test_models_vae.py 42.9 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import unittest

Will Berman's avatar
Will Berman committed
19
import numpy as np
20
import torch
21
from datasets import load_dataset
22
from parameterized import parameterized
23

Will Berman's avatar
Will Berman committed
24
25
26
from diffusers import (
    AsymmetricAutoencoderKL,
    AutoencoderKL,
Suraj Patil's avatar
Suraj Patil committed
27
    AutoencoderKLTemporalDecoder,
28
    AutoencoderOobleck,
Will Berman's avatar
Will Berman committed
29
30
31
32
    AutoencoderTiny,
    ConsistencyDecoderVAE,
    StableDiffusionPipeline,
)
33
from diffusers.utils.import_utils import is_xformers_available
Will Berman's avatar
Will Berman committed
34
from diffusers.utils.loading_utils import load_image
Dhruv Nair's avatar
Dhruv Nair committed
35
from diffusers.utils.testing_utils import (
Arsalan's avatar
Arsalan committed
36
    backend_empty_cache,
Dhruv Nair's avatar
Dhruv Nair committed
37
38
39
    enable_full_determinism,
    floats_tensor,
    load_hf_numpy,
Arsalan's avatar
Arsalan committed
40
41
42
    require_torch_accelerator,
    require_torch_accelerator_with_fp16,
    require_torch_accelerator_with_training,
Dhruv Nair's avatar
Dhruv Nair committed
43
    require_torch_gpu,
Arsalan's avatar
Arsalan committed
44
    skip_mps,
Dhruv Nair's avatar
Dhruv Nair committed
45
46
47
48
    slow,
    torch_all_close,
    torch_device,
)
Will Berman's avatar
Will Berman committed
49
from diffusers.utils.torch_utils import randn_tensor
50

51
from ..test_modeling_common import ModelTesterMixin, UNetTesterMixin
52
53


54
enable_full_determinism()
55
56


57
def get_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
58
59
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
60
61
62
63
64
65
66
67
68
69
70
71
72
    init_dict = {
        "block_out_channels": block_out_channels,
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
    }
    return init_dict


def get_asym_autoencoder_kl_config(block_out_channels=None, norm_num_groups=None):
73
74
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "down_block_out_channels": block_out_channels,
        "layers_per_down_block": 1,
        "up_block_types": ["UpDecoderBlock2D"] * len(block_out_channels),
        "up_block_out_channels": block_out_channels,
        "layers_per_up_block": 1,
        "act_fn": "silu",
        "latent_channels": 4,
        "norm_num_groups": norm_num_groups,
        "sample_size": 32,
        "scaling_factor": 0.18215,
    }
    return init_dict


def get_autoencoder_tiny_config(block_out_channels=None):
    block_out_channels = (len(block_out_channels) * [32]) if block_out_channels is not None else [32, 32]
    init_dict = {
        "in_channels": 3,
        "out_channels": 3,
        "encoder_block_out_channels": block_out_channels,
        "decoder_block_out_channels": block_out_channels,
        "num_encoder_blocks": [b // min(block_out_channels) for b in block_out_channels],
        "num_decoder_blocks": [b // min(block_out_channels) for b in reversed(block_out_channels)],
    }
    return init_dict


def get_consistency_vae_config(block_out_channels=None, norm_num_groups=None):
107
108
    block_out_channels = block_out_channels or [2, 4]
    norm_num_groups = norm_num_groups or 2
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    return {
        "encoder_block_out_channels": block_out_channels,
        "encoder_in_channels": 3,
        "encoder_out_channels": 4,
        "encoder_down_block_types": ["DownEncoderBlock2D"] * len(block_out_channels),
        "decoder_add_attention": False,
        "decoder_block_out_channels": block_out_channels,
        "decoder_down_block_types": ["ResnetDownsampleBlock2D"] * len(block_out_channels),
        "decoder_downsample_padding": 1,
        "decoder_in_channels": 7,
        "decoder_layers_per_block": 1,
        "decoder_norm_eps": 1e-05,
        "decoder_norm_num_groups": norm_num_groups,
        "encoder_norm_num_groups": norm_num_groups,
        "decoder_num_train_timesteps": 1024,
        "decoder_out_channels": 6,
        "decoder_resnet_time_scale_shift": "scale_shift",
        "decoder_time_embedding_type": "learned",
        "decoder_up_block_types": ["ResnetUpsampleBlock2D"] * len(block_out_channels),
        "scaling_factor": 1,
        "latent_channels": 4,
    }


133
134
135
136
137
138
139
140
141
142
143
144
def get_autoencoder_oobleck_config(block_out_channels=None):
    init_dict = {
        "encoder_hidden_size": 12,
        "decoder_channels": 12,
        "decoder_input_channels": 6,
        "audio_channels": 2,
        "downsampling_ratios": [2, 4],
        "channel_multiples": [1, 2],
    }
    return init_dict


145
class AutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
146
    model_class = AutoencoderKL
147
148
    main_input_name = "sample"
    base_precision = 1e-2
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
169
        init_dict = get_autoencoder_kl_config()
170
171
172
173
174
175
176
177
178
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

Arsalan's avatar
Arsalan committed
179
    @require_torch_accelerator_with_training
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))

220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    def test_from_pretrained_hub(self):
        model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True)
        self.assertIsNotNone(model)
        self.assertEqual(len(loading_info["missing_keys"]), 0)

        model.to(torch_device)
        image = model(**self.dummy_input)

        assert image is not None, "Make sure output is not None"

    def test_output_pretrained(self):
        model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy")
        model = model.to(torch_device)
        model.eval()

Arsalan's avatar
Arsalan committed
235
236
237
238
        # Keep generator on CPU for non-CUDA devices to compare outputs with CPU result tensors
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            generator = torch.Generator(device=generator_device).manual_seed(0)
239
        else:
Arsalan's avatar
Arsalan committed
240
            generator = torch.manual_seed(0)
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270

        image = torch.randn(
            1,
            model.config.in_channels,
            model.config.sample_size,
            model.config.sample_size,
            generator=torch.manual_seed(0),
        )
        image = image.to(torch_device)
        with torch.no_grad():
            output = model(image, sample_posterior=True, generator=generator).sample

        output_slice = output[0, -1, -3:, -3:].flatten().cpu()

        # Since the VAE Gaussian prior's generator is seeded on the appropriate device,
        # the expected output slices are not the same for CPU and GPU.
        if torch_device == "mps":
            expected_output_slice = torch.tensor(
                [
                    -4.0078e-01,
                    -3.8323e-04,
                    -1.2681e-01,
                    -1.1462e-01,
                    2.0095e-01,
                    1.0893e-01,
                    -8.8247e-02,
                    -3.0361e-01,
                    -9.8644e-03,
                ]
            )
Arsalan's avatar
Arsalan committed
271
        elif generator_device == "cpu":
272
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
273
274
275
276
277
278
279
280
281
282
283
                [
                    -0.1352,
                    0.0878,
                    0.0419,
                    -0.0818,
                    -0.1069,
                    0.0688,
                    -0.1458,
                    -0.4446,
                    -0.0026,
                ]
284
285
286
            )
        else:
            expected_output_slice = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
287
288
289
290
291
292
293
294
295
296
297
                [
                    -0.2421,
                    0.4642,
                    0.2507,
                    -0.0438,
                    0.0682,
                    0.3160,
                    -0.2018,
                    -0.0727,
                    0.2485,
                ]
298
299
            )

300
        self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2))
301
302


Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
class AsymmetricAutoencoderKLTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AsymmetricAutoencoderKL
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        mask = torch.ones((batch_size, 1) + sizes).to(torch_device)

        return {"sample": image, "mask": mask}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
328
        init_dict = get_asym_autoencoder_kl_config()
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
329
330
331
332
333
334
335
336
337
338
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_forward_with_norm_groups(self):
        pass


339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
class AutoencoderTinyTests(ModelTesterMixin, unittest.TestCase):
    model_class = AutoencoderTiny
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)

        return {"sample": image}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
363
        init_dict = get_autoencoder_tiny_config()
364
365
366
367
368
369
370
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_outputs_equivalence(self):
        pass


Will Berman's avatar
Will Berman committed
371
372
373
374
375
376
377
class ConsistencyDecoderVAETests(ModelTesterMixin, unittest.TestCase):
    model_class = ConsistencyDecoderVAE
    main_input_name = "sample"
    base_precision = 1e-2
    forward_requires_fresh_args = True

    def inputs_dict(self, seed=None):
378
379
380
381
        if seed is None:
            generator = torch.Generator("cpu").manual_seed(0)
        else:
            generator = torch.Generator("cpu").manual_seed(seed)
Will Berman's avatar
Will Berman committed
382
383
384
385
386
387
388
389
390
391
392
393
394
395
        image = randn_tensor((4, 3, 32, 32), generator=generator, device=torch.device(torch_device))

        return {"sample": image, "generator": generator}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    @property
    def init_dict(self):
396
        return get_consistency_vae_config()
Will Berman's avatar
Will Berman committed
397
398
399
400
401
402
403
404
405
406
407
408
409

    def prepare_init_args_and_inputs_for_common(self):
        return self.init_dict, self.inputs_dict()

    @unittest.skip
    def test_training(self):
        ...

    @unittest.skip
    def test_ema_training(self):
        ...


M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
410
class AutoencoderKLTemporalDecoderFastTests(ModelTesterMixin, unittest.TestCase):
Suraj Patil's avatar
Suraj Patil committed
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
    model_class = AutoencoderKLTemporalDecoder
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 3
        num_channels = 3
        sizes = (32, 32)

        image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
        num_frames = 3

        return {"sample": image, "num_frames": num_frames}

    @property
    def input_shape(self):
        return (3, 32, 32)

    @property
    def output_shape(self):
        return (3, 32, 32)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = {
            "block_out_channels": [32, 64],
            "in_channels": 3,
            "out_channels": 3,
            "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
            "latent_channels": 4,
            "layers_per_block": 2,
        }
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_training(self):
        pass

    @unittest.skipIf(torch_device == "mps", "Gradient checkpointing skipped on MPS")
    def test_gradient_checkpointing(self):
        # enable deterministic behavior for gradient checkpointing
        init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
        model = self.model_class(**init_dict)
        model.to(torch_device)

        assert not model.is_gradient_checkpointing and model.training

        out = model(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model.zero_grad()

        labels = torch.randn_like(out)
        loss = (out - labels).mean()
        loss.backward()

        # re-instantiate the model now enabling gradient checkpointing
        model_2 = self.model_class(**init_dict)
        # clone model
        model_2.load_state_dict(model.state_dict())
        model_2.to(torch_device)
        model_2.enable_gradient_checkpointing()

        assert model_2.is_gradient_checkpointing and model_2.training

        out_2 = model_2(**inputs_dict).sample
        # run the backwards pass on the model. For backwards pass, for simplicity purpose,
        # we won't calculate the loss and rather backprop on out.sum()
        model_2.zero_grad()
        loss_2 = (out_2 - labels).mean()
        loss_2.backward()

        # compare the output and parameters gradients
        self.assertTrue((loss - loss_2).abs() < 1e-5)
        named_params = dict(model.named_parameters())
        named_params_2 = dict(model_2.named_parameters())
        for name, param in named_params.items():
            if "post_quant_conv" in name:
                continue

            self.assertTrue(torch_all_close(param.grad.data, named_params_2[name].grad.data, atol=5e-5))


497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
class AutoencoderOobleckTests(ModelTesterMixin, UNetTesterMixin, unittest.TestCase):
    model_class = AutoencoderOobleck
    main_input_name = "sample"
    base_precision = 1e-2

    @property
    def dummy_input(self):
        batch_size = 4
        num_channels = 2
        seq_len = 24

        waveform = floats_tensor((batch_size, num_channels, seq_len)).to(torch_device)

        return {"sample": waveform, "sample_posterior": False}

    @property
    def input_shape(self):
        return (2, 24)

    @property
    def output_shape(self):
        return (2, 24)

    def prepare_init_args_and_inputs_for_common(self):
        init_dict = get_autoencoder_oobleck_config()
        inputs_dict = self.dummy_input
        return init_dict, inputs_dict

    def test_forward_signature(self):
        pass

    def test_forward_with_norm_groups(self):
        pass

531
532
533
534
    @unittest.skip("No attention module used in this model")
    def test_set_attn_processor_for_determinism(self):
        return

535

536
537
538
539
540
541
@slow
class AutoencoderTinyIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
542
        backend_empty_cache(torch_device)
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558

    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="hf-internal-testing/taesd-diffusers", fp16=False):
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderTiny.from_pretrained(model_id, torch_dtype=torch_dtype)
        model.to(torch_device).eval()
        return model

559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    @parameterized.expand(
        [
            [(1, 4, 73, 97), (1, 3, 584, 776)],
            [(1, 4, 97, 73), (1, 3, 776, 584)],
            [(1, 4, 49, 65), (1, 3, 392, 520)],
            [(1, 4, 65, 49), (1, 3, 520, 392)],
            [(1, 4, 49, 49), (1, 3, 392, 392)],
        ]
    )
    def test_tae_tiling(self, in_shape, out_shape):
        model = self.get_sd_vae_model()
        model.enable_tiling()
        with torch.no_grad():
            zeros = torch.zeros(in_shape).to(torch_device)
            dec = model.decode(zeros).sample
            assert dec.shape == out_shape

576
577
578
579
580
581
582
583
584
585
    def test_stable_diffusion(self):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed=33)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
586
        expected_output_slice = torch.tensor([0.0093, 0.6385, -0.1274, 0.1631, -0.1762, 0.5232, -0.3108, -0.0382])
587
588
589

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
    @parameterized.expand([(True,), (False,)])
    def test_tae_roundtrip(self, enable_tiling):
        # load the autoencoder
        model = self.get_sd_vae_model()
        if enable_tiling:
            model.enable_tiling()

        # make a black image with a white square in the middle,
        # which is large enough to split across multiple tiles
        image = -torch.ones(1, 3, 1024, 1024, device=torch_device)
        image[..., 256:768, 256:768] = 1.0

        # round-trip the image through the autoencoder
        with torch.no_grad():
            sample = model(image).sample

        # the autoencoder reconstruction should match original image, sorta
        def downscale(x):
            return torch.nn.functional.avg_pool2d(x, model.spatial_scale_factor)

        assert torch_all_close(downscale(sample), downscale(image), atol=0.125)

612

613
614
@slow
class AutoencoderKLIntegrationTests(unittest.TestCase):
Patrick von Platen's avatar
hot fix  
Patrick von Platen committed
615
616
617
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

618
619
620
621
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
622
        backend_empty_cache(torch_device)
623
624
625

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
626
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
627
628
629
630
631
632
633
        return image

    def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False):
        revision = "fp16" if fp16 else None
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderKL.from_pretrained(
634
635
636
637
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
            revision=revision,
638
        )
639
        model.to(torch_device)
640
641
642
643

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
644
645
646
647
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
648
649
650
651

    @parameterized.expand(
        [
            # fmt: off
652
653
654
655
656
657
658
659
660
661
            [
                33,
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
662
663
664
            # fmt: on
        ]
    )
665
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
666
667
668
669
670
671
672
673
674
675
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
676
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
677

678
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
679
680
681
682
683
684
685
686
687

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]],
            [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
688
    @require_torch_accelerator_with_fp16
689
690
691
692
693
694
695
696
697
698
699
700
701
    def test_stable_diffusion_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        image = self.get_sd_image(seed, fp16=True)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
702
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-2)
703
704
705
706

    @parameterized.expand(
        [
            # fmt: off
707
708
709
710
711
712
713
714
715
716
            [
                33,
                [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814],
                [-0.2395, 0.0098, 0.0102, -0.0709, -0.2840, -0.0274, -0.0718, -0.1824],
            ],
            [
                47,
                [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085],
                [0.0350, 0.0847, 0.0467, 0.0344, -0.0842, -0.0547, -0.0633, -0.1131],
            ],
717
718
719
            # fmt: on
        ]
    )
720
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
721
722
723
724
725
726
727
728
729
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
730
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)
731

732
        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)
733
734
735
736
737
738
739
740
741

    @parameterized.expand(
        [
            # fmt: off
            [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]],
            [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
742
743
    @require_torch_accelerator
    @skip_mps
744
745
746
747
748
749
750
751
752
753
754
755
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
756
        assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)
757
758
759
760
761
762
763
764
765

    @parameterized.expand(
        [
            # fmt: off
            [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]],
            [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
766
    @require_torch_accelerator_with_fp16
767
768
769
770
771
772
773
774
775
776
777
778
    def test_stable_diffusion_decode_fp16(self, seed, expected_slice):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice)

Patrick von Platen's avatar
Patrick von Platen committed
779
        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)
780

781
    @parameterized.expand([(13,), (16,), (27,)])
782
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
783
784
785
786
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
    def test_stable_diffusion_decode_xformers_vs_2_0_fp16(self, seed):
        model = self.get_sd_vae_model(fp16=True)
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True)

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-1)

802
    @parameterized.expand([(13,), (16,), (37,)])
803
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
804
805
806
807
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=1e-2)

823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

845
        tolerance = 3e-3 if torch_device != "mps" else 1e-2
846
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
847

Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
848
849
850
851
852
853
854
855
856
857

@slow
class AsymmetricAutoencoderKLIntegrationTests(unittest.TestCase):
    def get_file_format(self, seed, shape):
        return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy"

    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
858
        backend_empty_cache(torch_device)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

    def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        image = torch.from_numpy(load_hf_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype)
        return image

    def get_sd_vae_model(self, model_id="cross-attention/asymmetric-autoencoder-kl-x-1-5", fp16=False):
        revision = "main"
        torch_dtype = torch.float32

        model = AsymmetricAutoencoderKL.from_pretrained(
            model_id,
            torch_dtype=torch_dtype,
            revision=revision,
        )
        model.to(torch_device).eval()

        return model

    def get_generator(self, seed=0):
Arsalan's avatar
Arsalan committed
879
880
881
882
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
883
884
885
886

    @parameterized.expand(
        [
            # fmt: off
887
888
889
890
891
892
893
894
895
896
            [
                33,
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
                [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824],
            ],
            [
                47,
                [0.4400, 0.0543, 0.2873, 0.2946, 0.0553, 0.0839, -0.1585, 0.2529],
                [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(image, generator=generator, sample_posterior=True).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=5e-3)

    @parameterized.expand(
        [
            # fmt: off
918
919
920
921
922
923
924
925
926
927
            [
                33,
                [-0.0340, 0.2870, 0.1698, -0.0105, -0.3448, 0.3529, -0.1321, 0.1097],
                [-0.0344, 0.2912, 0.1687, -0.0137, -0.3462, 0.3552, -0.1337, 0.1078],
            ],
            [
                47,
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
                [0.4397, 0.0550, 0.2873, 0.2946, 0.0567, 0.0855, -0.1580, 0.2531],
            ],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
            # fmt: on
        ]
    )
    def test_stable_diffusion_mode(self, seed, expected_slice, expected_slice_mps):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)

        with torch.no_grad():
            sample = model(image).sample

        assert sample.shape == image.shape

        output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu()
        expected_output_slice = torch.tensor(expected_slice_mps if torch_device == "mps" else expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=3e-3)

    @parameterized.expand(
        [
            # fmt: off
948
            [13, [-0.0521, -0.2939, 0.1540, -0.1855, -0.5936, -0.3138, -0.4579, -0.2275]],
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
949
950
951
952
            [37, [-0.1820, -0.4345, -0.0455, -0.2923, -0.8035, -0.5089, -0.4795, -0.3106]],
            # fmt: on
        ]
    )
Arsalan's avatar
Arsalan committed
953
954
    @require_torch_accelerator
    @skip_mps
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
    def test_stable_diffusion_decode(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        output_slice = sample[-1, -2:, :2, -2:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=2e-3)

    @parameterized.expand([(13,), (16,), (37,)])
    @require_torch_gpu
Suraj Patil's avatar
Suraj Patil committed
971
972
973
974
    @unittest.skipIf(
        not is_xformers_available(),
        reason="xformers is not required when using PyTorch 2.0.",
    )
Ruslan Vorovchenko's avatar
Ruslan Vorovchenko committed
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
    def test_stable_diffusion_decode_xformers_vs_2_0(self, seed):
        model = self.get_sd_vae_model()
        encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64))

        with torch.no_grad():
            sample = model.decode(encoding).sample

        model.enable_xformers_memory_efficient_attention()
        with torch.no_grad():
            sample_2 = model.decode(encoding).sample

        assert list(sample.shape) == [3, 3, 512, 512]

        assert torch_all_close(sample, sample_2, atol=5e-2)

    @parameterized.expand(
        [
            # fmt: off
            [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]],
            [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_sample(self, seed, expected_slice):
        model = self.get_sd_vae_model()
        image = self.get_sd_image(seed)
        generator = self.get_generator(seed)

        with torch.no_grad():
            dist = model.encode(image).latent_dist
            sample = dist.sample(generator=generator)

        assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]]

        output_slice = sample[0, -1, -3:, -3:].flatten().cpu()
        expected_output_slice = torch.tensor(expected_slice)

        tolerance = 3e-3 if torch_device != "mps" else 1e-2
        assert torch_all_close(output_slice, expected_output_slice, atol=tolerance)
Will Berman's avatar
Will Berman committed
1014
1015
1016
1017


@slow
class ConsistencyDecoderVAEIntegrationTests(unittest.TestCase):
1018
1019
1020
1021
1022
1023
    def setUp(self):
        # clean up the VRAM before each test
        super().setUp()
        gc.collect()
        torch.cuda.empty_cache()

Will Berman's avatar
Will Berman committed
1024
1025
1026
1027
1028
1029
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        torch.cuda.empty_cache()

1030
    @torch.no_grad()
Will Berman's avatar
Will Berman committed
1031
1032
1033
1034
1035
1036
1037
1038
    def test_encode_decode(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
1039
1040
1041
        image = torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :].to(
            torch_device
        )
Will Berman's avatar
Will Berman committed
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([-0.0141, -0.0014, 0.0115, 0.0086, 0.1051, 0.1053, 0.1031, 0.1024])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd(self):
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder")  # TODO - update
Dhruv Nair's avatar
Dhruv Nair committed
1054
        pipe = StableDiffusionPipeline.from_pretrained("Jiali/stable-diffusion-1.5", vae=vae, safety_checker=None)
Will Berman's avatar
Will Berman committed
1055
1056
1057
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1058
1059
1060
1061
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor([0.7686, 0.8228, 0.6489, 0.7455, 0.8661, 0.8797, 0.8241, 0.8759])

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_encode_decode_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        vae.to(torch_device)

        image = load_image(
            "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
            "/img2img/sketch-mountains-input.jpg"
        ).resize((256, 256))
        image = (
            torch.from_numpy(np.array(image).transpose(2, 0, 1).astype(np.float32) / 127.5 - 1)[None, :, :, :]
            .half()
1082
            .to(torch_device)
Will Berman's avatar
Will Berman committed
1083
1084
1085
1086
1087
1088
1089
1090
        )

        latent = vae.encode(image).latent_dist.mean

        sample = vae.decode(latent, generator=torch.Generator("cpu").manual_seed(0)).sample

        actual_output = sample[0, :2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1091
1092
            [-0.0111, -0.0125, -0.0017, -0.0007, 0.1257, 0.1465, 0.1450, 0.1471],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1093
1094
1095
1096
1097
1098
1099
1100
1101
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)

    def test_sd_f16(self):
        vae = ConsistencyDecoderVAE.from_pretrained(
            "openai/consistency-decoder", torch_dtype=torch.float16
        )  # TODO - update
        pipe = StableDiffusionPipeline.from_pretrained(
Dhruv Nair's avatar
Dhruv Nair committed
1102
            "Jiali/stable-diffusion-1.5",
Suraj Patil's avatar
Suraj Patil committed
1103
1104
1105
            torch_dtype=torch.float16,
            vae=vae,
            safety_checker=None,
Will Berman's avatar
Will Berman committed
1106
1107
1108
1109
        )
        pipe.to(torch_device)

        out = pipe(
Suraj Patil's avatar
Suraj Patil committed
1110
1111
1112
1113
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
Will Berman's avatar
Will Berman committed
1114
1115
1116
1117
        ).images[0]

        actual_output = out[:2, :2, :2].flatten().cpu()
        expected_output = torch.tensor(
Suraj Patil's avatar
Suraj Patil committed
1118
1119
            [0.0000, 0.0249, 0.0000, 0.0000, 0.1709, 0.2773, 0.0471, 0.1035],
            dtype=torch.float16,
Will Berman's avatar
Will Berman committed
1120
1121
1122
        )

        assert torch_all_close(actual_output, expected_output, atol=5e-3)
1123
1124

    def test_vae_tiling(self):
YiYi Xu's avatar
YiYi Xu committed
1125
1126
        vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)
        pipe = StableDiffusionPipeline.from_pretrained(
Dhruv Nair's avatar
Dhruv Nair committed
1127
            "Jiali/stable-diffusion-1.5", vae=vae, safety_checker=None, torch_dtype=torch.float16
YiYi Xu's avatar
YiYi Xu committed
1128
        )
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        out_1 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        # make sure tiled vae decode yields the same result
        pipe.enable_vae_tiling()
        out_2 = pipe(
            "horse",
            num_inference_steps=2,
            output_type="pt",
            generator=torch.Generator("cpu").manual_seed(0),
        ).images[0]

        assert torch_all_close(out_1, out_2, atol=5e-3)

        # test that tiled decode works with various shapes
        shapes = [(1, 4, 73, 97), (1, 4, 97, 73), (1, 4, 49, 65), (1, 4, 65, 49)]
YiYi Xu's avatar
YiYi Xu committed
1152
1153
        with torch.no_grad():
            for shape in shapes:
1154
                image = torch.zeros(shape, device=torch_device, dtype=pipe.vae.dtype)
YiYi Xu's avatar
YiYi Xu committed
1155
                pipe.vae.decode(image)
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188


@slow
class AutoencoderOobleckIntegrationTests(unittest.TestCase):
    def tearDown(self):
        # clean up the VRAM after each test
        super().tearDown()
        gc.collect()
        backend_empty_cache(torch_device)

    def _load_datasamples(self, num_samples):
        ds = load_dataset(
            "hf-internal-testing/librispeech_asr_dummy", "clean", split="validation", trust_remote_code=True
        )
        # automatic decoding with librispeech
        speech_samples = ds.sort("id").select(range(num_samples))[:num_samples]["audio"]

        return torch.nn.utils.rnn.pad_sequence(
            [torch.from_numpy(x["array"]) for x in speech_samples], batch_first=True
        )

    def get_audio(self, audio_sample_size=2097152, fp16=False):
        dtype = torch.float16 if fp16 else torch.float32
        audio = self._load_datasamples(2).to(torch_device).to(dtype)

        # pad / crop to audio_sample_size
        audio = torch.nn.functional.pad(audio[:, :audio_sample_size], pad=(0, audio_sample_size - audio.shape[-1]))

        # todo channel
        audio = audio.unsqueeze(1).repeat(1, 2, 1).to(torch_device)

        return audio

1189
    def get_oobleck_vae_model(self, model_id="stabilityai/stable-audio-open-1.0", fp16=False):
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
        torch_dtype = torch.float16 if fp16 else torch.float32

        model = AutoencoderOobleck.from_pretrained(
            model_id,
            subfolder="vae",
            torch_dtype=torch_dtype,
        )
        model.to(torch_device)

        return model

    def get_generator(self, seed=0):
        generator_device = "cpu" if not torch_device.startswith("cuda") else "cuda"
        if torch_device != "mps":
            return torch.Generator(device=generator_device).manual_seed(seed)
        return torch.manual_seed(seed)

    @parameterized.expand(
        [
            # fmt: off
            [33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
            [44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
            # fmt: on
        ]
    )
    def test_stable_diffusion(self, seed, expected_slice, expected_mean_absolute_diff):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()
        generator = self.get_generator(seed)

        with torch.no_grad():
            sample = model(audio, generator=generator, sample_posterior=True).sample

        assert sample.shape == audio.shape
        assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6

        output_slice = sample[-1, 1, 5:10].cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)

    def test_stable_diffusion_mode(self):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()

        with torch.no_grad():
            sample = model(audio, sample_posterior=False).sample

        assert sample.shape == audio.shape

    @parameterized.expand(
        [
            # fmt: off
            [33, [1.193e-4, 6.56e-05, 1.314e-4, 3.80e-05, -4.01e-06], 0.001192],
            [44, [2.77e-05, -2.65e-05, 1.18e-05, -6.94e-05, -9.57e-05], 0.001196],
            # fmt: on
        ]
    )
    def test_stable_diffusion_encode_decode(self, seed, expected_slice, expected_mean_absolute_diff):
        model = self.get_oobleck_vae_model()
        audio = self.get_audio()
        generator = self.get_generator(seed)

        with torch.no_grad():
            x = audio
            posterior = model.encode(x).latent_dist
            z = posterior.sample(generator=generator)
            sample = model.decode(z).sample

        # (batch_size, latent_dim, sequence_length)
        assert posterior.mean.shape == (audio.shape[0], model.config.decoder_input_channels, 1024)

        assert sample.shape == audio.shape
        assert ((sample - audio).abs().mean() - expected_mean_absolute_diff).abs() <= 1e-6

        output_slice = sample[-1, 1, 5:10].cpu()
        expected_output_slice = torch.tensor(expected_slice)

        assert torch_all_close(output_slice, expected_output_slice, atol=1e-5)