hub_utils.py 24 KB
Newer Older
anton-l's avatar
anton-l committed
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
anton-l's avatar
anton-l committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import json
anton-l's avatar
anton-l committed
18
import os
19
import re
20
import sys
21
import tempfile
22
import warnings
anton-l's avatar
anton-l committed
23
from pathlib import Path
24
from typing import Dict, List, Optional, Union
25
from uuid import uuid4
anton-l's avatar
anton-l committed
26

27
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
28
    DDUFEntry,
29
30
31
32
    ModelCard,
    ModelCardData,
    create_repo,
    hf_hub_download,
33
34
    model_info,
    snapshot_download,
35
36
    upload_folder,
)
37
from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
38
from huggingface_hub.file_download import REGEX_COMMIT_HASH
39
40
from huggingface_hub.utils import (
    EntryNotFoundError,
41
    HfHubHTTPError,
42
43
44
    RepositoryNotFoundError,
    RevisionNotFoundError,
    is_jinja_available,
45
    validate_hf_hub_args,
46
47
)
from packaging import version
anton-l's avatar
anton-l committed
48

49
from .. import __version__
50
51
52
53
54
55
from .constants import (
    DEPRECATED_REVISION_ARGS,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
)
56
57
from .import_utils import (
    ENV_VARS_TRUE_VALUES,
58
59
60
61
62
63
64
65
    _flax_version,
    _jax_version,
    _onnxruntime_version,
    _torch_version,
    is_flax_available,
    is_onnx_available,
    is_torch_available,
)
66
from .logging import get_logger
67
68


69
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
70

71
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
72
73
74
75
76
77
78
79
SESSION_ID = uuid4().hex


def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
    ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
80
    if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        return ua + "; telemetry/off"
    if is_torch_available():
        ua += f"; torch/{_torch_version}"
    if is_flax_available():
        ua += f"; jax/{_jax_version}"
        ua += f"; flax/{_flax_version}"
    if is_onnx_available():
        ua += f"; onnxruntime/{_onnxruntime_version}"
    # CI will set this value to True
    if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    return ua
anton-l's avatar
anton-l committed
97
98


99
def load_or_create_model_card(
100
101
102
103
104
105
106
107
108
109
    repo_id_or_path: str = None,
    token: Optional[str] = None,
    is_pipeline: bool = False,
    from_training: bool = False,
    model_description: Optional[str] = None,
    base_model: str = None,
    prompt: Optional[str] = None,
    license: Optional[str] = None,
    widget: Optional[List[dict]] = None,
    inference: Optional[bool] = None,
110
111
112
113
114
) -> ModelCard:
    """
    Loads or creates a model card.

    Args:
115
        repo_id_or_path (`str`):
116
117
            The repo id (e.g., "stable-diffusion-v1-5/stable-diffusion-v1-5") or local path where to look for the model
            card.
118
        token (`str`, *optional*):
119
120
            Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
            details.
121
        is_pipeline (`bool`):
122
            Boolean to indicate if we're adding tag to a [`DiffusionPipeline`].
123
124
125
126
127
128
129
130
131
132
133
        from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script.
        model_description (`str`, *optional*): Model description to add to the model card. Helpful when using
            `load_or_create_model_card` from a training script.
        base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful
            for DreamBooth-like training.
        prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training.
        license: (`str`, *optional*): License of the output artifact. Helpful when using
            `load_or_create_model_card` from a training script.
        widget (`List[dict]`, *optional*): Widget to accompany a gallery template.
        inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using
            `load_or_create_model_card` from a training script.
134
    """
Lucain's avatar
Lucain committed
135
    if not is_jinja_available():
136
        raise ValueError(
Lucain's avatar
Lucain committed
137
            "Modelcard rendering is based on Jinja templates."
138
            " Please make sure to have `jinja` installed before using `load_or_create_model_card`."
Lucain's avatar
Lucain committed
139
            " To install it, please run `pip install Jinja2`."
140
141
        )

142
143
144
    try:
        # Check if the model card is present on the remote repo
        model_card = ModelCard.load(repo_id_or_path, token=token)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    except (EntryNotFoundError, RepositoryNotFoundError):
        # Otherwise create a model card from template
        if from_training:
            model_card = ModelCard.from_template(
                card_data=ModelCardData(  # Card metadata object that will be converted to YAML block
                    license=license,
                    library_name="diffusers",
                    inference=inference,
                    base_model=base_model,
                    instance_prompt=prompt,
                    widget=widget,
                ),
                template_path=MODEL_CARD_TEMPLATE_PATH,
                model_description=model_description,
            )
        else:
            card_data = ModelCardData()
            component = "pipeline" if is_pipeline else "model"
            if model_description is None:
                model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated."
            model_card = ModelCard.from_template(card_data, model_description=model_description)
166
167
168
169

    return model_card


170
171
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard:
    """Populates the `model_card` with library name and optional tags."""
172
173
    if model_card.data.library_name is None:
        model_card.data.library_name = "diffusers"
174
175
176
177
178
179
180
181
182

    if tags is not None:
        if isinstance(tags, str):
            tags = [tags]
        if model_card.data.tags is None:
            model_card.data.tags = []
        for tag in tags:
            model_card.data.tags.append(tag)

183
    return model_card
184
185


186
187
188
189
190
191
192
193
194
195
196
197
198
199
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
    """
    Extracts the commit hash from a resolved filename toward a cache file.
    """
    if resolved_file is None or commit_hash is not None:
        return commit_hash
    resolved_file = str(Path(resolved_file).as_posix())
    search = re.search(r"snapshots/([^/]+)/", resolved_file)
    if search is None:
        return None
    commit_hash = search.groups()[0]
    return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None


200
201
202
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
203
        splits = splits[:-1] + [variant] + splits[-1:]
204
205
206
207
208
        weights_name = ".".join(splits)

    return weights_name


209
@validate_hf_hub_args
210
def _get_model_file(
211
    pretrained_model_name_or_path: Union[str, Path],
212
    *,
213
    weights_name: str,
214
215
216
217
218
219
220
221
    subfolder: Optional[str] = None,
    cache_dir: Optional[str] = None,
    force_download: bool = False,
    proxies: Optional[Dict] = None,
    local_files_only: bool = False,
    token: Optional[str] = None,
    user_agent: Optional[Union[Dict, str]] = None,
    revision: Optional[str] = None,
222
    commit_hash: Optional[str] = None,
Marc Sun's avatar
Marc Sun committed
223
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
224
225
):
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
Marc Sun's avatar
Marc Sun committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

    if dduf_entries:
        if subfolder is not None:
            raise ValueError(
                "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
                "Please check the DDUF structure"
            )
        model_file = (
            weights_name
            if pretrained_model_name_or_path == ""
            else "/".join([pretrained_model_name_or_path, weights_name])
        )
        if model_file in dduf_entries:
            return model_file
        else:
            raise EnvironmentError(f"Error no file named {weights_name} found in archive {dduf_entries.keys()}.")
    elif os.path.isfile(pretrained_model_name_or_path):
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
        return pretrained_model_name_or_path
    elif os.path.isdir(pretrained_model_name_or_path):
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            # Load from a PyTorch checkpoint
            model_file = os.path.join(pretrained_model_name_or_path, weights_name)
            return model_file
        elif subfolder is not None and os.path.isfile(
            os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
        ):
            model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
            return model_file
        else:
            raise EnvironmentError(
                f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
            )
    else:
        # 1. First check if deprecated way of loading from branches is used
        if (
            revision in DEPRECATED_REVISION_ARGS
            and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
Patrick von Platen's avatar
Patrick von Platen committed
263
            and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
264
265
266
267
268
269
270
271
272
        ):
            try:
                model_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=_add_variant(weights_name, revision),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
273
                    token=token,
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
                    user_agent=user_agent,
                    subfolder=subfolder,
                    revision=revision or commit_hash,
                )
                warnings.warn(
                    f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
                    FutureWarning,
                )
                return model_file
            except:  # noqa: E722
                warnings.warn(
                    f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
                    FutureWarning,
                )
        try:
            # 2. Load model file as usual
            model_file = hf_hub_download(
                pretrained_model_name_or_path,
                filename=weights_name,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
297
                token=token,
298
299
300
301
302
303
                user_agent=user_agent,
                subfolder=subfolder,
                revision=revision or commit_hash,
            )
            return model_file

304
        except RepositoryNotFoundError as e:
305
306
307
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
308
                "token having permission to this repo with `token` or log in with `hf auth login`."
309
310
            ) from e
        except RevisionNotFoundError as e:
311
312
313
314
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                "this model name. Check the model page at "
                f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
315
316
            ) from e
        except EntryNotFoundError as e:
317
318
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
319
            ) from e
320
        except HfHubHTTPError as e:
321
            raise EnvironmentError(
322
323
324
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}"
            ) from e
        except ValueError as e:
325
326
327
328
329
330
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                f" directory containing a file named {weights_name} or"
                " \nCheckout your internet connection or see how to run the library in"
                " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
331
332
            ) from e
        except EnvironmentError as e:
333
334
335
336
337
            raise EnvironmentError(
                f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a file named {weights_name}"
338
            ) from e
339
340


341
342
343
344
345
346
347
348
349
350
def _get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    proxies=None,
    local_files_only=False,
    token=None,
    user_agent=None,
    revision=None,
    subfolder="",
Marc Sun's avatar
Marc Sun committed
351
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
352
353
354
355
356
357
358
359
360
361
362
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
Marc Sun's avatar
Marc Sun committed
363
364
365
366
367
368
    if dduf_entries:
        if index_filename not in dduf_entries:
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
    else:
        if not os.path.isfile(index_filename):
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
369

Marc Sun's avatar
Marc Sun committed
370
371
372
373
374
    if dduf_entries:
        index = json.loads(dduf_entries[index_filename].read_text())
    else:
        with open(index_filename, "r") as f:
            index = json.loads(f.read())
375
376
377
378
379
380
381
382

    original_shard_filenames = sorted(set(index["weight_map"].values()))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
    sharded_metadata["weight_map"] = index["weight_map"].copy()
    shards_path = os.path.join(pretrained_model_name_or_path, subfolder)

    # First, let's deal with local folder.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    if os.path.isdir(pretrained_model_name_or_path) or dduf_entries:
        shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames]
        for shard_file in shard_filenames:
            if dduf_entries:
                if shard_file not in dduf_entries:
                    raise FileNotFoundError(
                        f"{shards_path} does not appear to have a file named {shard_file} which is "
                        "required according to the checkpoint index."
                    )
            else:
                if not os.path.exists(shard_file):
                    raise FileNotFoundError(
                        f"{shards_path} does not appear to have a file named {shard_file} which is "
                        "required according to the checkpoint index."
                    )
        return shard_filenames, sharded_metadata
399
400
401

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    allow_patterns = original_shard_filenames
402
403
404
    if subfolder is not None:
        allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns]

405
    ignore_patterns = ["*.json", "*.md"]
406
407
408
409
410
411
412
413
414
415
416

    # If the repo doesn't have the required shards, error out early even before downloading anything.
    if not local_files_only:
        model_files_info = model_info(pretrained_model_name_or_path, revision=revision, token=token)
        for shard_file in original_shard_filenames:
            shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings)
            if not shard_file_present:
                raise EnvironmentError(
                    f"{shards_path} does not appear to have a file named {shard_file} which is "
                    "required according to the checkpoint index."
                )
417

418
419
420
421
422
423
424
425
426
427
428
429
    try:
        # Load from URL
        cached_folder = snapshot_download(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
430
        )
431
        if subfolder is not None:
432
433
434
435
            cached_folder = os.path.join(cached_folder, subfolder)

    # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
    # we don't have to catch them here. We have also dealt with EntryNotFoundError.
436
    except HfHubHTTPError as e:
437
438
439
440
        raise EnvironmentError(
            f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try"
            " again after checking your internet connection."
        ) from e
441

442
    cached_filenames = [os.path.join(cached_folder, f) for f in original_shard_filenames]
443
444
445
446
447
    for cached_file in cached_filenames:
        if not os.path.isfile(cached_file):
            raise EnvironmentError(
                f"{cached_folder} does not have a file named {cached_file} which is required according to the checkpoint index."
            )
448
449

    return cached_filenames, sharded_metadata
450
451


452
453
454
455
456
457
458
459
460
461
462
463
464
def _check_legacy_sharding_variant_format(folder: str = None, filenames: List[str] = None, variant: str = None):
    if filenames and folder:
        raise ValueError("Both `filenames` and `folder` cannot be provided.")
    if not filenames:
        filenames = []
        for _, _, files in os.walk(folder):
            for file in files:
                filenames.append(os.path.basename(file))
    transformers_index_format = r"\d{5}-of-\d{5}"
    variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
    return any(variant_file_re.match(f) is not None for f in filenames)


465
466
class PushToHubMixin:
    """
467
    A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
468
469
470
471
472
473
474
475
476
    """

    def _upload_folder(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        token: Optional[str] = None,
        commit_message: Optional[str] = None,
        create_pr: bool = False,
YiYi Xu's avatar
YiYi Xu committed
477
        subfolder: Optional[str] = None,
478
479
480
481
482
483
484
485
486
487
488
489
490
491
    ):
        """
        Uploads all files in `working_dir` to `repo_id`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Scheduler" in self.__class__.__name__:
                commit_message = "Upload scheduler"
            else:
                commit_message = f"Upload {self.__class__.__name__}"

        logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
        return upload_folder(
YiYi Xu's avatar
YiYi Xu committed
492
493
494
495
496
497
            repo_id=repo_id,
            folder_path=working_dir,
            token=token,
            commit_message=commit_message,
            create_pr=create_pr,
            path_in_repo=subfolder,
498
499
500
501
502
503
504
505
506
507
508
        )

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        create_pr: bool = False,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
YiYi Xu's avatar
YiYi Xu committed
509
        subfolder: Optional[str] = None,
510
511
    ) -> str:
        """
Steven Liu's avatar
Steven Liu committed
512
        Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub.
513
514
515

        Parameters:
            repo_id (`str`):
Steven Liu's avatar
Steven Liu committed
516
517
518
                The name of the repository you want to push your model, scheduler, or pipeline files to. It should
                contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
                directory.
519
            commit_message (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
520
                Message to commit while pushing. Default to `"Upload {object}"`.
521
            private (`bool`, *optional*):
522
523
                Whether to make the repo private. If `None` (default), the repo will be public unless the
                organization's default is private. This value is ignored if the repo already exists.
524
            token (`str`, *optional*):
525
526
                The token to use as HTTP bearer authorization for remote files. The token generated when running `hf
                auth login` (stored in `~/.huggingface`).
527
528
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
Steven Liu's avatar
Steven Liu committed
529
530
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether or not to convert the model weights to the `safetensors` format.
531
532
533
534
535
536
537
538
539
540
541
542
543
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

        Examples:

        ```python
        from diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

        # Push the `unet` to your namespace with the name "my-finetuned-unet".
        unet.push_to_hub("my-finetuned-unet")

544
        # Push the `unet` to an organization with the name "my-finetuned-unet".
545
546
547
548
549
        unet.push_to_hub("your-org/my-finetuned-unet")
        ```
        """
        repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

550
        # Create a new empty model card and eventually tag it
YiYi Xu's avatar
YiYi Xu committed
551
552
553
        if not subfolder:
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
554

555
556
557
558
559
560
561
562
        # Save all files.
        save_kwargs = {"safe_serialization": safe_serialization}
        if "Scheduler" not in self.__class__.__name__:
            save_kwargs.update({"variant": variant})

        with tempfile.TemporaryDirectory() as tmpdir:
            self.save_pretrained(tmpdir, **save_kwargs)

563
            # Update model card if needed:
YiYi Xu's avatar
YiYi Xu committed
564
565
            if not subfolder:
                model_card.save(os.path.join(tmpdir, "README.md"))
566

567
568
569
570
571
572
            return self._upload_folder(
                tmpdir,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
YiYi Xu's avatar
YiYi Xu committed
573
                subfolder=subfolder,
574
            )