test_models_vae.py 39.7 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
import torch
21
from parameterized import parameterized
22

Will Berman's avatar
Will Berman committed
23
24
25
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
Suraj Patil's avatar
Suraj Patil committed
26
    AutoencoderKLTemporalDecoder,
Will Berman's avatar
Will Berman committed
27
28
29
30
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    StableDiffusionPipeline,
)
31
from diffusers.utils.import_utils import is_xformers_available
Will Berman's avatar
Will Berman committed
32
from diffusers.utils.loading_utils import load_image
Dhruv Nair's avatar
Dhruv Nair committed
33
from diffusers.utils.testing_utils import (
Arsalan's avatar
Arsalan committed
34
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
35
36
37
    enable_full_determinism,
    floats_tensor,
    load_hf_numpy,
Arsalan's avatar
Arsalan committed
38
39
40
    require_torch_accelerator,
    require_torch_accelerator_with_fp16,
    require_torch_accelerator_with_training,
Dhruv Nair's avatar
Dhruv Nair committed
41
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
42
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
43
44
45
46
    slow,
    torch_all_close,
    torch_device,
)
Will Berman's avatar
Will Berman committed
47
from diffusers.utils.torch_utils import randn_tensor
48

49
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
50
51


52
enable_full_determinism()
53
54


55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
    block_out_channels = block_out_channels or [32, 64]
    norm_num_groups = norm_num_groups or 32
    init_dict = {
        "block_out_channels": block_out_channels,
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
    }
    return init_dict


def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
    block_out_channels = block_out_channels or [32, 64]
    norm_num_groups = norm_num_groups or 32
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "down_block_out_channels": block_out_channels,
        "layers_per_down_block": 1,
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "up_block_out_channels": block_out_channels,
        "layers_per_up_block": 1,
        "act_fn": "silu",
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
        "sample_size": 32,
        "scaling_factor": 0.18215,
    }
    return init_dict


def get_autoencoder_tiny_config(block_out_channels=None):
    block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "encoder_block_out_channels": block_out_channels,
        "decoder_block_out_channels": block_out_channels,
        "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
        "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
    }
    return init_dict


def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
    block_out_channels = block_out_channels or [32, 64]
    norm_num_groups = norm_num_groups or 32
    return {
        "encoder_block_out_channels": block_out_channels,
        "encoder_in_channels": 3,
        "encoder_out_channels": 4,
        "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "decoder_add_attention": False,
        "decoder_block_out_channels": block_out_channels,
        "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels),
        "decoder_downsample_padding": 1,
        "decoder_in_channels": 7,
        "decoder_layers_per_block": 1,
        "decoder_norm_eps": 1e-05,
        "decoder_norm_num_groups": norm_num_groups,
        "encoder_norm_num_groups": norm_num_groups,
        "decoder_num_train_timesteps": 1024,
        "decoder_out_channels": 6,
        "decoder_resnet_time_scale_shift": "scale_shift",
        "decoder_time_embedding_type": "learned",
        "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels),
        "scaling_factor": 1,
        "latent_channels": 4,
    }


131
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
132
    model_class = AutoencoderKL
133
134
    main_input_name = "sample"
    base_precision = 1e-2
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
155
        init_dict = get_autoencoder_kl_config()
156
157
158
159
160
161
162
163
164
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

Arsalan's avatar
Arsalan committed
165
    @require_torch_accelerator_with_training
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model = model.to(torch_device)
        model.eval()

Arsalan's avatar
Arsalan committed
221
222
223
224
        # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            generator = torch.Generator(device=generator_device).manual_seed(0)
225
        else:
Arsalan's avatar
Arsalan committed
226
            generator = torch.manual_seed(0)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
        image = image.to(torch_device)
        with torch.no_grad():
            output = model(image, sample_posterior=True, generator=generator).sample

        output_slice = output[0, -1, -3:, -3:].flatten().cpu()

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
Arsalan's avatar
Arsalan committed
257
        elif generator_device == "cpu":
258
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
259
260
261
262
263
264
265
266
267
268
269
                [
                    -0.1352,
                    0.0878,
                    0.0419,
                    -0.0818,
                    -0.1069,
                    0.0688,
                    -0.1458,
                    -0.4446,
                    -0.0026,
                ]
270
271
272
            )
        else:
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
273
274
275
276
277
278
279
280
281
282
283
                [
                    -0.2421,
                    0.4642,
                    0.2507,
                    -0.0438,
                    0.0682,
                    0.3160,
                    -0.2018,
                    -0.0727,
                    0.2485,
                ]
284
285
            )

286
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
287
288


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AsymmetricAutoencoderKL
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        mask = torch.ones((batch_size, 1) + sizes).to(torch_device)

        return {"sample": image, "mask": mask}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
314
        init_dict = get_asym_autoencoder_kl_config()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
315
316
317
318
319
320
321
322
323
324
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_forward_with_norm_groups(self):
        pass


325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderTiny
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
349
        init_dict = get_autoencoder_tiny_config()
350
351
352
353
354
355
356
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_outputs_equivalence(self):
        pass


Will Berman's avatar
Will Berman committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase):
    model_class = ConsistencyDecoderVAE
    main_input_name = "sample"
    base_precision = 1e-2
    forward_requires_fresh_args = True

    def inputs_dict(self, seed=None):
        generator = torch.Generator("cpu")
        if seed is not None:
            generator.manual_seed(0)
        image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device))

        return {"sample": image, "generator": generator}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    @property
    def init_dict(self):
381
        return get_consistency_vae_config()
Will Berman's avatar
Will Berman committed
382
383
384
385
386
387
388
389
390
391
392
393
394

    def prepare_init_args_and_inputs_for_common(self):
        return self.init_dict, self.inputs_dict()

    @unittest.skip
    def test_training(self):
        ...

    @unittest.skip
    def test_ema_training(self):
        ...


M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
395
class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
    model_class = AutoencoderKLTemporalDecoder
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 3
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        num_frames = 3

        return {"sample": image, "num_frames": num_frames}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "latent_channels": 4,
            "layers_per_block": 2,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue

            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))


482
483
484
485
486
487
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
488
        backend_empty_cache(torch_device)
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504

    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
        model.to(torch_device).eval()
        return model

505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    @parameterized.expand(
        [
            [(1, 4, 73, 97), (1, 3, 584, 776)],
            [(1, 4, 97, 73), (1, 3, 776, 584)],
            [(1, 4, 49, 65), (1, 3, 392, 520)],
            [(1, 4, 65, 49), (1, 3, 520, 392)],
            [(1, 4, 49, 49), (1, 3, 392, 392)],
        ]
    )
    def test_tae_tiling(self, in_shape, out_shape):
        model = self.get_sd_vae_model()
        model.enable_tiling()
        with torch.no_grad():
            zeros = torch.zeros(in_shape).to(torch_device)
            dec = model.decode(zeros).sample
            assert dec.shape == out_shape

522
523
524
525
526
527
528
529
530
531
    def test_stable_diffusion(self):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed=33)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
532
        expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
533
534
535

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
    @parameterized.expand([(True,), (False,)])
    def test_tae_roundtrip(self, enable_tiling):
        # load the autoencoder
        model = self.get_sd_vae_model()
        if enable_tiling:
            model.enable_tiling()

        # make a black image with a white square in the middle,
        # which is large enough to split across multiple tiles
        image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
        image[..., 256:768, 256:768] = 1.0

        # round-trip the image through the autoencoder
        with torch.no_grad():
            sample = model(image).sample

        # the autoencoder reconstruction should match original image, sorta
        def downscale(x):
            return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)

        assert torch_all_close(downscale(sample), downscale(image), atol=0.125)

558

559
560
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
Patrick von Platen's avatar
hot fix  
Patrick von Platen committed
561
562
563
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

564
565
566
567
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
568
        backend_empty_cache(torch_device)
569
570
571

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
572
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
573
574
575
576
577
578
579
        return image

    def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderKL.from_pretrained(
580
581
582
583
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
            revision=revision,
584
        )
585
        model.to(torch_device)
586
587
588
589

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
590
591
592
593
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
594
595
596
597

    @parameterized.expand(
        [
            # fmt: off
598
599
600
601
602
603
604
605
606
607
            [
                33,
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
608
609
610
            # fmt: on
        ]
    )
611
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
612
613
614
615
616
617
618
619
620
621
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
622
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
623

624
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
625
626
627
628
629
630
631
632
633

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
            [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
634
    @require_torch_accelerator_with_fp16
635
636
637
638
639
640
641
642
643
644
645
646
647
    def test_stable_diffusion_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        image = self.get_sd_image(seed, fp16=True)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
648
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
649
650
651
652

    @parameterized.expand(
        [
            # fmt: off
653
654
655
656
657
658
659
660
661
662
            [
                33,
                [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
663
664
665
            # fmt: on
        ]
    )
666
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
667
668
669
670
671
672
673
674
675
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
676
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
677

678
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
679
680
681
682
683
684
685
686
687

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
            [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
688
689
    @require_torch_accelerator
    @skip_mps
690
691
692
693
694
695
696
697
698
699
700
701
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
702
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
703
704
705
706
707
708
709
710
711

    @parameterized.expand(
        [
            # fmt: off
            [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
            [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
712
    @require_torch_accelerator_with_fp16
713
714
715
716
717
718
719
720
721
722
723
724
    def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
725
        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
726

727
    @parameterized.expand([(13,), (16,), (27,)])
728
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
729
730
731
732
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
    def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-1)

748
    @parameterized.expand([(13,), (16,), (37,)])
749
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
750
751
752
753
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-2)

769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

791
        tolerance = 3e-3 if torch_device != "mps" else 1e-2
792
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

    def test_stable_diffusion_model_local(self):
        model_id = "stabilityai/sd-vae-ft-mse"
        model_1 = AutoencoderKL.from_pretrained(model_id).to(torch_device)

        url = "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
        model_2 = AutoencoderKL.from_single_file(url).to(torch_device)
        image = self.get_sd_image(33)

        with torch.no_grad():
            sample_1 = model_1(image).sample
            sample_2 = model_2(image).sample

        assert sample_1.shape == sample_2.shape

        output_slice_1 = sample_1[-1, -2:, -2:, :2].flatten().float().cpu()
        output_slice_2 = sample_2[-1, -2:, -2:, :2].flatten().float().cpu()

        assert torch_all_close(output_slice_1, output_slice_2, atol=3e-3)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
812

813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
    def test_single_file_component_configs(self):
        vae_single_file = AutoencoderKL.from_single_file(
            "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors"
        )
        vae = AutoencoderKL.from_pretrained("CompVis/stable-diffusion-v1-4", subfolder="vae")

        PARAMS_TO_IGNORE = ["torch_dtype", "_name_or_path", "_use_default_values"]
        for param_name, param_value in vae_single_file.config.items():
            if param_name in PARAMS_TO_IGNORE:
                continue
            assert (
                vae.config[param_name] == param_value
            ), f"{param_name} differs between single file loading and pretrained loading"

    def test_single_file_arguments(self):
        vae_default = AutoencoderKL.from_single_file(
            "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors",
        )

832
        assert vae_default.config.scaling_factor == 0.18215
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
        assert vae_default.config.sample_size == 512
        assert vae_default.dtype == torch.float32

        scaling_factor = 2.0
        image_size = 256
        torch_dtype = torch.float16

        vae = AutoencoderKL.from_single_file(
            "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors",
            image_size=image_size,
            scaling_factor=scaling_factor,
            torch_dtype=torch_dtype,
        )
        assert vae.config.scaling_factor == scaling_factor
        assert vae.config.sample_size == image_size
        assert vae.dtype == torch_dtype

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
850
851
852
853
854
855
856
857
858
859

@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
860
        backend_empty_cache(torch_device)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
        revision = "main"
        torch_dtype = torch.float32

        model = AsymmetricAutoencoderKL.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            revision=revision,
        )
        model.to(torch_device).eval()

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
881
882
883
884
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
885
886
887
888

    @parameterized.expand(
        [
            # fmt: off
889
890
891
892
893
894
895
896
897
898
            [
                33,
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
            ],
            [
                47,
                [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529],
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
920
921
922
923
924
925
926
927
928
929
            [
                33,
                [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
            ],
            [
                47,
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
            # fmt: on
        ]
    )
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

    @parameterized.expand(
        [
            # fmt: off
950
            [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
951
952
953
954
            [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
955
956
    @require_torch_accelerator
    @skip_mps
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)

    @parameterized.expand([(13,), (16,), (37,)])
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
973
974
975
976
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=5e-2)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        tolerance = 3e-3 if torch_device != "mps" else 1e-2
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
Will Berman's avatar
Will Berman committed
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025


@slow
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1026
    @torch.no_grad()
Will Berman's avatar
Will Berman committed
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
    def test_encode_decode(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[
            None, :, :, :
        ].cuda()

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None)
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1054
1055
1056
1057
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_encode_decode_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = (
            torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :]
            .half()
            .cuda()
        )

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1087
1088
            [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1089
1090
1091
1092
1093
1094
1095
1096
1097
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
1098
1099
1100
1101
            "runwayml/stable-diffusion-v1-5",
            torch_dtype=torch.float16,
            vae=vae,
            safety_checker=None,
Will Berman's avatar
Will Berman committed
1102
1103
1104
1105
        )
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1106
1107
1108
1109
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1110
1111
1112
1113
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1114
1115
            [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1116
1117
1118
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)
1119
1120

    def test_vae_tiling(self):
YiYi Xu's avatar
YiYi Xu committed
1121
1122
1123
1124
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
        pipe = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16
        )
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_1 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        out_2 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        assert torch_all_close(out_1, out_2, atol=5e-3)

        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
1148
1149
1150
1151
        with torch.no_grad():
            for shape in shapes:
                image = torch.zeros(shape, device=torch_device)
                pipe.vae.decode(image)