test_models_vae.py 37.5 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
import torch
21
from parameterized import parameterized
22

Will Berman's avatar
Will Berman committed
23
24
25
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
Suraj Patil's avatar
Suraj Patil committed
26
    AutoencoderKLTemporalDecoder,
Will Berman's avatar
Will Berman committed
27
28
29
30
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    StableDiffusionPipeline,
)
31
from diffusers.utils.import_utils import is_xformers_available
Will Berman's avatar
Will Berman committed
32
from diffusers.utils.loading_utils import load_image
Dhruv Nair's avatar
Dhruv Nair committed
33
from diffusers.utils.testing_utils import (
Arsalan's avatar
Arsalan committed
34
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
35
36
37
    enable_full_determinism,
    floats_tensor,
    load_hf_numpy,
Arsalan's avatar
Arsalan committed
38
39
40
    require_torch_accelerator,
    require_torch_accelerator_with_fp16,
    require_torch_accelerator_with_training,
Dhruv Nair's avatar
Dhruv Nair committed
41
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
42
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
43
44
45
46
    slow,
    torch_all_close,
    torch_device,
)
Will Berman's avatar
Will Berman committed
47
from diffusers.utils.torch_utils import randn_tensor
48

49
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
50
51


52
enable_full_determinism()
53
54


55
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
56
57
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
58
59
60
61
62
63
64
65
66
67
68
69
70
    init_dict = {
        "block_out_channels": block_out_channels,
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
    }
    return init_dict


def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
71
72
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "down_block_out_channels": block_out_channels,
        "layers_per_down_block": 1,
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "up_block_out_channels": block_out_channels,
        "layers_per_up_block": 1,
        "act_fn": "silu",
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
        "sample_size": 32,
        "scaling_factor": 0.18215,
    }
    return init_dict


def get_autoencoder_tiny_config(block_out_channels=None):
    block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "encoder_block_out_channels": block_out_channels,
        "decoder_block_out_channels": block_out_channels,
        "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
        "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
    }
    return init_dict


def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
105
106
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
    return {
        "encoder_block_out_channels": block_out_channels,
        "encoder_in_channels": 3,
        "encoder_out_channels": 4,
        "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "decoder_add_attention": False,
        "decoder_block_out_channels": block_out_channels,
        "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels),
        "decoder_downsample_padding": 1,
        "decoder_in_channels": 7,
        "decoder_layers_per_block": 1,
        "decoder_norm_eps": 1e-05,
        "decoder_norm_num_groups": norm_num_groups,
        "encoder_norm_num_groups": norm_num_groups,
        "decoder_num_train_timesteps": 1024,
        "decoder_out_channels": 6,
        "decoder_resnet_time_scale_shift": "scale_shift",
        "decoder_time_embedding_type": "learned",
        "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels),
        "scaling_factor": 1,
        "latent_channels": 4,
    }


131
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
132
    model_class = AutoencoderKL
133
134
    main_input_name = "sample"
    base_precision = 1e-2
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
155
        init_dict = get_autoencoder_kl_config()
156
157
158
159
160
161
162
163
164
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

Arsalan's avatar
Arsalan committed
165
    @require_torch_accelerator_with_training
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model = model.to(torch_device)
        model.eval()

Arsalan's avatar
Arsalan committed
221
222
223
224
        # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            generator = torch.Generator(device=generator_device).manual_seed(0)
225
        else:
Arsalan's avatar
Arsalan committed
226
            generator = torch.manual_seed(0)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
        image = image.to(torch_device)
        with torch.no_grad():
            output = model(image, sample_posterior=True, generator=generator).sample

        output_slice = output[0, -1, -3:, -3:].flatten().cpu()

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
Arsalan's avatar
Arsalan committed
257
        elif generator_device == "cpu":
258
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
259
260
261
262
263
264
265
266
267
268
269
                [
                    -0.1352,
                    0.0878,
                    0.0419,
                    -0.0818,
                    -0.1069,
                    0.0688,
                    -0.1458,
                    -0.4446,
                    -0.0026,
                ]
270
271
272
            )
        else:
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
273
274
275
276
277
278
279
280
281
282
283
                [
                    -0.2421,
                    0.4642,
                    0.2507,
                    -0.0438,
                    0.0682,
                    0.3160,
                    -0.2018,
                    -0.0727,
                    0.2485,
                ]
284
285
            )

286
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
287
288


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AsymmetricAutoencoderKL
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        mask = torch.ones((batch_size, 1) + sizes).to(torch_device)

        return {"sample": image, "mask": mask}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
314
        init_dict = get_asym_autoencoder_kl_config()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
315
316
317
318
319
320
321
322
323
324
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_forward_with_norm_groups(self):
        pass


325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderTiny
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
349
        init_dict = get_autoencoder_tiny_config()
350
351
352
353
354
355
356
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_outputs_equivalence(self):
        pass


Will Berman's avatar
Will Berman committed
357
358
359
360
361
362
363
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase):
    model_class = ConsistencyDecoderVAE
    main_input_name = "sample"
    base_precision = 1e-2
    forward_requires_fresh_args = True

    def inputs_dict(self, seed=None):
364
365
366
367
        if seed is None:
            generator = torch.Generator("cpu").manual_seed(0)
        else:
            generator = torch.Generator("cpu").manual_seed(seed)
Will Berman's avatar
Will Berman committed
368
369
370
371
372
373
374
375
376
377
378
379
380
381
        image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device))

        return {"sample": image, "generator": generator}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    @property
    def init_dict(self):
382
        return get_consistency_vae_config()
Will Berman's avatar
Will Berman committed
383
384
385
386
387
388
389
390
391
392
393
394
395

    def prepare_init_args_and_inputs_for_common(self):
        return self.init_dict, self.inputs_dict()

    @unittest.skip
    def test_training(self):
        ...

    @unittest.skip
    def test_ema_training(self):
        ...


M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
396
class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
    model_class = AutoencoderKLTemporalDecoder
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 3
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        num_frames = 3

        return {"sample": image, "num_frames": num_frames}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "latent_channels": 4,
            "layers_per_block": 2,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue

            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))


483
484
485
486
487
488
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
489
        backend_empty_cache(torch_device)
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505

    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
        model.to(torch_device).eval()
        return model

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
    @parameterized.expand(
        [
            [(1, 4, 73, 97), (1, 3, 584, 776)],
            [(1, 4, 97, 73), (1, 3, 776, 584)],
            [(1, 4, 49, 65), (1, 3, 392, 520)],
            [(1, 4, 65, 49), (1, 3, 520, 392)],
            [(1, 4, 49, 49), (1, 3, 392, 392)],
        ]
    )
    def test_tae_tiling(self, in_shape, out_shape):
        model = self.get_sd_vae_model()
        model.enable_tiling()
        with torch.no_grad():
            zeros = torch.zeros(in_shape).to(torch_device)
            dec = model.decode(zeros).sample
            assert dec.shape == out_shape

523
524
525
526
527
528
529
530
531
532
    def test_stable_diffusion(self):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed=33)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
533
        expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
534
535
536

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
    @parameterized.expand([(True,), (False,)])
    def test_tae_roundtrip(self, enable_tiling):
        # load the autoencoder
        model = self.get_sd_vae_model()
        if enable_tiling:
            model.enable_tiling()

        # make a black image with a white square in the middle,
        # which is large enough to split across multiple tiles
        image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
        image[..., 256:768, 256:768] = 1.0

        # round-trip the image through the autoencoder
        with torch.no_grad():
            sample = model(image).sample

        # the autoencoder reconstruction should match original image, sorta
        def downscale(x):
            return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)

        assert torch_all_close(downscale(sample), downscale(image), atol=0.125)

559

560
561
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
Patrick von Platen's avatar
hot fix  
Patrick von Platen committed
562
563
564
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

565
566
567
568
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
569
        backend_empty_cache(torch_device)
570
571
572

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
573
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
574
575
576
577
578
579
580
        return image

    def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderKL.from_pretrained(
581
582
583
584
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
            revision=revision,
585
        )
586
        model.to(torch_device)
587
588
589
590

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
591
592
593
594
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
595
596
597
598

    @parameterized.expand(
        [
            # fmt: off
599
600
601
602
603
604
605
606
607
608
            [
                33,
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
609
610
611
            # fmt: on
        ]
    )
612
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
613
614
615
616
617
618
619
620
621
622
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
623
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
624

625
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
626
627
628
629
630
631
632
633
634

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
            [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
635
    @require_torch_accelerator_with_fp16
636
637
638
639
640
641
642
643
644
645
646
647
648
    def test_stable_diffusion_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        image = self.get_sd_image(seed, fp16=True)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
649
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
650
651
652
653

    @parameterized.expand(
        [
            # fmt: off
654
655
656
657
658
659
660
661
662
663
            [
                33,
                [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
664
665
666
            # fmt: on
        ]
    )
667
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
668
669
670
671
672
673
674
675
676
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
677
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
678

679
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
680
681
682
683
684
685
686
687
688

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
            [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
689
690
    @require_torch_accelerator
    @skip_mps
691
692
693
694
695
696
697
698
699
700
701
702
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
703
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
704
705
706
707
708
709
710
711
712

    @parameterized.expand(
        [
            # fmt: off
            [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
            [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
713
    @require_torch_accelerator_with_fp16
714
715
716
717
718
719
720
721
722
723
724
725
    def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
726
        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
727

728
    @parameterized.expand([(13,), (16,), (27,)])
729
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
730
731
732
733
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
    def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-1)

749
    @parameterized.expand([(13,), (16,), (37,)])
750
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
751
752
753
754
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-2)

770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

792
        tolerance = 3e-3 if torch_device != "mps" else 1e-2
793
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
794

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
795
796
797
798
799
800
801
802
803
804

@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
805
        backend_empty_cache(torch_device)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
        revision = "main"
        torch_dtype = torch.float32

        model = AsymmetricAutoencoderKL.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            revision=revision,
        )
        model.to(torch_device).eval()

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
826
827
828
829
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
830
831
832
833

    @parameterized.expand(
        [
            # fmt: off
834
835
836
837
838
839
840
841
842
843
            [
                33,
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
            ],
            [
                47,
                [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529],
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
865
866
867
868
869
870
871
872
873
874
            [
                33,
                [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
            ],
            [
                47,
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
            # fmt: on
        ]
    )
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

    @parameterized.expand(
        [
            # fmt: off
895
            [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
896
897
898
899
            [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
900
901
    @require_torch_accelerator
    @skip_mps
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)

    @parameterized.expand([(13,), (16,), (37,)])
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
918
919
920
921
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=5e-2)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        tolerance = 3e-3 if torch_device != "mps" else 1e-2
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
Will Berman's avatar
Will Berman committed
961
962
963
964


@slow
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
965
966
967
968
969
970
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Will Berman's avatar
Will Berman committed
971
972
973
974
975
976
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

977
    @torch.no_grad()
Will Berman's avatar
Will Berman committed
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
    def test_encode_decode(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[
            None, :, :, :
        ].cuda()

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None)
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1005
1006
1007
1008
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_encode_decode_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = (
            torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :]
            .half()
            .cuda()
        )

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1038
1039
            [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained(
Suraj Patil's avatar
Suraj Patil committed
1049
1050
1051
1052
            "runwayml/stable-diffusion-v1-5",
            torch_dtype=torch.float16,
            vae=vae,
            safety_checker=None,
Will Berman's avatar
Will Berman committed
1053
1054
1055
1056
        )
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1057
1058
1059
1060
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1061
1062
1063
1064
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1065
1066
            [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1067
1068
1069
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)
1070
1071

    def test_vae_tiling(self):
YiYi Xu's avatar
YiYi Xu committed
1072
1073
1074
1075
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
        pipe = StableDiffusionPipeline.from_pretrained(
            "runwayml/stable-diffusion-v1-5", vae=vae, safety_checker=None, torch_dtype=torch.float16
        )
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_1 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        out_2 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        assert torch_all_close(out_1, out_2, atol=5e-3)

        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
1099
1100
        with torch.no_grad():
            for shape in shapes:
1101
                image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype)
YiYi Xu's avatar
YiYi Xu committed
1102
                pipe.vae.decode(image)