hub_utils.py 23.6 KB
Newer Older
anton-l's avatar
anton-l committed
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
anton-l's avatar
anton-l committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import json
anton-l's avatar
anton-l committed
18
import os
19
import re
20
import sys
21
import tempfile
22
import warnings
anton-l's avatar
anton-l committed
23
from pathlib import Path
24
from typing import Dict, List, Optional, Union
25
from uuid import uuid4
anton-l's avatar
anton-l committed
26

27
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
28
    DDUFEntry,
29
30
31
32
    ModelCard,
    ModelCardData,
    create_repo,
    hf_hub_download,
33
34
    model_info,
    snapshot_download,
35
36
    upload_folder,
)
37
from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
38
from huggingface_hub.file_download import REGEX_COMMIT_HASH
39
40
41
42
43
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    is_jinja_available,
44
    validate_hf_hub_args,
45
46
47
)
from packaging import version
from requests import HTTPError
anton-l's avatar
anton-l committed
48

49
from .. import __version__
50
51
52
53
54
55
from .constants import (
    DEPRECATED_REVISION_ARGS,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
)
56
57
from .import_utils import (
    ENV_VARS_TRUE_VALUES,
58
59
60
61
62
63
64
65
    _flax_version,
    _jax_version,
    _onnxruntime_version,
    _torch_version,
    is_flax_available,
    is_onnx_available,
    is_torch_available,
)
66
from .logging import get_logger
67
68


69
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
70

71
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
72
73
74
75
76
77
78
79
SESSION_ID = uuid4().hex


def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
    ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
80
    if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        return ua + "; telemetry/off"
    if is_torch_available():
        ua += f"; torch/{_torch_version}"
    if is_flax_available():
        ua += f"; jax/{_jax_version}"
        ua += f"; flax/{_flax_version}"
    if is_onnx_available():
        ua += f"; onnxruntime/{_onnxruntime_version}"
    # CI will set this value to True
    if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    return ua
anton-l's avatar
anton-l committed
97
98


99
def load_or_create_model_card(
100
101
102
103
104
105
106
107
108
109
    repo_id_or_path: str = None,
    token: Optional[str] = None,
    is_pipeline: bool = False,
    from_training: bool = False,
    model_description: Optional[str] = None,
    base_model: str = None,
    prompt: Optional[str] = None,
    license: Optional[str] = None,
    widget: Optional[List[dict]] = None,
    inference: Optional[bool] = None,
110
111
112
113
114
) -> ModelCard:
    """
    Loads or creates a model card.

    Args:
115
116
        repo_id_or_path (`str`):
            The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card.
117
        token (`str`, *optional*):
118
119
            Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
            details.
120
        is_pipeline (`bool`):
121
            Boolean to indicate if we're adding tag to a [`DiffusionPipeline`].
122
123
124
125
126
127
128
129
130
131
132
        from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script.
        model_description (`str`, *optional*): Model description to add to the model card. Helpful when using
            `load_or_create_model_card` from a training script.
        base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful
            for DreamBooth-like training.
        prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training.
        license: (`str`, *optional*): License of the output artifact. Helpful when using
            `load_or_create_model_card` from a training script.
        widget (`List[dict]`, *optional*): Widget to accompany a gallery template.
        inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using
            `load_or_create_model_card` from a training script.
133
    """
Lucain's avatar
Lucain committed
134
    if not is_jinja_available():
135
        raise ValueError(
Lucain's avatar
Lucain committed
136
            "Modelcard rendering is based on Jinja templates."
137
            " Please make sure to have `jinja` installed before using `load_or_create_model_card`."
Lucain's avatar
Lucain committed
138
            " To install it, please run `pip install Jinja2`."
139
140
        )

141
142
143
    try:
        # Check if the model card is present on the remote repo
        model_card = ModelCard.load(repo_id_or_path, token=token)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    except (EntryNotFoundError, RepositoryNotFoundError):
        # Otherwise create a model card from template
        if from_training:
            model_card = ModelCard.from_template(
                card_data=ModelCardData(  # Card metadata object that will be converted to YAML block
                    license=license,
                    library_name="diffusers",
                    inference=inference,
                    base_model=base_model,
                    instance_prompt=prompt,
                    widget=widget,
                ),
                template_path=MODEL_CARD_TEMPLATE_PATH,
                model_description=model_description,
            )
        else:
            card_data = ModelCardData()
            component = "pipeline" if is_pipeline else "model"
            if model_description is None:
                model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated."
            model_card = ModelCard.from_template(card_data, model_description=model_description)
165
166
167
168

    return model_card


169
170
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard:
    """Populates the `model_card` with library name and optional tags."""
171
172
    if model_card.data.library_name is None:
        model_card.data.library_name = "diffusers"
173
174
175
176
177
178
179
180
181

    if tags is not None:
        if isinstance(tags, str):
            tags = [tags]
        if model_card.data.tags is None:
            model_card.data.tags = []
        for tag in tags:
            model_card.data.tags.append(tag)

182
    return model_card
183
184


185
186
187
188
189
190
191
192
193
194
195
196
197
198
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
    """
    Extracts the commit hash from a resolved filename toward a cache file.
    """
    if resolved_file is None or commit_hash is not None:
        return commit_hash
    resolved_file = str(Path(resolved_file).as_posix())
    search = re.search(r"snapshots/([^/]+)/", resolved_file)
    if search is None:
        return None
    commit_hash = search.groups()[0]
    return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None


199
200
201
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
202
        splits = splits[:-1] + [variant] + splits[-1:]
203
204
205
206
207
        weights_name = ".".join(splits)

    return weights_name


208
@validate_hf_hub_args
209
def _get_model_file(
210
    pretrained_model_name_or_path: Union[str, Path],
211
    *,
212
    weights_name: str,
213
214
215
216
217
218
219
220
    subfolder: Optional[str] = None,
    cache_dir: Optional[str] = None,
    force_download: bool = False,
    proxies: Optional[Dict] = None,
    local_files_only: bool = False,
    token: Optional[str] = None,
    user_agent: Optional[Union[Dict, str]] = None,
    revision: Optional[str] = None,
221
    commit_hash: Optional[str] = None,
Marc Sun's avatar
Marc Sun committed
222
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
223
224
):
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
Marc Sun's avatar
Marc Sun committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    if dduf_entries:
        if subfolder is not None:
            raise ValueError(
                "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
                "Please check the DDUF structure"
            )
        model_file = (
            weights_name
            if pretrained_model_name_or_path == ""
            else "/".join([pretrained_model_name_or_path, weights_name])
        )
        if model_file in dduf_entries:
            return model_file
        else:
            raise EnvironmentError(f"Error no file named {weights_name} found in archive {dduf_entries.keys()}.")
    elif os.path.isfile(pretrained_model_name_or_path):
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        return pretrained_model_name_or_path
    elif os.path.isdir(pretrained_model_name_or_path):
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            # Load from a PyTorch checkpoint
            model_file = os.path.join(pretrained_model_name_or_path, weights_name)
            return model_file
        elif subfolder is not None and os.path.isfile(
            os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
        ):
            model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
            return model_file
        else:
            raise EnvironmentError(
                f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
            )
    else:
        # 1. First check if deprecated way of loading from branches is used
        if (
            revision in DEPRECATED_REVISION_ARGS
            and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
Patrick von Platen's avatar
Patrick von Platen committed
262
            and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
263
264
265
266
267
268
269
270
271
        ):
            try:
                model_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=_add_variant(weights_name, revision),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
272
                    token=token,
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
                    user_agent=user_agent,
                    subfolder=subfolder,
                    revision=revision or commit_hash,
                )
                warnings.warn(
                    f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
                    FutureWarning,
                )
                return model_file
            except:  # noqa: E722
                warnings.warn(
                    f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
                    FutureWarning,
                )
        try:
            # 2. Load model file as usual
            model_file = hf_hub_download(
                pretrained_model_name_or_path,
                filename=weights_name,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
296
                token=token,
297
298
299
300
301
302
                user_agent=user_agent,
                subfolder=subfolder,
                revision=revision or commit_hash,
            )
            return model_file

303
        except RepositoryNotFoundError as e:
304
305
306
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
307
                "token having permission to this repo with `token` or log in with `huggingface-cli "
308
                "login`."
309
310
            ) from e
        except RevisionNotFoundError as e:
311
312
313
314
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                "this model name. Check the model page at "
                f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
315
316
            ) from e
        except EntryNotFoundError as e:
317
318
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
319
320
            ) from e
        except HTTPError as e:
321
            raise EnvironmentError(
322
323
324
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}"
            ) from e
        except ValueError as e:
325
326
327
328
329
330
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                f" directory containing a file named {weights_name} or"
                " \nCheckout your internet connection or see how to run the library in"
                " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
331
332
            ) from e
        except EnvironmentError as e:
333
334
335
336
337
            raise EnvironmentError(
                f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a file named {weights_name}"
338
            ) from e
339
340


341
342
343
344
345
346
347
348
349
350
def _get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    proxies=None,
    local_files_only=False,
    token=None,
    user_agent=None,
    revision=None,
    subfolder="",
Marc Sun's avatar
Marc Sun committed
351
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
352
353
354
355
356
357
358
359
360
361
362
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
Marc Sun's avatar
Marc Sun committed
363
364
365
366
367
368
    if dduf_entries:
        if index_filename not in dduf_entries:
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
    else:
        if not os.path.isfile(index_filename):
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
369

Marc Sun's avatar
Marc Sun committed
370
371
372
373
374
    if dduf_entries:
        index = json.loads(dduf_entries[index_filename].read_text())
    else:
        with open(index_filename, "r") as f:
            index = json.loads(f.read())
375
376
377
378
379
380
381
382

    original_shard_filenames = sorted(set(index["weight_map"].values()))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
    sharded_metadata["weight_map"] = index["weight_map"].copy()
    shards_path = os.path.join(pretrained_model_name_or_path, subfolder)

    # First, let's deal with local folder.
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    if os.path.isdir(pretrained_model_name_or_path) or dduf_entries:
        shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames]
        for shard_file in shard_filenames:
            if dduf_entries:
                if shard_file not in dduf_entries:
                    raise FileNotFoundError(
                        f"{shards_path} does not appear to have a file named {shard_file} which is "
                        "required according to the checkpoint index."
                    )
            else:
                if not os.path.exists(shard_file):
                    raise FileNotFoundError(
                        f"{shards_path} does not appear to have a file named {shard_file} which is "
                        "required according to the checkpoint index."
                    )
        return shard_filenames, sharded_metadata
399
400
401

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    allow_patterns = original_shard_filenames
402
403
404
    if subfolder is not None:
        allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns]

405
    ignore_patterns = ["*.json", "*.md"]
406
407
408
409
410
    # `model_info` call must guarded with the above condition.
    model_files_info = model_info(pretrained_model_name_or_path, revision=revision, token=token)
    for shard_file in original_shard_filenames:
        shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings)
        if not shard_file_present:
411
            raise EnvironmentError(
412
413
414
                f"{shards_path} does not appear to have a file named {shard_file} which is "
                "required according to the checkpoint index."
            )
415

416
417
418
419
420
421
422
423
424
425
426
427
    try:
        # Load from URL
        cached_folder = snapshot_download(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
428
        )
429
        if subfolder is not None:
430
431
432
433
434
435
436
437
438
            cached_folder = os.path.join(cached_folder, subfolder)

    # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
    # we don't have to catch them here. We have also dealt with EntryNotFoundError.
    except HTTPError as e:
        raise EnvironmentError(
            f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try"
            " again after checking your internet connection."
        ) from e
439

440
441
442
    cached_filenames = [os.path.join(cached_folder, f) for f in original_shard_filenames]

    return cached_filenames, sharded_metadata
443
444


445
446
447
448
449
450
451
452
453
454
455
456
457
def _check_legacy_sharding_variant_format(folder: str = None, filenames: List[str] = None, variant: str = None):
    if filenames and folder:
        raise ValueError("Both `filenames` and `folder` cannot be provided.")
    if not filenames:
        filenames = []
        for _, _, files in os.walk(folder):
            for file in files:
                filenames.append(os.path.basename(file))
    transformers_index_format = r"\d{5}-of-\d{5}"
    variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
    return any(variant_file_re.match(f) is not None for f in filenames)


458
459
class PushToHubMixin:
    """
460
    A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
461
462
463
464
465
466
467
468
469
    """

    def _upload_folder(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        token: Optional[str] = None,
        commit_message: Optional[str] = None,
        create_pr: bool = False,
YiYi Xu's avatar
YiYi Xu committed
470
        subfolder: Optional[str] = None,
471
472
473
474
475
476
477
478
479
480
481
482
483
484
    ):
        """
        Uploads all files in `working_dir` to `repo_id`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Scheduler" in self.__class__.__name__:
                commit_message = "Upload scheduler"
            else:
                commit_message = f"Upload {self.__class__.__name__}"

        logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
        return upload_folder(
YiYi Xu's avatar
YiYi Xu committed
485
486
487
488
489
490
            repo_id=repo_id,
            folder_path=working_dir,
            token=token,
            commit_message=commit_message,
            create_pr=create_pr,
            path_in_repo=subfolder,
491
492
493
494
495
496
497
498
499
500
501
        )

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        create_pr: bool = False,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
YiYi Xu's avatar
YiYi Xu committed
502
        subfolder: Optional[str] = None,
503
504
    ) -> str:
        """
Steven Liu's avatar
Steven Liu committed
505
        Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub.
506
507
508

        Parameters:
            repo_id (`str`):
Steven Liu's avatar
Steven Liu committed
509
510
511
                The name of the repository you want to push your model, scheduler, or pipeline files to. It should
                contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
                directory.
512
            commit_message (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
513
                Message to commit while pushing. Default to `"Upload {object}"`.
514
            private (`bool`, *optional*):
515
516
                Whether to make the repo private. If `None` (default), the repo will be public unless the
                organization's default is private. This value is ignored if the repo already exists.
517
518
519
520
521
            token (`str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. The token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
Steven Liu's avatar
Steven Liu committed
522
523
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether or not to convert the model weights to the `safetensors` format.
524
525
526
527
528
529
530
531
532
533
534
535
536
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

        Examples:

        ```python
        from diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

        # Push the `unet` to your namespace with the name "my-finetuned-unet".
        unet.push_to_hub("my-finetuned-unet")

537
        # Push the `unet` to an organization with the name "my-finetuned-unet".
538
539
540
541
542
        unet.push_to_hub("your-org/my-finetuned-unet")
        ```
        """
        repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

543
        # Create a new empty model card and eventually tag it
YiYi Xu's avatar
YiYi Xu committed
544
545
546
        if not subfolder:
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
547

548
549
550
551
552
553
554
555
        # Save all files.
        save_kwargs = {"safe_serialization": safe_serialization}
        if "Scheduler" not in self.__class__.__name__:
            save_kwargs.update({"variant": variant})

        with tempfile.TemporaryDirectory() as tmpdir:
            self.save_pretrained(tmpdir, **save_kwargs)

556
            # Update model card if needed:
YiYi Xu's avatar
YiYi Xu committed
557
558
            if not subfolder:
                model_card.save(os.path.join(tmpdir, "README.md"))
559

560
561
562
563
564
565
            return self._upload_folder(
                tmpdir,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
YiYi Xu's avatar
YiYi Xu committed
566
                subfolder=subfolder,
567
            )