
44
45
46
47
    slow,
    torch_all_close,
    torch_device,
)
Will Berman's avatar
Will Berman committed
48
from diffusers.utils.torch_utils import randn_tensor
49

50
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
51
52


53
enable_full_determinism()
54
55


56
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
57
58
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
59
60
61
62
63
64
65
66
67
68
69
70
71
    init_dict = {
        "block_out_channels": block_out_channels,
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
    }
    return init_dict


def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
72
73
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "down_block_out_channels": block_out_channels,
        "layers_per_down_block": 1,
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "up_block_out_channels": block_out_channels,
        "layers_per_up_block": 1,
        "act_fn": "silu",
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
        "sample_size": 32,
        "scaling_factor": 0.18215,
    }
    return init_dict


def get_autoencoder_tiny_config(block_out_channels=None):
    block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "encoder_block_out_channels": block_out_channels,
        "decoder_block_out_channels": block_out_channels,
        "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
        "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
    }
    return init_dict


def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
106
107
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    return {
        "encoder_block_out_channels": block_out_channels,
        "encoder_in_channels": 3,
        "encoder_out_channels": 4,
        "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "decoder_add_attention": False,
        "decoder_block_out_channels": block_out_channels,
        "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels),
        "decoder_downsample_padding": 1,
        "decoder_in_channels": 7,
        "decoder_layers_per_block": 1,
        "decoder_norm_eps": 1e-05,
        "decoder_norm_num_groups": norm_num_groups,
        "encoder_norm_num_groups": norm_num_groups,
        "decoder_num_train_timesteps": 1024,
        "decoder_out_channels": 6,
        "decoder_resnet_time_scale_shift": "scale_shift",
        "decoder_time_embedding_type": "learned",
        "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels),
        "scaling_factor": 1,
        "latent_channels": 4,
    }


132
133
134
135
136
137
138
139
140
141
142
143
def get_autoencoder_oobleck_config(block_out_channels=None):
    init_dict = {
        "encoder_hidden_size": 12,
        "decoder_channels": 12,
        "decoder_input_channels": 6,
        "audio_channels": 2,
        "downsampling_ratios": [2, 4],
        "channel_multiples": [1, 2],
    }
    return init_dict


144
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
145
    model_class = AutoencoderKL
146
147
    main_input_name = "sample"
    base_precision = 1e-2
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
168
        init_dict = get_autoencoder_kl_config()
169
170
171
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

172
    @unittest.skip("Not tested.")
173
174
175
    def test_forward_signature(self):
        pass

176
    @unittest.skip("Not tested.")
177
178
179
    def test_training(self):
        pass

180
181
182
    def test_gradient_checkpointing_is_applied(self):
        expected_set = {"Decoder", "Encoder"}
        super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
183

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model = model.to(torch_device)
        model.eval()

Arsalan's avatar
Arsalan committed
199
200
201
202
        # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            generator = torch.Generator(device=generator_device).manual_seed(0)
203
        else:
Arsalan's avatar
Arsalan committed
204
            generator = torch.manual_seed(0)
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
        image = image.to(torch_device)
        with torch.no_grad():
            output = model(image, sample_posterior=True, generator=generator).sample

        output_slice = output[0, -1, -3:, -3:].flatten().cpu()

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
Arsalan's avatar
Arsalan committed
235
        elif generator_device == "cpu":
236
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
237
238
239
240
241
242
243
244
245
246
247
                [
                    -0.1352,
                    0.0878,
                    0.0419,
                    -0.0818,
                    -0.1069,
                    0.0688,
                    -0.1458,
                    -0.4446,
                    -0.0026,
                ]
248
249
250
            )
        else:
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
251
252
253
254
255
256
257
258
259
260
261
                [
                    -0.2421,
                    0.4642,
                    0.2507,
                    -0.0438,
                    0.0682,
                    0.3160,
                    -0.2018,
                    -0.0727,
                    0.2485,
                ]
262
263
            )

264
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
265
266


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AsymmetricAutoencoderKL
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        mask = torch.ones((batch_size, 1) + sizes).to(torch_device)

        return {"sample": image, "mask": mask}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
292
        init_dict = get_asym_autoencoder_kl_config()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
293
294
295
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

296
    @unittest.skip("Not tested.")
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
297
298
299
    def test_forward_signature(self):
        pass

300
    @unittest.skip("Not tested.")
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
301
302
303
304
    def test_forward_with_norm_groups(self):
        pass


305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderTiny
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
329
        init_dict = get_autoencoder_tiny_config()
330
331
332
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

333
    @unittest.skip("Not tested.")
334
335
336
    def test_outputs_equivalence(self):
        pass

337
338
339
340
341
342
343
344
345
346
    def test_gradient_checkpointing_is_applied(self):
        expected_set = {"DecoderTiny", "EncoderTiny"}
        super().test_gradient_checkpointing_is_applied(expected_set=expected_set)

    @unittest.skip(
        "Gradient checkpointing is supported but this test doesn't apply to this class because it's forward is a bit different from the rest."
    )
    def test_effective_gradient_checkpointing(self):
        pass

347

Will Berman's avatar
Will Berman committed
348
349
350
351
352
353
354
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase):
    model_class = ConsistencyDecoderVAE
    main_input_name = "sample"
    base_precision = 1e-2
    forward_requires_fresh_args = True

    def inputs_dict(self, seed=None):
355
356
357
358
        if seed is None:
            generator = torch.Generator("cpu").manual_seed(0)
        else:
            generator = torch.Generator("cpu").manual_seed(seed)
Will Berman's avatar
Will Berman committed
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device))

        return {"sample": image, "generator": generator}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    @property
    def init_dict(self):
373
        return get_consistency_vae_config()
Will Berman's avatar
Will Berman committed
374
375
376
377
378
379
380
381
382
383
384
385
386

    def prepare_init_args_and_inputs_for_common(self):
        return self.init_dict, self.inputs_dict()

    @unittest.skip
    def test_training(self):
        ...

    @unittest.skip
    def test_ema_training(self):
        ...


M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
387
class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
    model_class = AutoencoderKLTemporalDecoder
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 3
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        num_frames = 3

        return {"sample": image, "num_frames": num_frames}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "latent_channels": 4,
            "layers_per_block": 2,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

423
    @unittest.skip("Not tested.")
Suraj Patil's avatar
Suraj Patil committed
424
425
426
    def test_forward_signature(self):
        pass

427
    @unittest.skip("Not tested.")
Suraj Patil's avatar
Suraj Patil committed
428
429
430
    def test_training(self):
        pass

431
432
433
    def test_gradient_checkpointing_is_applied(self):
        expected_set = {"Encoder", "TemporalDecoder"}
        super().test_gradient_checkpointing_is_applied(expected_set=expected_set)
Suraj Patil's avatar
Suraj Patil committed
434
435


436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AutoencoderOobleck
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 2
        seq_len = 24

        waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device)

        return {"sample": waveform, "sample_posterior": False}

    @property
    def input_shape(self):
        return (2, 24)

    @property
    def output_shape(self):
        return (2, 24)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = get_autoencoder_oobleck_config()
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

464
    @unittest.skip("Not tested.")
465
466
467
    def test_forward_signature(self):
        pass

468
    @unittest.skip("Not tested.")
469
470
471
    def test_forward_with_norm_groups(self):
        pass

472
473
474
475
    @unittest.skip("No attention module used in this model")
    def test_set_attn_processor_for_determinism(self):
        return

476

477
478
479
480
481
482
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
483
        backend_empty_cache(torch_device)
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499

    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
        model.to(torch_device).eval()
        return model

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
    @parameterized.expand(
        [
            [(1, 4, 73, 97), (1, 3, 584, 776)],
            [(1, 4, 97, 73), (1, 3, 776, 584)],
            [(1, 4, 49, 65), (1, 3, 392, 520)],
            [(1, 4, 65, 49), (1, 3, 520, 392)],
            [(1, 4, 49, 49), (1, 3, 392, 392)],
        ]
    )
    def test_tae_tiling(self, in_shape, out_shape):
        model = self.get_sd_vae_model()
        model.enable_tiling()
        with torch.no_grad():
            zeros = torch.zeros(in_shape).to(torch_device)
            dec = model.decode(zeros).sample
            assert dec.shape == out_shape

517
518
519
520
521
522
523
524
525
526
    def test_stable_diffusion(self):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed=33)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
527
        expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
528
529
530

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
    @parameterized.expand([(True,), (False,)])
    def test_tae_roundtrip(self, enable_tiling):
        # load the autoencoder
        model = self.get_sd_vae_model()
        if enable_tiling:
            model.enable_tiling()

        # make a black image with a white square in the middle,
        # which is large enough to split across multiple tiles
        image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
        image[..., 256:768, 256:768] = 1.0

        # round-trip the image through the autoencoder
        with torch.no_grad():
            sample = model(image).sample

        # the autoencoder reconstruction should match original image, sorta
        def downscale(x):
            return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)

        assert torch_all_close(downscale(sample), downscale(image), atol=0.125)

553

554
555
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
Patrick von Platen's avatar
hot fix  
Patrick von Platen committed
556
557
558
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

559
560
561
562
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
563
        backend_empty_cache(torch_device)
564
565
566

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
567
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
568
569
570
571
572
573
574
        return image

    def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderKL.from_pretrained(
575
576
577
578
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
            revision=revision,
579
        )
580
        model.to(torch_device)
581
582
583
584

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
585
586
587
588
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
589
590
591
592

    @parameterized.expand(
        [
            # fmt: off
593
594
            [
                33,
595
                [-0.1556, 0.9848, -0.0410, -0.0642, -0.2685, 0.8381, -0.2004, -0.0700],
596
597
598
599
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
600
                [-0.2376, 0.1200, 0.1337, -0.4830, -0.2504, -0.0759, -0.0486, -0.4077],
601
602
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
603
604
605
            # fmt: on
        ]
    )
606
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
607
608
609
610
611
612
613
614
615
616
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
617
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
618

619
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
620
621
622
623
624
625
626
627
628

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
            [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
629
    @require_torch_accelerator_with_fp16
630
631
632
633
634
635
636
637
638
639
640
641
642
    def test_stable_diffusion_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        image = self.get_sd_image(seed, fp16=True)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
643
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
644
645
646
647

    @parameterized.expand(
        [
            # fmt: off
648
649
650
651
652
653
654
655
656
657
            [
                33,
                [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
658
659
660
            # fmt: on
        ]
    )
661
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
662
663
664
665
666
667
668
669
670
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
671
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
672

673
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
674
675
676
677
678
679
680
681
682

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
            [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
683
684
    @require_torch_accelerator
    @skip_mps
685
686
687
688
689
690
691
692
693
694
695
696
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
697
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
698
699
700
701
702
703
704
705
706

    @parameterized.expand(
        [
            # fmt: off
            [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
            [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
707
    @require_torch_accelerator_with_fp16
708
709
710
711
712
713
714
715
716
717
718
719
    def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
720
        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
721

722
    @parameterized.expand([(13,), (16,), (27,)])
723
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
724
725
726
727
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
    def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-1)

743
    @parameterized.expand([(13,), (16,), (37,)])
744
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
745
746
747
748
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-2)

764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

786
        tolerance = 3e-3 if torch_device != "mps" else 1e-2
787
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
788

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
789
790
791
792
793
794
795
796
797
798

@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
799
        backend_empty_cache(torch_device)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
        revision = "main"
        torch_dtype = torch.float32

        model = AsymmetricAutoencoderKL.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            revision=revision,
        )
        model.to(torch_device).eval()

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
820
821
822
823
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
824
825
826
827

    @parameterized.expand(
        [
            # fmt: off
828
829
            [
                33,
830
                [-0.0336, 0.3011, 0.1764, 0.0087, -0.3401, 0.3645, -0.1247, 0.1205],
831
832
833
834
835
836
837
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
            ],
            [
                47,
                [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529],
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
859
860
861
862
863
864
865
866
867
868
            [
                33,
                [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
            ],
            [
                47,
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
            # fmt: on
        ]
    )
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

    @parameterized.expand(
        [
            # fmt: off
889
            [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
890
891
892
893
            [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
894
895
    @require_torch_accelerator
    @skip_mps
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)

    @parameterized.expand([(13,), (16,), (37,)])
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
912
913
914
915
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=5e-2)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        tolerance = 3e-3 if torch_device != "mps" else 1e-2
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
Will Berman's avatar
Will Berman committed
955
956
957
958


@slow
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
959
960
961
962
963
964
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Will Berman's avatar
Will Berman committed
965
966
967
968
969
970
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

971
    @torch.no_grad()
Will Berman's avatar
Will Berman committed
972
973
974
975
976
977
978
979
    def test_encode_decode(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
980
981
982
        image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :].to(
            torch_device
        )
Will Berman's avatar
Will Berman committed
983
984
985
986
987
988
989
990
991
992
993
994

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
995
996
997
        pipe = StableDiffusionPipeline.from_pretrained(
            "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None
        )
Will Berman's avatar
Will Berman committed
998
999
1000
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1001
1002
1003
1004
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_encode_decode_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = (
            torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :]
            .half()
1025
            .to(torch_device)
Will Berman's avatar
Will Berman committed
1026
1027
1028
1029
1030
1031
1032
1033
        )

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1034
1035
            [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1036
1037
1038
1039
1040
1041
1042
1043
1044
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained(
1045
            "stable-diffusion-v1-5/stable-diffusion-v1-5",
Suraj Patil's avatar
Suraj Patil committed
1046
1047
1048
            torch_dtype=torch.float16,
            vae=vae,
            safety_checker=None,
Will Berman's avatar
Will Berman committed
1049
1050
1051
1052
        )
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1053
1054
1055
1056
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1057
1058
1059
1060
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1061
1062
            [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1063
1064
1065
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)
1066
1067

    def test_vae_tiling(self):
YiYi Xu's avatar
YiYi Xu committed
1068
1069
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
        pipe = StableDiffusionPipeline.from_pretrained(
1070
            "stable-diffusion-v1-5/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16
YiYi Xu's avatar
YiYi Xu committed
1071
        )
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_1 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        out_2 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        assert torch_all_close(out_1, out_2, atol=5e-3)

        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
1095
1096
        with torch.no_grad():
            for shape in shapes:
1097
                image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype)
YiYi Xu's avatar
YiYi Xu committed
1098
                pipe.vae.decode(image)
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131


@slow
class AutoencoderOobleckIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def _load_datasamples(self, num_samples):
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return torch.nn.utils.rnn.pad_sequence(
            [torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True
        )

    def get_audio(self, audio_sample_size=2097152, fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        audio = self._load_datasamples(2).to(torch_device).to(dtype)

        # pad / crop to audio_sample_size
        audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1]))

        # todo channel
        audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device)

        return audio

1132
    def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False):
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderOobleck.from_pretrained(
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
        )
        model.to(torch_device)

        return model

    def get_generator(self, seed=0):
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
            [33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
            [44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(audio, generator=generator, sample_posterior=True).sample

        assert sample.shape == audio.shape
        assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6

        output_slice = sample[-1, 1, 5:10].cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)

    def test_stable_diffusion_mode(self):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()

        with torch.no_grad():
            sample = model(audio, sample_posterior=False).sample

        assert sample.shape == audio.shape

    @parameterized.expand(
        [
            # fmt: off
            [33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
            [44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()
        generator = self.get_generator(seed)

        with torch.no_grad():
            x = audio
            posterior = model.encode(x).latent_dist
            z = posterior.sample(generator=generator)
            sample = model.decode(z).sample

        # (batch_size, latent_dim, sequence_length)
        assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024)

        assert sample.shape == audio.shape
        assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6

        output_slice = sample[-1, 1, 5:10].cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)