pipeline_utils.py 96.2 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2024 The HuggingFace Inc. team.
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright (c) 2022, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
16
import fnmatch
17
18
19
import importlib
import inspect
import os
20
import re
21
import sys
22
23
from dataclasses import dataclass
from pathlib import Path
24
from typing import Any, Callable, Dict, List, Optional, Union, get_args, get_origin
25
26

import numpy as np
Anh71me's avatar
Anh71me committed
27
import PIL.Image
28
import requests
29
import torch
30
31
32
33
34
35
36
from huggingface_hub import (
    ModelCard,
    create_repo,
    hf_hub_download,
    model_info,
    snapshot_download,
)
37
from huggingface_hub.utils import OfflineModeIsEnabled, validate_hf_hub_args
38
from packaging import version
39
from requests.exceptions import HTTPError
40
41
from tqdm.auto import tqdm

42
from .. import __version__
43
from ..configuration_utils import ConfigMixin
44
45
from ..models import AutoencoderKL
from ..models.attention_processor import FusedAttnProcessor2_0
46
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, ModelMixin
47
48
49
from ..schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from ..utils import (
    CONFIG_NAME,
50
    DEPRECATED_REVISION_ARGS,
51
    BaseOutput,
52
    PushToHubMixin,
53
54
    deprecate,
    is_accelerate_available,
55
    is_accelerate_version,
Mengqing Cao's avatar
Mengqing Cao committed
56
    is_torch_npu_available,
57
58
    is_torch_version,
    logging,
Patrick von Platen's avatar
Patrick von Platen committed
59
    numpy_to_pil,
60
)
61
from ..utils.hub_utils import load_or_create_model_card, populate_model_card
Dhruv Nair's avatar
Dhruv Nair committed
62
from ..utils.torch_utils import is_compiled_module
Mengqing Cao's avatar
Mengqing Cao committed
63
64
65
66
67
68


if is_torch_npu_available():
    import torch_npu  # noqa: F401


69
70
71
72
73
74
from .pipeline_loading_utils import (
    ALL_IMPORTABLE_CLASSES,
    CONNECTED_PIPES_KEYS,
    CUSTOM_PIPELINE_FILE_NAME,
    LOADABLE_CLASSES,
    _fetch_class_library_tuple,
75
    _get_custom_pipeline_class,
76
    _get_final_device_map,
77
78
79
80
81
82
83
84
    _get_pipeline_class,
    _unwrap_model,
    is_safetensors_compatible,
    load_sub_model,
    maybe_raise_or_warn,
    variant_compatible_siblings,
    warn_deprecated_model_variant,
)
85
86


87
88
89
90
if is_accelerate_available():
    import accelerate


91
92
93
LIBRARIES = []
for library in LOADABLE_CLASSES:
    LIBRARIES.append(library)
94

95
96
SUPPORTED_DEVICE_MAP = ["balanced"]

97
98
99
100
101
102
103
104
105
106
logger = logging.get_logger(__name__)


@dataclass
class ImagePipelineOutput(BaseOutput):
    """
    Output class for image pipelines.

    Args:
        images (`List[PIL.Image.Image]` or `np.ndarray`)
Steven Liu's avatar
Steven Liu committed
107
108
            List of denoised PIL images of length `batch_size` or NumPy array of shape `(batch_size, height, width,
            num_channels)`.
109
110
111
112
113
114
115
116
117
118
119
120
    """

    images: Union[List[PIL.Image.Image], np.ndarray]


@dataclass
class AudioPipelineOutput(BaseOutput):
    """
    Output class for audio pipelines.

    Args:
        audios (`np.ndarray`)
Steven Liu's avatar
Steven Liu committed
121
            List of denoised audio samples of a NumPy array of shape `(batch_size, num_channels, sample_rate)`.
122
123
124
125
126
    """

    audios: np.ndarray


127
class DiffusionPipeline(ConfigMixin, PushToHubMixin):
128
    r"""
Steven Liu's avatar
Steven Liu committed
129
    Base class for all pipelines.
130

Steven Liu's avatar
Steven Liu committed
131
132
    [`DiffusionPipeline`] stores all components (models, schedulers, and processors) for diffusion pipelines and
    provides methods for loading, downloading and saving models. It also includes methods to:
133
134

        - move all PyTorch modules to the device of your choice
135
        - enable/disable the progress bar for the denoising iteration
136
137
138

    Class attributes:

Steven Liu's avatar
Steven Liu committed
139
140
        - **config_name** (`str`) -- The configuration filename that stores the class and module names of all the
          diffusion pipeline's components.
141
        - **_optional_components** (`List[str]`) -- List of all optional components that don't have to be passed to the
Steven Liu's avatar
Steven Liu committed
142
          pipeline to function (should be overridden by subclasses).
143
    """
144

145
    config_name = "model_index.json"
146
    model_cpu_offload_seq = None
147
    hf_device_map = None
148
    _optional_components = []
149
    _exclude_from_cpu_offload = []
150
    _load_connected_pipes = False
151
    _is_onnx = False
152
153
154
155

    def register_modules(self, **kwargs):
        for name, module in kwargs.items():
            # retrieve library
156
            if module is None or isinstance(module, (tuple, list)) and module[0] is None:
157
158
                register_dict = {name: (None, None)}
            else:
159
                library, class_name = _fetch_class_library_tuple(module)
160
161
162
163
164
165
166
167
                register_dict = {name: (library, class_name)}

            # save model index config
            self.register_to_config(**register_dict)

            # set models
            setattr(self, name, module)

168
    def __setattr__(self, name: str, value: Any):
169
        if name in self.__dict__ and hasattr(self.config, name):
170
171
            # We need to overwrite the config if name exists in config
            if isinstance(getattr(self.config, name), (tuple, list)):
172
                if value is not None and self.config[name][0] is not None:
173
                    class_library_tuple = _fetch_class_library_tuple(value)
174
175
176
177
178
179
180
181
182
                else:
                    class_library_tuple = (None, None)

                self.register_to_config(**{name: class_library_tuple})
            else:
                self.register_to_config(**{name: value})

        super().__setattr__(name, value)

183
184
185
    def save_pretrained(
        self,
        save_directory: Union[str, os.PathLike],
186
        safe_serialization: bool = True,
187
        variant: Optional[str] = None,
188
189
        push_to_hub: bool = False,
        **kwargs,
190
191
    ):
        """
Steven Liu's avatar
Steven Liu committed
192
193
194
        Save all saveable variables of the pipeline to a directory. A pipeline variable can be saved and loaded if its
        class implements both a save and loading method. The pipeline is easily reloaded using the
        [`~DiffusionPipeline.from_pretrained`] class method.
195
196
197

        Arguments:
            save_directory (`str` or `os.PathLike`):
Steven Liu's avatar
Steven Liu committed
198
                Directory to save a pipeline to. Will be created if it doesn't exist.
199
            safe_serialization (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
200
                Whether to save the model using `safetensors` or the traditional PyTorch way with `pickle`.
201
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
202
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.
203
204
205
206
207
208
            push_to_hub (`bool`, *optional*, defaults to `False`):
                Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the
                repository you want to push to with `repo_id` (will default to the name of `save_directory` in your
                namespace).
            kwargs (`Dict[str, Any]`, *optional*):
                Additional keyword arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method.
209
210
        """
        model_index_dict = dict(self.config)
211
212
        model_index_dict.pop("_class_name", None)
        model_index_dict.pop("_diffusers_version", None)
213
        model_index_dict.pop("_module", None)
214
        model_index_dict.pop("_name_or_path", None)
215

216
217
218
219
220
221
222
223
        if push_to_hub:
            commit_message = kwargs.pop("commit_message", None)
            private = kwargs.pop("private", False)
            create_pr = kwargs.pop("create_pr", False)
            token = kwargs.pop("token", None)
            repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1])
            repo_id = create_repo(repo_id, exist_ok=True, private=private, token=token).repo_id

224
225
226
227
228
229
230
231
232
233
234
235
236
237
        expected_modules, optional_kwargs = self._get_signature_keys(self)

        def is_saveable_module(name, value):
            if name not in expected_modules:
                return False
            if name in self._optional_components and value[0] is None:
                return False
            return True

        model_index_dict = {k: v for k, v in model_index_dict.items() if is_saveable_module(k, v)}
        for pipeline_component_name in model_index_dict.keys():
            sub_model = getattr(self, pipeline_component_name)
            model_cls = sub_model.__class__

238
239
240
            # Dynamo wraps the original model in a private class.
            # I didn't find a public API to get the original class.
            if is_compiled_module(sub_model):
241
                sub_model = _unwrap_model(sub_model)
242
243
                model_cls = sub_model.__class__

244
245
246
            save_method_name = None
            # search for the model's base class in LOADABLE_CLASSES
            for library_name, library_classes in LOADABLE_CLASSES.items():
247
248
249
250
251
252
253
                if library_name in sys.modules:
                    library = importlib.import_module(library_name)
                else:
                    logger.info(
                        f"{library_name} is not installed. Cannot save {pipeline_component_name} as {library_classes} from {library_name}"
                    )

254
255
256
257
258
259
260
261
262
                for base_class, save_load_methods in library_classes.items():
                    class_candidate = getattr(library, base_class, None)
                    if class_candidate is not None and issubclass(model_cls, class_candidate):
                        # if we found a suitable base class in LOADABLE_CLASSES then grab its save method
                        save_method_name = save_load_methods[0]
                        break
                if save_method_name is not None:
                    break

263
            if save_method_name is None:
264
265
266
                logger.warning(
                    f"self.{pipeline_component_name}={sub_model} of type {type(sub_model)} cannot be saved."
                )
267
268
269
270
                # make sure that unsaveable components are not tried to be loaded afterward
                self.register_to_config(**{pipeline_component_name: (None, None)})
                continue

271
272
273
274
275
            save_method = getattr(sub_model, save_method_name)

            # Call the save method with the argument safe_serialization only if it's supported
            save_method_signature = inspect.signature(save_method)
            save_method_accept_safe = "safe_serialization" in save_method_signature.parameters
276
277
278
            save_method_accept_variant = "variant" in save_method_signature.parameters

            save_kwargs = {}
279
            if save_method_accept_safe:
280
281
282
283
284
                save_kwargs["safe_serialization"] = safe_serialization
            if save_method_accept_variant:
                save_kwargs["variant"] = variant

            save_method(os.path.join(save_directory, pipeline_component_name), **save_kwargs)
285

286
287
288
        # finally save the config
        self.save_config(save_directory)

289
        if push_to_hub:
290
291
292
293
294
            # Create a new empty model card and eventually tag it
            model_card = load_or_create_model_card(repo_id, token=token, is_pipeline=True)
            model_card = populate_model_card(model_card)
            model_card.save(os.path.join(save_directory, "README.md"))

295
296
297
298
299
300
301
302
            self._upload_folder(
                save_directory,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
    def to(self, *args, **kwargs):
        r"""
        Performs Pipeline dtype and/or device conversion. A torch.dtype and torch.device are inferred from the
        arguments of `self.to(*args, **kwargs).`

        <Tip>

            If the pipeline already has the correct torch.dtype and torch.device, then it is returned as is. Otherwise,
            the returned pipeline is a copy of self with the desired torch.dtype and torch.device.

        </Tip>


        Here are the ways to call `to`:

        - `to(dtype, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
        - `to(device, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the specified
          [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
        - `to(device=None, dtype=None, silence_dtype_warnings=False) → DiffusionPipeline` to return a pipeline with the
          specified [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device) and
          [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)

        Arguments:
            dtype (`torch.dtype`, *optional*):
                Returns a pipeline with the specified
                [`dtype`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.dtype)
            device (`torch.Device`, *optional*):
                Returns a pipeline with the specified
                [`device`](https://pytorch.org/docs/stable/tensor_attributes.html#torch.device)
            silence_dtype_warnings (`str`, *optional*, defaults to `False`):
                Whether to omit warnings if the target `dtype` is not compatible with the target `device`.

        Returns:
            [`DiffusionPipeline`]: The pipeline converted to specified `dtype` and/or `dtype`.
        """
339
340
        dtype = kwargs.pop("dtype", None)
        device = kwargs.pop("device", None)
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
        silence_dtype_warnings = kwargs.pop("silence_dtype_warnings", False)

        dtype_arg = None
        device_arg = None
        if len(args) == 1:
            if isinstance(args[0], torch.dtype):
                dtype_arg = args[0]
            else:
                device_arg = torch.device(args[0]) if args[0] is not None else None
        elif len(args) == 2:
            if isinstance(args[0], torch.dtype):
                raise ValueError(
                    "When passing two arguments, make sure the first corresponds to `device` and the second to `dtype`."
                )
            device_arg = torch.device(args[0]) if args[0] is not None else None
            dtype_arg = args[1]
        elif len(args) > 2:
            raise ValueError("Please make sure to pass at most two arguments (`device` and `dtype`) `.to(...)`")

        if dtype is not None and dtype_arg is not None:
            raise ValueError(
                "You have passed `dtype` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        dtype = dtype or dtype_arg

        if device is not None and device_arg is not None:
            raise ValueError(
                "You have passed `device` both as an argument and as a keyword argument. Please only pass one of the two."
            )

        device = device or device_arg
373

374
375
376
377
378
        # throw warning if pipeline is in "offloaded"-mode but user tries to manually set to GPU.
        def module_is_sequentially_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.14.0"):
                return False

379
380
381
382
383
            return hasattr(module, "_hf_hook") and (
                isinstance(module._hf_hook, accelerate.hooks.AlignDevicesHook)
                or hasattr(module._hf_hook, "hooks")
                and isinstance(module._hf_hook.hooks[0], accelerate.hooks.AlignDevicesHook)
            )
384
385
386
387
388
389
390
391
392
393
394

        def module_is_offloaded(module):
            if not is_accelerate_available() or is_accelerate_version("<", "0.17.0.dev0"):
                return False

            return hasattr(module, "_hf_hook") and isinstance(module._hf_hook, accelerate.hooks.CpuOffload)

        # .to("cuda") would raise an error if the pipeline is sequentially offloaded, so we raise our own to make it clearer
        pipeline_is_sequentially_offloaded = any(
            module_is_sequentially_offloaded(module) for _, module in self.components.items()
        )
395
        if pipeline_is_sequentially_offloaded and device and torch.device(device).type == "cuda":
396
397
398
399
            raise ValueError(
                "It seems like you have activated sequential model offloading by calling `enable_sequential_cpu_offload`, but are now attempting to move the pipeline to GPU. This is not compatible with offloading. Please, move your pipeline `.to('cpu')` or consider removing the move altogether if you use sequential offloading."
            )

400
401
402
403
404
405
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline which doesn't allow explicit device placement using `to()`. You can call `reset_device_map()` first and then call `to()`."
            )

406
407
        # Display a warning in this case (the operation succeeds but the benefits are lost)
        pipeline_is_offloaded = any(module_is_offloaded(module) for _, module in self.components.items())
408
        if pipeline_is_offloaded and device and torch.device(device).type == "cuda":
409
410
411
412
            logger.warning(
                f"It seems like you have activated model offloading by calling `enable_model_cpu_offload`, but are now manually moving the pipeline to GPU. It is strongly recommended against doing so as memory gains from offloading are likely to be lost. Offloading automatically takes care of moving the individual components {', '.join(self.components.keys())} to GPU when needed. To make sure offloading works as expected, you should consider moving the pipeline back to CPU: `pipeline.to('cpu')` or removing the move altogether if you use offloading."
            )

413
        module_names, _ = self._get_signature_keys(self)
414
415
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
416

417
        is_offloaded = pipeline_is_offloaded or pipeline_is_sequentially_offloaded
418
        for module in modules:
Patrick von Platen's avatar
Patrick von Platen committed
419
420
            is_loaded_in_8bit = hasattr(module, "is_loaded_in_8bit") and module.is_loaded_in_8bit

421
            if is_loaded_in_8bit and dtype is not None:
Patrick von Platen's avatar
Patrick von Platen committed
422
                logger.warning(
423
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and conversion to {dtype} is not yet supported. Module is still in 8bit precision."
Patrick von Platen's avatar
Patrick von Platen committed
424
425
                )

426
            if is_loaded_in_8bit and device is not None:
Patrick von Platen's avatar
Patrick von Platen committed
427
                logger.warning(
428
                    f"The module '{module.__class__.__name__}' has been loaded in 8bit and moving it to {dtype} via `.to()` is not yet supported. Module is still on {module.device}."
Patrick von Platen's avatar
Patrick von Platen committed
429
430
                )
            else:
431
                module.to(device, dtype)
Patrick von Platen's avatar
Patrick von Platen committed
432

433
434
            if (
                module.dtype == torch.float16
435
                and str(device) in ["cpu"]
436
437
438
439
                and not silence_dtype_warnings
                and not is_offloaded
            ):
                logger.warning(
440
                    "Pipelines loaded with `dtype=torch.float16` cannot run with `cpu` device. It"
441
442
443
444
445
                    " is not recommended to move them to `cpu` as running them will fail. Please make"
                    " sure to use an accelerator to run the pipeline in inference, due to the lack of"
                    " support for`float16` operations on this device in PyTorch. Please, remove the"
                    " `torch_dtype=torch.float16` argument, or use another device for inference."
                )
446
447
448
449
450
451
452
453
        return self

    @property
    def device(self) -> torch.device:
        r"""
        Returns:
            `torch.device`: The torch device on which the pipeline is located.
        """
454
        module_names, _ = self._get_signature_keys(self)
455
456
457
458
459
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.device
460

461
462
        return torch.device("cpu")

463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
    @property
    def dtype(self) -> torch.dtype:
        r"""
        Returns:
            `torch.dtype`: The torch dtype on which the pipeline is located.
        """
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]

        for module in modules:
            return module.dtype

        return torch.float32

478
    @classmethod
479
    @validate_hf_hub_args
480
481
    def from_pretrained(cls, pretrained_model_name_or_path: Optional[Union[str, os.PathLike]], **kwargs):
        r"""
Steven Liu's avatar
Steven Liu committed
482
        Instantiate a PyTorch diffusion pipeline from pretrained pipeline weights.
483

Steven Liu's avatar
Steven Liu committed
484
        The pipeline is set in evaluation mode (`model.eval()`) by default.
485

Steven Liu's avatar
Steven Liu committed
486
        If you get the error message below, you need to finetune the weights for your downstream task:
487

Steven Liu's avatar
Steven Liu committed
488
489
490
491
492
        ```
        Some weights of UNet2DConditionModel were not initialized from the model checkpoint at runwayml/stable-diffusion-v1-5 and are newly initialized because the shapes did not match:
        - conv_in.weight: found shape torch.Size([320, 4, 3, 3]) in the checkpoint and torch.Size([320, 9, 3, 3]) in the model instantiated
        You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.
        ```
493
494
495
496
497

        Parameters:
            pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
498
499
500
501
502
                    - A string, the *repo id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
                      hosted on the Hub.
                    - A path to a *directory* (for example `./my_pipeline_directory/`) containing pipeline weights
                      saved using
                    [`~DiffusionPipeline.save_pretrained`].
503
            torch_dtype (`str` or `torch.dtype`, *optional*):
Steven Liu's avatar
Steven Liu committed
504
505
                Override the default `torch.dtype` and load the model with another dtype. If "auto" is passed, the
                dtype is automatically derived from the model's weights.
506
507
508
509
            custom_pipeline (`str`, *optional*):

                <Tip warning={true}>

Steven Liu's avatar
Steven Liu committed
510
                🧪 This is an experimental feature and may change in the future.
511
512
513
514
515

                </Tip>

                Can be either:

Steven Liu's avatar
Steven Liu committed
516
517
518
                    - A string, the *repo id* (for example `hf-internal-testing/diffusers-dummy-pipeline`) of a custom
                      pipeline hosted on the Hub. The repository must contain a file called pipeline.py that defines
                      the custom pipeline.
519
                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
520
521
522
523
524
525
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current main branch of GitHub.
                    - A path to a directory (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
526
527
528
529
530
531
532

                For more information on how to load and create custom pipelines, please have a look at [Loading and
                Adding Custom
                Pipelines](https://huggingface.co/docs/diffusers/using-diffusers/custom_pipeline_overview)
            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
533
            cache_dir (`Union[str, os.PathLike]`, *optional*):
Steven Liu's avatar
Steven Liu committed
534
535
                Path to a directory where a downloaded pretrained model configuration is cached if the standard cache
                is not used.
536
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
537
538
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
                incompletely downloaded files are deleted.
539
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
540
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
541
542
543
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
544
545
546
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
547
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
548
549
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
550
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
551
552
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
553
            custom_revision (`str`, *optional*):
554
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
555
556
                `revision` when loading a custom pipeline from the Hub. Defaults to the latest stable 🤗 Diffusers
                version.
557
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
558
559
560
                Mirror source to resolve accessibility issues if you’re downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
561
            device_map (`str` or `Dict[str, Union[int, str, torch.device]]`, *optional*):
Steven Liu's avatar
Steven Liu committed
562
563
                A map that specifies where each submodule should go. It doesn’t need to be defined for each
                parameter/buffer name; once a given module name is inside, every submodule of it will be sent to the
564
565
                same device.

Steven Liu's avatar
Steven Liu committed
566
                Set `device_map="auto"` to have 🤗 Accelerate automatically compute the most optimized `device_map`. For
567
568
                more information about each option see [designing a device
                map](https://hf.co/docs/accelerate/main/en/usage_guides/big_modeling#designing-a-device-map).
569
            max_memory (`Dict`, *optional*):
Steven Liu's avatar
Steven Liu committed
570
571
                A dictionary device identifier for the maximum memory. Will default to the maximum memory available for
                each GPU and the available CPU RAM if unset.
572
            offload_folder (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
573
                The path to offload weights if device_map contains the value `"disk"`.
574
            offload_state_dict (`bool`, *optional*):
Steven Liu's avatar
Steven Liu committed
575
576
577
                If `True`, temporarily offloads the CPU state dict to the hard drive to avoid running out of CPU RAM if
                the weight of the CPU state dict + the biggest shard of the checkpoint does not fit. Defaults to `True`
                when there is some disk offload.
578
            low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
Steven Liu's avatar
Steven Liu committed
579
580
581
582
                Speed up model loading only loading the pretrained weights and not initializing the weights. This also
                tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
                Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
                argument to `True` will raise an error.
583
            use_safetensors (`bool`, *optional*, defaults to `None`):
Steven Liu's avatar
Steven Liu committed
584
585
586
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
587
588
589
590
591
            use_onnx (`bool`, *optional*, defaults to `None`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
592
            kwargs (remaining dictionary of keyword arguments, *optional*):
Steven Liu's avatar
Steven Liu committed
593
594
595
                Can be used to overwrite load and saveable variables (the pipeline components of the specific pipeline
                class). The overwritten components are passed directly to the pipelines `__init__` method. See example
                below for more information.
596
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
597
598
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
599
600
601

        <Tip>

Steven Liu's avatar
Steven Liu committed
602
603
        To use private or [gated](https://huggingface.co/docs/hub/models-gated#gated-models) models, log-in with
        `huggingface-cli login`.
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626

        </Tip>

        Examples:

        ```py
        >>> from diffusers import DiffusionPipeline

        >>> # Download pipeline from huggingface.co and cache.
        >>> pipeline = DiffusionPipeline.from_pretrained("CompVis/ldm-text2im-large-256")

        >>> # Download pipeline that requires an authorization token
        >>> # For more information on access tokens, please refer to this section
        >>> # of the documentation](https://huggingface.co/docs/hub/security-tokens)
        >>> pipeline = DiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")

        >>> # Use a different scheduler
        >>> from diffusers import LMSDiscreteScheduler

        >>> scheduler = LMSDiscreteScheduler.from_config(pipeline.scheduler.config)
        >>> pipeline.scheduler = scheduler
        ```
        """
627
        cache_dir = kwargs.pop("cache_dir", None)
628
629
630
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
631
632
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
633
        revision = kwargs.pop("revision", None)
634
        from_flax = kwargs.pop("from_flax", False)
635
636
637
638
639
640
        torch_dtype = kwargs.pop("torch_dtype", None)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)
        provider = kwargs.pop("provider", None)
        sess_options = kwargs.pop("sess_options", None)
        device_map = kwargs.pop("device_map", None)
641
642
643
        max_memory = kwargs.pop("max_memory", None)
        offload_folder = kwargs.pop("offload_folder", None)
        offload_state_dict = kwargs.pop("offload_state_dict", False)
644
        low_cpu_mem_usage = kwargs.pop("low_cpu_mem_usage", _LOW_CPU_MEM_USAGE_DEFAULT)
645
        variant = kwargs.pop("variant", None)
646
        use_safetensors = kwargs.pop("use_safetensors", None)
647
        use_onnx = kwargs.pop("use_onnx", None)
648
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
649

650
651
652
653
654
655
656
657
658
        if low_cpu_mem_usage and not is_accelerate_available():
            low_cpu_mem_usage = False
            logger.warning(
                "Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
                " environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
                " `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
                " install accelerate\n```\n."
            )

659
660
661
662
663
664
        if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `low_cpu_mem_usage=False`."
            )

665
666
667
668
669
670
        if device_map is not None and not is_torch_version(">=", "1.9.0"):
            raise NotImplementedError(
                "Loading and dispatching requires torch >= 1.9.0. Please either update your PyTorch version or set"
                " `device_map=None`."
            )

671
        if device_map is not None and not is_accelerate_available():
672
            raise NotImplementedError(
673
674
675
676
677
678
679
680
681
                "Using `device_map` requires the `accelerate` library. Please install it using: `pip install accelerate`."
            )

        if device_map is not None and not isinstance(device_map, str):
            raise ValueError("`device_map` must be a string.")

        if device_map is not None and device_map not in SUPPORTED_DEVICE_MAP:
            raise NotImplementedError(
                f"{device_map} not supported. Supported strategies are: {', '.join(SUPPORTED_DEVICE_MAP)}"
682
683
            )

684
685
686
687
        if device_map is not None and device_map in SUPPORTED_DEVICE_MAP:
            if is_accelerate_version("<", "0.28.0"):
                raise NotImplementedError("Device placement requires `accelerate` version `0.28.0` or later.")

688
689
690
691
692
693
        if low_cpu_mem_usage is False and device_map is not None:
            raise ValueError(
                f"You cannot set `low_cpu_mem_usage` to False while using device_map={device_map} for loading and"
                " dispatching. Please make sure to set `low_cpu_mem_usage=True`."
            )

694
695
696
        # 1. Download the checkpoints and configs
        # use snapshot download here to get it working from from_pretrained
        if not os.path.isdir(pretrained_model_name_or_path):
Patrick von Platen's avatar
Patrick von Platen committed
697
698
699
700
701
            if pretrained_model_name_or_path.count("/") > 1:
                raise ValueError(
                    f'The provided pretrained_model_name_or_path "{pretrained_model_name_or_path}"'
                    " is neither a valid local path nor a valid repo id. Please check the parameter."
                )
702
            cached_folder = cls.download(
703
704
705
706
707
708
                pretrained_model_name_or_path,
                cache_dir=cache_dir,
                resume_download=resume_download,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
709
                token=token,
710
                revision=revision,
711
                from_flax=from_flax,
712
                use_safetensors=use_safetensors,
713
                use_onnx=use_onnx,
714
                custom_pipeline=custom_pipeline,
715
                custom_revision=custom_revision,
716
                variant=variant,
717
                load_connected_pipeline=load_connected_pipeline,
718
                **kwargs,
719
720
721
722
            )
        else:
            cached_folder = pretrained_model_name_or_path

723
724
        config_dict = cls.load_config(cached_folder)

Patrick von Platen's avatar
Patrick von Platen committed
725
726
727
        # pop out "_ignore_files" as it is only needed for download
        config_dict.pop("_ignore_files", None)

728
729
730
        # 2. Define which model components should load variants
        # We retrieve the information by matching whether variant
        # model checkpoints exist in the subfolders
731
732
733
734
735
        model_variants = {}
        if variant is not None:
            for folder in os.listdir(cached_folder):
                folder_path = os.path.join(cached_folder, folder)
                is_folder = os.path.isdir(folder_path) and folder in config_dict
736
737
738
                variant_exists = is_folder and any(
                    p.split(".")[1].startswith(variant) for p in os.listdir(folder_path)
                )
739
740
741
                if variant_exists:
                    model_variants[folder] = variant

742
        # 3. Load the pipeline class, if using custom module then load it from the hub
743
        # if we load from explicit class, let's use it
744
745
746
747
748
749
750
751
752
        custom_class_name = None
        if os.path.isfile(os.path.join(cached_folder, f"{custom_pipeline}.py")):
            custom_pipeline = os.path.join(cached_folder, f"{custom_pipeline}.py")
        elif isinstance(config_dict["_class_name"], (list, tuple)) and os.path.isfile(
            os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
        ):
            custom_pipeline = os.path.join(cached_folder, f"{config_dict['_class_name'][0]}.py")
            custom_class_name = config_dict["_class_name"][1]

753
        pipeline_class = _get_pipeline_class(
754
755
756
757
            cls,
            config_dict,
            load_connected_pipeline=load_connected_pipeline,
            custom_pipeline=custom_pipeline,
758
            class_name=custom_class_name,
759
760
            cache_dir=cache_dir,
            revision=custom_revision,
761
        )
762

763
764
765
        if device_map is not None and pipeline_class._load_connected_pipes:
            raise NotImplementedError("`device_map` is not yet supported for connected pipelines.")

766
        # DEPRECATED: To be removed in 1.0.0
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
        if pipeline_class.__name__ == "StableDiffusionInpaintPipeline" and version.parse(
            version.parse(config_dict["_diffusers_version"]).base_version
        ) <= version.parse("0.5.1"):
            from diffusers import StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy

            pipeline_class = StableDiffusionInpaintPipelineLegacy

            deprecation_message = (
                "You are using a legacy checkpoint for inpainting with Stable Diffusion, therefore we are loading the"
                f" {StableDiffusionInpaintPipelineLegacy} class instead of {StableDiffusionInpaintPipeline}. For"
                " better inpainting results, we strongly suggest using Stable Diffusion's official inpainting"
                " checkpoint: https://huggingface.co/runwayml/stable-diffusion-inpainting instead or adapting your"
                f" checkpoint {pretrained_model_name_or_path} to the format of"
                " https://huggingface.co/runwayml/stable-diffusion-inpainting. Note that we do not actively maintain"
                " the {StableDiffusionInpaintPipelineLegacy} class and will likely remove it in version 1.0.0."
            )
            deprecate("StableDiffusionInpaintPipelineLegacy", "1.0.0", deprecation_message, standard_warn=False)

785
786
787
        # 4. Define expected modules given pipeline signature
        # and define non-None initialized modules (=`init_kwargs`)

788
789
790
791
792
793
794
795
796
        # some modules can be passed directly to the init
        # in this case they are already instantiated in `kwargs`
        # extract them here
        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}

        init_dict, unused_kwargs, _ = pipeline_class.extract_init_dict(config_dict, **kwargs)

797
798
799
800
801
802
        # define init kwargs and make sure that optional component modules are filtered out
        init_kwargs = {
            k: init_dict.pop(k)
            for k in optional_kwargs
            if k in init_dict and k not in pipeline_class._optional_components
        }
803
804
805
806
807
808
809
810
811
812
813
814
        init_kwargs = {**init_kwargs, **passed_pipe_kwargs}

        # remove `null` components
        def load_module(name, value):
            if value[0] is None:
                return False
            if name in passed_class_obj and passed_class_obj[name] is None:
                return False
            return True

        init_dict = {k: v for k, v in init_dict.items() if load_module(k, v)}

815
816
817
818
819
820
821
822
        # Special case: safety_checker must be loaded separately when using `from_flax`
        if from_flax and "safety_checker" in init_dict and "safety_checker" not in passed_class_obj:
            raise NotImplementedError(
                "The safety checker cannot be automatically loaded when loading weights `from_flax`."
                " Please, pass `safety_checker=None` to `from_pretrained`, and load the safety checker"
                " separately if you need it."
            )

823
        # 5. Throw nice warnings / errors for fast accelerate loading
824
825
826
827
828
829
830
831
        if len(unused_kwargs) > 0:
            logger.warning(
                f"Keyword arguments {unused_kwargs} are not expected by {pipeline_class.__name__} and will be ignored."
            )

        # import it here to avoid circular import
        from diffusers import pipelines

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
        # 6. device map delegation
        final_device_map = None
        if device_map is not None:
            final_device_map = _get_final_device_map(
                device_map=device_map,
                pipeline_class=pipeline_class,
                passed_class_obj=passed_class_obj,
                init_dict=init_dict,
                library=library,
                max_memory=max_memory,
                torch_dtype=torch_dtype,
                cached_folder=cached_folder,
                force_download=force_download,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
                token=token,
                revision=revision,
            )

        # 7. Load each module in the pipeline
        current_device_map = None
854
        for name, (library_name, class_name) in logging.tqdm(init_dict.items(), desc="Loading pipeline components..."):
855
856
857
858
859
860
861
862
            if final_device_map is not None and len(final_device_map) > 0:
                component_device = final_device_map.get(name, None)
                if component_device is not None:
                    current_device_map = {"": component_device}
                else:
                    current_device_map = None

            # 7.1 - now that JAX/Flax is an official framework of the library, we might load from Flax names
863
            class_name = class_name[4:] if class_name.startswith("Flax") else class_name
864

865
            # 7.2 Define all importable classes
866
            is_pipeline_module = hasattr(pipelines, library_name)
867
            importable_classes = ALL_IMPORTABLE_CLASSES
868
869
            loaded_sub_model = None

870
            # 7.3 Use passed sub model or load class_name from library_name
871
            if name in passed_class_obj:
872
873
874
875
876
                # if the model is in a pipeline module, then we load it from the pipeline
                # check that passed_class_obj has correct parent class
                maybe_raise_or_warn(
                    library_name, library, class_name, importable_classes, passed_class_obj, name, is_pipeline_module
                )
877
878
879

                loaded_sub_model = passed_class_obj[name]
            else:
880
881
882
883
884
885
886
887
888
889
890
                # load sub model
                loaded_sub_model = load_sub_model(
                    library_name=library_name,
                    class_name=class_name,
                    importable_classes=importable_classes,
                    pipelines=pipelines,
                    is_pipeline_module=is_pipeline_module,
                    pipeline_class=pipeline_class,
                    torch_dtype=torch_dtype,
                    provider=provider,
                    sess_options=sess_options,
891
                    device_map=current_device_map,
892
893
894
                    max_memory=max_memory,
                    offload_folder=offload_folder,
                    offload_state_dict=offload_state_dict,
895
896
897
898
899
900
                    model_variants=model_variants,
                    name=name,
                    from_flax=from_flax,
                    variant=variant,
                    low_cpu_mem_usage=low_cpu_mem_usage,
                    cached_folder=cached_folder,
901
                )
902
903
904
                logger.info(
                    f"Loaded {name} as {class_name} from `{name}` subfolder of {pretrained_model_name_or_path}."
                )
905
906
907

            init_kwargs[name] = loaded_sub_model  # UNet(...), # DiffusionSchedule(...)

908
909
910
911
912
913
914
915
916
        if pipeline_class._load_connected_pipes and os.path.isfile(os.path.join(cached_folder, "README.md")):
            modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
            connected_pipes = {prefix: getattr(modelcard.data, prefix, [None])[0] for prefix in CONNECTED_PIPES_KEYS}
            load_kwargs = {
                "cache_dir": cache_dir,
                "resume_download": resume_download,
                "force_download": force_download,
                "proxies": proxies,
                "local_files_only": local_files_only,
917
                "token": token,
918
919
920
921
922
923
924
925
926
927
928
929
930
931
                "revision": revision,
                "torch_dtype": torch_dtype,
                "custom_pipeline": custom_pipeline,
                "custom_revision": custom_revision,
                "provider": provider,
                "sess_options": sess_options,
                "device_map": device_map,
                "max_memory": max_memory,
                "offload_folder": offload_folder,
                "offload_state_dict": offload_state_dict,
                "low_cpu_mem_usage": low_cpu_mem_usage,
                "variant": variant,
                "use_safetensors": use_safetensors,
            }
932
933
934
935
936
937
938
939
940
941
942
943

            def get_connected_passed_kwargs(prefix):
                connected_passed_class_obj = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_class_obj.items() if k.split("_")[0] == prefix
                }
                connected_passed_pipe_kwargs = {
                    k.replace(f"{prefix}_", ""): w for k, w in passed_pipe_kwargs.items() if k.split("_")[0] == prefix
                }

                connected_passed_kwargs = {**connected_passed_class_obj, **connected_passed_pipe_kwargs}
                return connected_passed_kwargs

944
            connected_pipes = {
945
946
947
                prefix: DiffusionPipeline.from_pretrained(
                    repo_id, **load_kwargs.copy(), **get_connected_passed_kwargs(prefix)
                )
948
949
950
951
952
953
954
955
956
957
                for prefix, repo_id in connected_pipes.items()
                if repo_id is not None
            }

            for prefix, connected_pipe in connected_pipes.items():
                # add connected pipes to `init_kwargs` with <prefix>_<component_name>, e.g. "prior_text_encoder"
                init_kwargs.update(
                    {"_".join([prefix, name]): component for name, component in connected_pipe.components.items()}
                )

958
        # 8. Potentially add passed objects if expected
959
960
961
962
963
964
965
966
967
968
969
970
        missing_modules = set(expected_modules) - set(init_kwargs.keys())
        passed_modules = list(passed_class_obj.keys())
        optional_modules = pipeline_class._optional_components
        if len(missing_modules) > 0 and missing_modules <= set(passed_modules + optional_modules):
            for module in missing_modules:
                init_kwargs[module] = passed_class_obj.get(module, None)
        elif len(missing_modules) > 0:
            passed_modules = set(list(init_kwargs.keys()) + list(passed_class_obj.keys())) - optional_kwargs
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {passed_modules} were passed."
            )

971
        # 10. Instantiate the pipeline
972
        model = pipeline_class(**init_kwargs)
973

974
        # 11. Save where the model was instantiated from
975
        model.register_to_config(_name_or_path=pretrained_model_name_or_path)
976
977
        if device_map is not None:
            setattr(model, "hf_device_map", final_device_map)
978
979
        return model

980
981
982
983
    @property
    def name_or_path(self) -> str:
        return getattr(self.config, "_name_or_path", None)

984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
    @property
    def _execution_device(self):
        r"""
        Returns the device on which the pipeline's models will be executed. After calling
        [`~DiffusionPipeline.enable_sequential_cpu_offload`] the execution device can only be inferred from
        Accelerate's module hooks.
        """
        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module) or name in self._exclude_from_cpu_offload:
                continue

            if not hasattr(model, "_hf_hook"):
                return self.device
            for module in model.modules():
                if (
                    hasattr(module, "_hf_hook")
                    and hasattr(module._hf_hook, "execution_device")
                    and module._hf_hook.execution_device is not None
                ):
                    return torch.device(module._hf_hook.execution_device)
        return self.device

1006
1007
1008
1009
1010
1011
    def remove_all_hooks(self):
        r"""
        Removes all hooks that were added when using `enable_sequential_cpu_offload` or `enable_model_cpu_offload`.
        """
        for _, model in self.components.items():
            if isinstance(model, torch.nn.Module) and hasattr(model, "_hf_hook"):
1012
                accelerate.hooks.remove_hook_from_module(model, recurse=True)
1013
1014
        self._all_hooks = []

1015
    def enable_model_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1016
1017
1018
1019
1020
        r"""
        Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
        to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
        method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
        `enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
1021
1022
1023
1024
1025
1026
1027

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1028
        """
1029
1030
1031
1032
1033
1034
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_model_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_model_cpu_offload()`."
            )

1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
        if self.model_cpu_offload_seq is None:
            raise ValueError(
                "Model CPU offload cannot be enabled because no `model_cpu_offload_seq` class attribute is set."
            )

        if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
            from accelerate import cpu_offload_with_hook
        else:
            raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")

1045
1046
        self.remove_all_hooks()

1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1057
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1058
1059
1060

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1061
        self._offload_device = device
1062

1063
1064
1065
1066
        self.to("cpu", silence_dtype_warnings=True)
        device_mod = getattr(torch, device.type, None)
        if hasattr(device_mod, "empty_cache") and device_mod.is_available():
            device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1067
1068
1069

        all_model_components = {k: v for k, v in self.components.items() if isinstance(v, torch.nn.Module)}

1070
        self._all_hooks = []
1071
1072
        hook = None
        for model_str in self.model_cpu_offload_seq.split("->"):
1073
            model = all_model_components.pop(model_str, None)
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
            if not isinstance(model, torch.nn.Module):
                continue

            _, hook = cpu_offload_with_hook(model, device, prev_module_hook=hook)
            self._all_hooks.append(hook)

        # CPU offload models that are not in the seq chain unless they are explicitly excluded
        # these models will stay on CPU until maybe_free_model_hooks is called
        # some models cannot be in the seq chain because they are iteratively called, such as controlnet
        for name, model in all_model_components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                _, hook = cpu_offload_with_hook(model, device)
                self._all_hooks.append(hook)

    def maybe_free_model_hooks(self):
        r"""
1095
1096
1097
1098
        Function that offloads all components, removes all model hooks that were added when using
        `enable_model_cpu_offload` and then applies them again. In case the model has not been offloaded this function
        is a no-op. Make sure to add this function to the end of the `__call__` function of your pipeline so that it
        functions correctly when applying enable_model_cpu_offload.
1099
1100
1101
1102
1103
1104
        """
        if not hasattr(self, "_all_hooks") or len(self._all_hooks) == 0:
            # `enable_model_cpu_offload` has not be called, so silently do nothing
            return

        # make sure the model is in the same state as before calling it
1105
        self.enable_model_cpu_offload(device=getattr(self, "_offload_device", "cuda"))
1106

1107
    def enable_sequential_cpu_offload(self, gpu_id: Optional[int] = None, device: Union[torch.device, str] = "cuda"):
1108
        r"""
1109
1110
1111
1112
        Offloads all models to CPU using 🤗 Accelerate, significantly reducing memory usage. When called, the state
        dicts of all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are saved to CPU
        and then moved to `torch.device('meta')` and loaded to GPU only when their specific submodule has its `forward`
        method called. Offloading happens on a submodule basis. Memory savings are higher than with
1113
        `enable_model_cpu_offload`, but performance is lower.
1114
1115
1116
1117
1118
1119
1120

        Arguments:
            gpu_id (`int`, *optional*):
                The ID of the accelerator that shall be used in inference. If not specified, it will default to 0.
            device (`torch.Device` or `str`, *optional*, defaults to "cuda"):
                The PyTorch device type of the accelerator that shall be used in inference. If not specified, it will
                default to "cuda".
1121
1122
1123
1124
1125
        """
        if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
            from accelerate import cpu_offload
        else:
            raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
1126
        self.remove_all_hooks()
1127

1128
1129
1130
1131
1132
1133
        is_pipeline_device_mapped = self.hf_device_map is not None and len(self.hf_device_map) > 1
        if is_pipeline_device_mapped:
            raise ValueError(
                "It seems like you have activated a device mapping strategy on the pipeline so calling `enable_sequential_cpu_offload() isn't allowed. You can call `reset_device_map()` first and then call `enable_sequential_cpu_offload()`."
            )

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
        torch_device = torch.device(device)
        device_index = torch_device.index

        if gpu_id is not None and device_index is not None:
            raise ValueError(
                f"You have passed both `gpu_id`={gpu_id} and an index as part of the passed device `device`={device}"
                f"Cannot pass both. Please make sure to either not define `gpu_id` or not pass the index as part of the device: `device`={torch_device.type}"
            )

        # _offload_gpu_id should be set to passed gpu_id (or id in passed `device`) or default to previously set id or default to 0
1144
        self._offload_gpu_id = gpu_id or torch_device.index or getattr(self, "_offload_gpu_id", 0)
1145
1146
1147

        device_type = torch_device.type
        device = torch.device(f"{device_type}:{self._offload_gpu_id}")
1148
        self._offload_device = device
1149
1150
1151

        if self.device.type != "cpu":
            self.to("cpu", silence_dtype_warnings=True)
1152
1153
1154
            device_mod = getattr(torch, self.device.type, None)
            if hasattr(device_mod, "empty_cache") and device_mod.is_available():
                device_mod.empty_cache()  # otherwise we don't see the memory savings (but they probably exist)
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167

        for name, model in self.components.items():
            if not isinstance(model, torch.nn.Module):
                continue

            if name in self._exclude_from_cpu_offload:
                model.to(device)
            else:
                # make sure to offload buffers if not all high level weights
                # are of type nn.Module
                offload_buffers = len(model._parameters) > 0
                cpu_offload(model, device, offload_buffers=offload_buffers)

1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    def reset_device_map(self):
        r"""
        Resets the device maps (if any) to None.
        """
        if self.hf_device_map is None:
            return
        else:
            self.remove_all_hooks()
            for name, component in self.components.items():
                if isinstance(component, torch.nn.Module):
                    component.to("cpu")
            self.hf_device_map = None

1181
    @classmethod
1182
    @validate_hf_hub_args
1183
1184
    def download(cls, pretrained_model_name, **kwargs) -> Union[str, os.PathLike]:
        r"""
Steven Liu's avatar
Steven Liu committed
1185
        Download and cache a PyTorch diffusion pipeline from pretrained pipeline weights.
1186
1187

        Parameters:
Steven Liu's avatar
Steven Liu committed
1188
            pretrained_model_name (`str` or `os.PathLike`, *optional*):
Steven Liu's avatar
Steven Liu committed
1189
                A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained pipeline
Steven Liu's avatar
Steven Liu committed
1190
                hosted on the Hub.
1191
1192
1193
            custom_pipeline (`str`, *optional*):
                Can be either:

Steven Liu's avatar
Steven Liu committed
1194
                    - A string, the *repository id* (for example `CompVis/ldm-text2im-large-256`) of a pretrained
Steven Liu's avatar
Steven Liu committed
1195
1196
                      pipeline hosted on the Hub. The repository must contain a file called `pipeline.py` that defines
                      the custom pipeline.
1197
1198

                    - A string, the *file name* of a community pipeline hosted on GitHub under
Steven Liu's avatar
Steven Liu committed
1199
1200
1201
1202
                      [Community](https://github.com/huggingface/diffusers/tree/main/examples/community). Valid file
                      names must match the file name and not the pipeline script (`clip_guided_stable_diffusion`
                      instead of `clip_guided_stable_diffusion.py`). Community pipelines are always loaded from the
                      current `main` branch of GitHub.
1203

Steven Liu's avatar
Steven Liu committed
1204
1205
                    - A path to a *directory* (`./my_pipeline_directory/`) containing a custom pipeline. The directory
                      must contain a file called `pipeline.py` that defines the custom pipeline.
1206

Steven Liu's avatar
Steven Liu committed
1207
                <Tip warning={true}>
1208

Steven Liu's avatar
Steven Liu committed
1209
                🧪 This is an experimental feature and may change in the future.
1210

Steven Liu's avatar
Steven Liu committed
1211
                </Tip>
1212

Steven Liu's avatar
Steven Liu committed
1213
1214
                For more information on how to load and create custom pipelines, take a look at [How to contribute a
                community pipeline](https://huggingface.co/docs/diffusers/main/en/using-diffusers/contribute_pipeline).
1215
1216
1217
1218
1219

            force_download (`bool`, *optional*, defaults to `False`):
                Whether or not to force the (re-)download of the model weights and configuration files, overriding the
                cached versions if they exist.
            resume_download (`bool`, *optional*, defaults to `False`):
Steven Liu's avatar
Steven Liu committed
1220
                Whether or not to resume downloading the model weights and configuration files. If set to `False`, any
Steven Liu's avatar
Steven Liu committed
1221
                incompletely downloaded files are deleted.
1222
            proxies (`Dict[str, str]`, *optional*):
Steven Liu's avatar
Steven Liu committed
1223
                A dictionary of proxy servers to use by protocol or endpoint, for example, `{'http': 'foo.bar:3128',
1224
1225
1226
                'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
            output_loading_info(`bool`, *optional*, defaults to `False`):
                Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages.
Steven Liu's avatar
Steven Liu committed
1227
1228
1229
            local_files_only (`bool`, *optional*, defaults to `False`):
                Whether to only load local model weights and configuration files or not. If set to `True`, the model
                won't be downloaded from the Hub.
1230
            token (`str` or *bool*, *optional*):
Steven Liu's avatar
Steven Liu committed
1231
1232
                The token to use as HTTP bearer authorization for remote files. If `True`, the token generated from
                `diffusers-cli login` (stored in `~/.huggingface`) is used.
1233
            revision (`str`, *optional*, defaults to `"main"`):
Steven Liu's avatar
Steven Liu committed
1234
1235
                The specific model version to use. It can be a branch name, a tag name, a commit id, or any identifier
                allowed by Git.
Steven Liu's avatar
Steven Liu committed
1236
            custom_revision (`str`, *optional*, defaults to `"main"`):
1237
                The specific model version to use. It can be a branch name, a tag name, or a commit id similar to
Steven Liu's avatar
Steven Liu committed
1238
1239
                `revision` when loading a custom pipeline from the Hub. It can be a 🤗 Diffusers version when loading a
                custom pipeline from GitHub, otherwise it defaults to `"main"` when loading from the Hub.
1240
            mirror (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1241
1242
1243
                Mirror source to resolve accessibility issues if you're downloading a model in China. We do not
                guarantee the timeliness or safety of the source, and you should refer to the mirror site for more
                information.
1244
            variant (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
1245
1246
                Load weights from a specified variant filename such as `"fp16"` or `"ema"`. This is ignored when
                loading `from_flax`.
1247
1248
1249
1250
1251
1252
1253
1254
1255
            use_safetensors (`bool`, *optional*, defaults to `None`):
                If set to `None`, the safetensors weights are downloaded if they're available **and** if the
                safetensors library is installed. If set to `True`, the model is forcibly loaded from safetensors
                weights. If set to `False`, safetensors weights are not loaded.
            use_onnx (`bool`, *optional*, defaults to `False`):
                If set to `True`, ONNX weights will always be downloaded if present. If set to `False`, ONNX weights
                will never be downloaded. By default `use_onnx` defaults to the `_is_onnx` class attribute which is
                `False` for non-ONNX pipelines and `True` for ONNX pipelines. ONNX weights include both files ending
                with `.onnx` and `.pb`.
1256
1257
1258
1259
            trust_remote_code (`bool`, *optional*, defaults to `False`):
                Whether or not to allow for custom pipelines and components defined on the Hub in their own files. This
                option should only be set to `True` for repositories you trust and in which you have read the code, as
                it will execute code present on the Hub on your local machine.
Steven Liu's avatar
Steven Liu committed
1260
1261
1262
1263

        Returns:
            `os.PathLike`:
                A path to the downloaded pipeline.
1264
1265
1266

        <Tip>

Steven Liu's avatar
Steven Liu committed
1267
1268
        To use private or [gated models](https://huggingface.co/docs/hub/models-gated#gated-models), log-in with
        `huggingface-cli login`.
1269
1270
1271
1272

        </Tip>

        """
1273
        cache_dir = kwargs.pop("cache_dir", None)
1274
1275
1276
        resume_download = kwargs.pop("resume_download", False)
        force_download = kwargs.pop("force_download", False)
        proxies = kwargs.pop("proxies", None)
1277
1278
        local_files_only = kwargs.pop("local_files_only", None)
        token = kwargs.pop("token", None)
1279
1280
1281
        revision = kwargs.pop("revision", None)
        from_flax = kwargs.pop("from_flax", False)
        custom_pipeline = kwargs.pop("custom_pipeline", None)
1282
        custom_revision = kwargs.pop("custom_revision", None)
1283
        variant = kwargs.pop("variant", None)
1284
        use_safetensors = kwargs.pop("use_safetensors", None)
1285
        use_onnx = kwargs.pop("use_onnx", None)
1286
        load_connected_pipeline = kwargs.pop("load_connected_pipeline", False)
1287
        trust_remote_code = kwargs.pop("trust_remote_code", False)
1288
1289
1290

        allow_pickle = False
        if use_safetensors is None:
1291
            use_safetensors = True
1292
            allow_pickle = True
1293
1294
1295
1296

        allow_patterns = None
        ignore_patterns = None

1297
        model_info_call_error: Optional[Exception] = None
1298
1299
        if not local_files_only:
            try:
1300
                info = model_info(pretrained_model_name, token=token, revision=revision)
1301
            except (HTTPError, OfflineModeIsEnabled, requests.ConnectionError) as e:
1302
                logger.warning(f"Couldn't connect to the Hub: {e}.\nWill try to load from local cache.")
1303
                local_files_only = True
1304
                model_info_call_error = e  # save error to reraise it if model is not cached locally
1305

1306
1307
1308
1309
1310
        if not local_files_only:
            config_file = hf_hub_download(
                pretrained_model_name,
                cls.config_name,
                cache_dir=cache_dir,
1311
                revision=revision,
1312
1313
1314
                proxies=proxies,
                force_download=force_download,
                resume_download=resume_download,
1315
                token=token,
1316
1317
1318
            )

            config_dict = cls._dict_from_json_file(config_file)
Patrick von Platen's avatar
Patrick von Platen committed
1319
1320
            ignore_filenames = config_dict.pop("_ignore_files", [])

1321
            # retrieve all folder_names that contain relevant files
1322
            folder_names = [k for k, v in config_dict.items() if isinstance(v, list) and k != "_class_name"]
1323

1324
            filenames = {sibling.rfilename for sibling in info.siblings}
1325
1326
            model_filenames, variant_filenames = variant_compatible_siblings(filenames, variant=variant)

1327
1328
1329
1330
1331
1332
1333
1334
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipelines = getattr(diffusers_module, "pipelines")

            # optionally create a custom component <> custom file mapping
            custom_components = {}
            for component in folder_names:
                module_candidate = config_dict[component][0]

1335
                if module_candidate is None or not isinstance(module_candidate, str):
1336
1337
                    continue

1338
1339
                # We compute candidate file path on the Hub. Do not use `os.path.join`.
                candidate_file = f"{component}/{module_candidate}.py"
1340
1341
1342
1343
1344
1345
1346
1347

                if candidate_file in filenames:
                    custom_components[component] = module_candidate
                elif module_candidate not in LOADABLE_CLASSES and not hasattr(pipelines, module_candidate):
                    raise ValueError(
                        f"{candidate_file} as defined in `model_index.json` does not exist in {pretrained_model_name} and is not a module in 'diffusers/pipelines'."
                    )

1348
1349
1350
1351
            if len(variant_filenames) == 0 and variant is not None:
                deprecation_message = (
                    f"You are trying to load the model files of the `variant={variant}`, but no such modeling files are available."
                    f"The default model files: {model_filenames} will be loaded instead. Make sure to not load from `variant={variant}`"
1352
                    "if such variant modeling files are not available. Doing so will lead to an error in v0.24.0 as defaulting to non-variant"
1353
1354
                    "modeling files is deprecated."
                )
1355
                deprecate("no variant default", "0.24.0", deprecation_message, standard_warn=False)
1356

Patrick von Platen's avatar
Patrick von Platen committed
1357
1358
1359
1360
            # remove ignored filenames
            model_filenames = set(model_filenames) - set(ignore_filenames)
            variant_filenames = set(variant_filenames) - set(ignore_filenames)

1361
1362
1363
            # if the whole pipeline is cached we don't have to ping the Hub
            if revision in DEPRECATED_REVISION_ARGS and version.parse(
                version.parse(__version__).base_version
Patrick von Platen's avatar
Patrick von Platen committed
1364
            ) >= version.parse("0.22.0"):
1365
                warn_deprecated_model_variant(pretrained_model_name, token, variant, revision, model_filenames)
1366

1367
            model_folder_names = {os.path.split(f)[0] for f in model_filenames if os.path.split(f)[0] in folder_names}
1368

1369
1370
1371
1372
1373
            custom_class_name = None
            if custom_pipeline is None and isinstance(config_dict["_class_name"], (list, tuple)):
                custom_pipeline = config_dict["_class_name"][0]
                custom_class_name = config_dict["_class_name"][1]

1374
1375
1376
1377
1378
            # all filenames compatible with variant will be added
            allow_patterns = list(model_filenames)

            # allow all patterns from non-model folders
            # this enables downloading schedulers, tokenizers, ...
1379
            allow_patterns += [f"{k}/*" for k in folder_names if k not in model_folder_names]
1380
1381
1382
1383
            # add custom component files
            allow_patterns += [f"{k}/{f}.py" for k, f in custom_components.items()]
            # add custom pipeline file
            allow_patterns += [f"{custom_pipeline}.py"] if f"{custom_pipeline}.py" in filenames else []
1384
            # also allow downloading config.json files with the model
1385
            allow_patterns += [os.path.join(k, "config.json") for k in model_folder_names]
1386
1387
1388
1389
1390
1391
1392
1393

            allow_patterns += [
                SCHEDULER_CONFIG_NAME,
                CONFIG_NAME,
                cls.config_name,
                CUSTOM_PIPELINE_FILE_NAME,
            ]

1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
            load_pipe_from_hub = custom_pipeline is not None and f"{custom_pipeline}.py" in filenames
            load_components_from_hub = len(custom_components) > 0

            if load_pipe_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {custom_pipeline}.py which must be executed to correctly "
                    f"load the model. You can inspect the repository content at https://hf.co/{pretrained_model_name}/blob/main/{custom_pipeline}.py.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

            if load_components_from_hub and not trust_remote_code:
                raise ValueError(
                    f"The repository for {pretrained_model_name} contains custom code in {'.py, '.join([os.path.join(k, v) for k,v in custom_components.items()])} which must be executed to correctly "
                    f"load the model. You can inspect the repository content at {', '.join([f'https://hf.co/{pretrained_model_name}/{k}/{v}.py' for k,v in custom_components.items()])}.\n"
                    f"Please pass the argument `trust_remote_code=True` to allow custom code to be run."
                )

1411
1412
            # retrieve passed components that should not be downloaded
            pipeline_class = _get_pipeline_class(
1413
1414
1415
1416
                cls,
                config_dict,
                load_connected_pipeline=load_connected_pipeline,
                custom_pipeline=custom_pipeline,
1417
1418
1419
                repo_id=pretrained_model_name if load_pipe_from_hub else None,
                hub_revision=revision,
                class_name=custom_class_name,
1420
1421
                cache_dir=cache_dir,
                revision=custom_revision,
1422
1423
1424
1425
            )
            expected_components, _ = cls._get_signature_keys(pipeline_class)
            passed_components = [k for k in expected_components if k in kwargs]

1426
1427
1428
            if (
                use_safetensors
                and not allow_pickle
1429
1430
1431
                and not is_safetensors_compatible(
                    model_filenames, variant=variant, passed_components=passed_components
                )
1432
1433
            ):
                raise EnvironmentError(
1434
                    f"Could not find the necessary `safetensors` weights in {model_filenames} (variant={variant})"
1435
                )
1436
1437
            if from_flax:
                ignore_patterns = ["*.bin", "*.safetensors", "*.onnx", "*.pb"]
1438
1439
1440
            elif use_safetensors and is_safetensors_compatible(
                model_filenames, variant=variant, passed_components=passed_components
            ):
1441
1442
                ignore_patterns = ["*.bin", "*.msgpack"]

1443
1444
1445
1446
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1447
1448
                safetensors_variant_filenames = {f for f in variant_filenames if f.endswith(".safetensors")}
                safetensors_model_filenames = {f for f in model_filenames if f.endswith(".safetensors")}
1449
1450
1451
1452
                if (
                    len(safetensors_variant_filenames) > 0
                    and safetensors_model_filenames != safetensors_variant_filenames
                ):
1453
                    logger.warning(
1454
1455
1456
1457
1458
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(safetensors_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(safetensors_model_filenames - safetensors_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )
            else:
                ignore_patterns = ["*.safetensors", "*.msgpack"]

1459
1460
1461
1462
                use_onnx = use_onnx if use_onnx is not None else pipeline_class._is_onnx
                if not use_onnx:
                    ignore_patterns += ["*.onnx", "*.pb"]

1463
1464
                bin_variant_filenames = {f for f in variant_filenames if f.endswith(".bin")}
                bin_model_filenames = {f for f in model_filenames if f.endswith(".bin")}
1465
                if len(bin_variant_filenames) > 0 and bin_model_filenames != bin_variant_filenames:
1466
                    logger.warning(
1467
1468
1469
                        f"\nA mixture of {variant} and non-{variant} filenames will be loaded.\nLoaded {variant} filenames:\n[{', '.join(bin_variant_filenames)}]\nLoaded non-{variant} filenames:\n[{', '.join(bin_model_filenames - bin_variant_filenames)}\nIf this behavior is not expected, please check your folder structure."
                    )

1470
1471
1472
1473
            # Don't download any objects that are passed
            allow_patterns = [
                p for p in allow_patterns if not (len(p.split("/")) == 2 and p.split("/")[0] in passed_components)
            ]
1474
1475
1476
1477

            if pipeline_class._load_connected_pipes:
                allow_patterns.append("README.md")

1478
1479
            # Don't download index files of forbidden patterns either
            ignore_patterns = ignore_patterns + [f"{i}.index.*json" for i in ignore_patterns]
1480
1481
1482
1483
1484
            re_ignore_pattern = [re.compile(fnmatch.translate(p)) for p in ignore_patterns]
            re_allow_pattern = [re.compile(fnmatch.translate(p)) for p in allow_patterns]

            expected_files = [f for f in filenames if not any(p.match(f) for p in re_ignore_pattern)]
            expected_files = [f for f in expected_files if any(p.match(f) for p in re_allow_pattern)]
1485

1486
1487
            snapshot_folder = Path(config_file).parent
            pipeline_is_cached = all((snapshot_folder / f).is_file() for f in expected_files)
1488

1489
            if pipeline_is_cached and not force_download:
1490
1491
1492
                # if the pipeline is cached, we can directly return it
                # else call snapshot_download
                return snapshot_folder
1493

1494
1495
1496
        user_agent = {"pipeline_class": cls.__name__}
        if custom_pipeline is not None and not custom_pipeline.endswith(".py"):
            user_agent["custom_pipeline"] = custom_pipeline
1497
1498

        # download all allow_patterns - ignore_patterns
1499
        try:
1500
            cached_folder = snapshot_download(
1501
1502
1503
1504
1505
                pretrained_model_name,
                cache_dir=cache_dir,
                resume_download=resume_download,
                proxies=proxies,
                local_files_only=local_files_only,
1506
                token=token,
1507
1508
1509
1510
1511
                revision=revision,
                allow_patterns=allow_patterns,
                ignore_patterns=ignore_patterns,
                user_agent=user_agent,
            )
1512

1513
1514
            # retrieve pipeline class from local file
            cls_name = cls.load_config(os.path.join(cached_folder, "model_index.json")).get("_class_name", None)
1515
            cls_name = cls_name[4:] if isinstance(cls_name, str) and cls_name.startswith("Flax") else cls_name
1516

1517
1518
            diffusers_module = importlib.import_module(__name__.split(".")[0])
            pipeline_class = getattr(diffusers_module, cls_name, None) if isinstance(cls_name, str) else None
1519
1520

            if pipeline_class is not None and pipeline_class._load_connected_pipes:
1521
1522
1523
                modelcard = ModelCard.load(os.path.join(cached_folder, "README.md"))
                connected_pipes = sum([getattr(modelcard.data, k, []) for k in CONNECTED_PIPES_KEYS], [])
                for connected_pipe_repo_id in connected_pipes:
1524
1525
1526
1527
1528
1529
                    download_kwargs = {
                        "cache_dir": cache_dir,
                        "resume_download": resume_download,
                        "force_download": force_download,
                        "proxies": proxies,
                        "local_files_only": local_files_only,
1530
                        "token": token,
1531
1532
1533
1534
                        "variant": variant,
                        "use_safetensors": use_safetensors,
                    }
                    DiffusionPipeline.download(connected_pipe_repo_id, **download_kwargs)
1535
1536
1537

            return cached_folder

1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
        except FileNotFoundError:
            # Means we tried to load pipeline with `local_files_only=True` but the files have not been found in local cache.
            # This can happen in two cases:
            # 1. If the user passed `local_files_only=True`                    => we raise the error directly
            # 2. If we forced `local_files_only=True` when `model_info` failed => we raise the initial error
            if model_info_call_error is None:
                # 1. user passed `local_files_only=True`
                raise
            else:
                # 2. we forced `local_files_only=True` when `model_info` failed
                raise EnvironmentError(
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
1549
                    f"Cannot load model {pretrained_model_name}: model is not cached locally and an error occurred"
1550
1551
1552
                    " while trying to fetch metadata from the Hub. Please check out the root cause in the stacktrace"
                    " above."
                ) from model_info_call_error
1553

1554
1555
    @classmethod
    def _get_signature_keys(cls, obj):
1556
1557
1558
        parameters = inspect.signature(obj.__init__).parameters
        required_parameters = {k: v for k, v in parameters.items() if v.default == inspect._empty}
        optional_parameters = set({k for k, v in parameters.items() if v.default != inspect._empty})
1559
        expected_modules = set(required_parameters.keys()) - {"self"}
1560
1561
1562
1563
1564
1565
1566

        optional_names = list(optional_parameters)
        for name in optional_names:
            if name in cls._optional_components:
                expected_modules.add(name)
                optional_parameters.remove(name)

1567
1568
        return expected_modules, optional_parameters

1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
    @classmethod
    def _get_signature_types(cls):
        signature_types = {}
        for k, v in inspect.signature(cls.__init__).parameters.items():
            if inspect.isclass(v.annotation):
                signature_types[k] = (v.annotation,)
            elif get_origin(v.annotation) == Union:
                signature_types[k] = get_args(v.annotation)
            else:
                logger.warning(f"cannot get type annotation for Parameter {k} of {cls}.")
        return signature_types

1581
1582
1583
1584
    @property
    def components(self) -> Dict[str, Any]:
        r"""
        The `self.components` property can be useful to run different pipelines with the same weights and
Steven Liu's avatar
Steven Liu committed
1585
1586
1587
1588
        configurations without reallocating additional memory.

        Returns (`dict`):
            A dictionary containing all the modules needed to initialize the pipeline.
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611

        Examples:

        ```py
        >>> from diffusers import (
        ...     StableDiffusionPipeline,
        ...     StableDiffusionImg2ImgPipeline,
        ...     StableDiffusionInpaintPipeline,
        ... )

        >>> text2img = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
        >>> inpaint = StableDiffusionInpaintPipeline(**text2img.components)
        ```
        """
        expected_modules, optional_parameters = self._get_signature_keys(self)
        components = {
            k: getattr(self, k) for k in self.config.keys() if not k.startswith("_") and k not in optional_parameters
        }

        if set(components.keys()) != expected_modules:
            raise ValueError(
                f"{self} has been incorrectly initialized or {self.__class__} is incorrectly implemented. Expected"
1612
                f" {expected_modules} to be defined, but {components.keys()} are defined."
1613
1614
1615
1616
1617
1618
1619
            )

        return components

    @staticmethod
    def numpy_to_pil(images):
        """
Steven Liu's avatar
Steven Liu committed
1620
        Convert a NumPy image or a batch of images to a PIL image.
1621
        """
Patrick von Platen's avatar
Patrick von Platen committed
1622
        return numpy_to_pil(images)
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641

    def progress_bar(self, iterable=None, total=None):
        if not hasattr(self, "_progress_bar_config"):
            self._progress_bar_config = {}
        elif not isinstance(self._progress_bar_config, dict):
            raise ValueError(
                f"`self._progress_bar_config` should be of type `dict`, but is {type(self._progress_bar_config)}."
            )

        if iterable is not None:
            return tqdm(iterable, **self._progress_bar_config)
        elif total is not None:
            return tqdm(total=total, **self._progress_bar_config)
        else:
            raise ValueError("Either `total` or `iterable` has to be defined.")

    def set_progress_bar_config(self, **kwargs):
        self._progress_bar_config = kwargs

1642
    def enable_xformers_memory_efficient_attention(self, attention_op: Optional[Callable] = None):
1643
        r"""
1644
1645
1646
        Enable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/). When this
        option is enabled, you should observe lower GPU memory usage and a potential speed up during inference. Speed
        up during training is not guaranteed.
1647

Steven Liu's avatar
Steven Liu committed
1648
        <Tip warning={true}>
1649

Steven Liu's avatar
Steven Liu committed
1650
1651
1652
1653
        ⚠️ When memory efficient attention and sliced attention are both enabled, memory efficient attention takes
        precedent.

        </Tip>
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

        Parameters:
            attention_op (`Callable`, *optional*):
                Override the default `None` operator for use as `op` argument to the
                [`memory_efficient_attention()`](https://facebookresearch.github.io/xformers/components/ops.html#xformers.ops.memory_efficient_attention)
                function of xFormers.

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import DiffusionPipeline
        >>> from xformers.ops import MemoryEfficientAttentionFlashAttentionOp

        >>> pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
        >>> pipe = pipe.to("cuda")
        >>> pipe.enable_xformers_memory_efficient_attention(attention_op=MemoryEfficientAttentionFlashAttentionOp)
        >>> # Workaround for not accepting attention shape using VAE for Flash Attention
        >>> pipe.vae.enable_xformers_memory_efficient_attention(attention_op=None)
        ```
1674
        """
1675
        self.set_use_memory_efficient_attention_xformers(True, attention_op)
1676
1677
1678

    def disable_xformers_memory_efficient_attention(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1679
        Disable memory efficient attention from [xFormers](https://facebookresearch.github.io/xformers/).
1680
1681
1682
        """
        self.set_use_memory_efficient_attention_xformers(False)

1683
1684
1685
    def set_use_memory_efficient_attention_xformers(
        self, valid: bool, attention_op: Optional[Callable] = None
    ) -> None:
1686
1687
1688
1689
1690
        # Recursively walk through all the children.
        # Any children which exposes the set_use_memory_efficient_attention_xformers method
        # gets the message
        def fn_recursive_set_mem_eff(module: torch.nn.Module):
            if hasattr(module, "set_use_memory_efficient_attention_xformers"):
1691
                module.set_use_memory_efficient_attention_xformers(valid, attention_op)
1692
1693
1694
1695

            for child in module.children():
                fn_recursive_set_mem_eff(child)

1696
1697
1698
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module)]
1699

1700
1701
        for module in modules:
            fn_recursive_set_mem_eff(module)
1702
1703
1704

    def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
        r"""
1705
        Enable sliced attention computation. When this option is enabled, the attention module splits the input tensor
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
        in slices to compute attention in several steps. For more than one attention head, the computation is performed
        sequentially over each head. This is useful to save some memory in exchange for a small speed decrease.

        <Tip warning={true}>

        ⚠️ Don't enable attention slicing if you're already using `scaled_dot_product_attention` (SDPA) from PyTorch
        2.0 or xFormers. These attention computations are already very memory efficient so you won't need to enable
        this function. If you enable attention slicing with SDPA or xFormers, it can lead to serious slow downs!

        </Tip>
1716
1717
1718
1719

        Args:
            slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
                When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
Alexander Pivovarov's avatar
Alexander Pivovarov committed
1720
                `"max"`, maximum amount of memory will be saved by running only one slice at a time. If a number is
1721
1722
                provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
                must be a multiple of `slice_size`.
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739

        Examples:

        ```py
        >>> import torch
        >>> from diffusers import StableDiffusionPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained(
        ...     "runwayml/stable-diffusion-v1-5",
        ...     torch_dtype=torch.float16,
        ...     use_safetensors=True,
        ... )

        >>> prompt = "a photo of an astronaut riding a horse on mars"
        >>> pipe.enable_attention_slicing()
        >>> image = pipe(prompt).images[0]
        ```
1740
1741
1742
1743
1744
        """
        self.set_attention_slice(slice_size)

    def disable_attention_slicing(self):
        r"""
Steven Liu's avatar
Steven Liu committed
1745
1746
        Disable sliced attention computation. If `enable_attention_slicing` was previously called, attention is
        computed in one step.
1747
1748
1749
1750
1751
        """
        # set slice_size = `None` to disable `attention slicing`
        self.enable_attention_slicing(None)

    def set_attention_slice(self, slice_size: Optional[int]):
1752
1753
1754
        module_names, _ = self._get_signature_keys(self)
        modules = [getattr(self, n, None) for n in module_names]
        modules = [m for m in modules if isinstance(m, torch.nn.Module) and hasattr(m, "set_attention_slice")]
1755

1756
1757
        for module in modules:
            module.set_attention_slice(slice_size)
1758

1759
1760
1761
    @classmethod
    def from_pipe(cls, pipeline, **kwargs):
        r"""
1762
1763
        Create a new pipeline from a given pipeline. This method is useful to create a new pipeline from the existing
        pipeline components without reallocating additional memory.
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821

        Arguments:
            pipeline (`DiffusionPipeline`):
                The pipeline from which to create a new pipeline.

        Returns:
            `DiffusionPipeline`:
                A new pipeline with the same weights and configurations as `pipeline`.

        Examples:

        ```py
        >>> from diffusers import StableDiffusionPipeline, StableDiffusionSAGPipeline

        >>> pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
        >>> new_pipe = StableDiffusionSAGPipeline.from_pipe(pipe)
        ```
        """

        original_config = dict(pipeline.config)
        torch_dtype = kwargs.pop("torch_dtype", None)

        # derive the pipeline class to instantiate
        custom_pipeline = kwargs.pop("custom_pipeline", None)
        custom_revision = kwargs.pop("custom_revision", None)

        if custom_pipeline is not None:
            pipeline_class = _get_custom_pipeline_class(custom_pipeline, revision=custom_revision)
        else:
            pipeline_class = cls

        expected_modules, optional_kwargs = cls._get_signature_keys(pipeline_class)
        # true_optional_modules are optional components with default value in signature so it is ok not to pass them to `__init__`
        # e.g. `image_encoder` for StableDiffusionPipeline
        parameters = inspect.signature(cls.__init__).parameters
        true_optional_modules = set(
            {k for k, v in parameters.items() if v.default != inspect._empty and k in expected_modules}
        )

        # get the class of each component based on its type hint
        # e.g. {"unet": UNet2DConditionModel, "text_encoder": CLIPTextMode}
        component_types = pipeline_class._get_signature_types()

        pretrained_model_name_or_path = original_config.pop("_name_or_path", None)
        # allow users pass modules in `kwargs` to override the original pipeline's components
        passed_class_obj = {k: kwargs.pop(k) for k in expected_modules if k in kwargs}

        original_class_obj = {}
        for name, component in pipeline.components.items():
            if name in expected_modules and name not in passed_class_obj:
                # for model components, we will not switch over if the class does not matches the type hint in the new pipeline's signature
                if (
                    not isinstance(component, ModelMixin)
                    or type(component) in component_types[name]
                    or (component is None and name in cls._optional_components)
                ):
                    original_class_obj[name] = component
                else:
1822
                    logger.warning(
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
                        f"component {name} is not switched over to new pipeline because type does not match the expected."
                        f" {name} is {type(component)} while the new pipeline expect {component_types[name]}."
                        f" please pass the component of the correct type to the new pipeline. `from_pipe(..., {name}={name})`"
                    )

        # allow users pass optional kwargs to override the original pipelines config attribute
        passed_pipe_kwargs = {k: kwargs.pop(k) for k in optional_kwargs if k in kwargs}
        original_pipe_kwargs = {
            k: original_config[k]
            for k in original_config.keys()
            if k in optional_kwargs and k not in passed_pipe_kwargs
        }

        # config attribute that were not expected by pipeline is stored as its private attribute
        # (i.e. when the original pipeline was also instantiated with `from_pipe` from another pipeline that has this config)
        # in this case, we will pass them as optional arguments if they can be accepted by the new pipeline
        additional_pipe_kwargs = [
            k[1:]
            for k in original_config.keys()
            if k.startswith("_") and k[1:] in optional_kwargs and k[1:] not in passed_pipe_kwargs
        ]
        for k in additional_pipe_kwargs:
            original_pipe_kwargs[k] = original_config.pop(f"_{k}")

        pipeline_kwargs = {
            **passed_class_obj,
            **original_class_obj,
            **passed_pipe_kwargs,
            **original_pipe_kwargs,
            **kwargs,
        }

        # store unused config as private attribute in the new pipeline
        unused_original_config = {
            f"{'' if k.startswith('_') else '_'}{k}": v for k, v in original_config.items() if k not in pipeline_kwargs
        }

        missing_modules = (
            set(expected_modules)
            - set(pipeline._optional_components)
            - set(pipeline_kwargs.keys())
            - set(true_optional_modules)
        )

        if len(missing_modules) > 0:
            raise ValueError(
                f"Pipeline {pipeline_class} expected {expected_modules}, but only {set(list(passed_class_obj.keys()) + list(original_class_obj.keys()))} were passed"
            )

        new_pipeline = pipeline_class(**pipeline_kwargs)
        if pretrained_model_name_or_path is not None:
            new_pipeline.register_to_config(_name_or_path=pretrained_model_name_or_path)
        new_pipeline.register_to_config(**unused_original_config)

        if torch_dtype is not None:
            new_pipeline.to(dtype=torch_dtype)

        return new_pipeline

1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944

class StableDiffusionMixin:
    r"""
    Helper for DiffusionPipeline with vae and unet.(mainly for LDM such as stable diffusion)
    """

    def enable_vae_slicing(self):
        r"""
        Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
        compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
        """
        self.vae.enable_slicing()

    def disable_vae_slicing(self):
        r"""
        Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_slicing()

    def enable_vae_tiling(self):
        r"""
        Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
        compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
        processing larger images.
        """
        self.vae.enable_tiling()

    def disable_vae_tiling(self):
        r"""
        Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
        computing decoding in one step.
        """
        self.vae.disable_tiling()

    def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
        r"""Enables the FreeU mechanism as in https://arxiv.org/abs/2309.11497.

        The suffixes after the scaling factors represent the stages where they are being applied.

        Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of the values
        that are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.

        Args:
            s1 (`float`):
                Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            s2 (`float`):
                Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
                mitigate "oversmoothing effect" in the enhanced denoising process.
            b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
            b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
        """
        if not hasattr(self, "unet"):
            raise ValueError("The pipeline must have `unet` for using FreeU.")
        self.unet.enable_freeu(s1=s1, s2=s2, b1=b1, b2=b2)

    def disable_freeu(self):
        """Disables the FreeU mechanism if enabled."""
        self.unet.disable_freeu()

    def fuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """
1945
1946
        Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
        are fused. For cross-attention modules, key and value projection matrices are fused.
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.
        """
        self.fusing_unet = False
        self.fusing_vae = False

        if unet:
            self.fusing_unet = True
            self.unet.fuse_qkv_projections()
            self.unet.set_attn_processor(FusedAttnProcessor2_0())

        if vae:
            if not isinstance(self.vae, AutoencoderKL):
                raise ValueError("`fuse_qkv_projections()` is only supported for the VAE of type `AutoencoderKL`.")

            self.fusing_vae = True
            self.vae.fuse_qkv_projections()
            self.vae.set_attn_processor(FusedAttnProcessor2_0())

    def unfuse_qkv_projections(self, unet: bool = True, vae: bool = True):
        """Disable QKV projection fusion if enabled.

        <Tip warning={true}>

        This API is 🧪 experimental.

        </Tip>

        Args:
            unet (`bool`, defaults to `True`): To apply fusion on the UNet.
            vae (`bool`, defaults to `True`): To apply fusion on the VAE.

        """
        if unet:
            if not self.fusing_unet:
                logger.warning("The UNet was not initially fused for QKV projections. Doing nothing.")
            else:
                self.unet.unfuse_qkv_projections()
                self.fusing_unet = False

        if vae:
            if not self.fusing_vae:
                logger.warning("The VAE was not initially fused for QKV projections. Doing nothing.")
            else:
                self.vae.unfuse_qkv_projections()
                self.fusing_vae = False