hub_utils.py 26.6 KB
Newer Older
anton-l's avatar
anton-l committed
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
anton-l's avatar
anton-l committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import json
anton-l's avatar
anton-l committed
18
import os
19
import re
20
import sys
21
import tempfile
22
import traceback
23
import warnings
anton-l's avatar
anton-l committed
24
from pathlib import Path
25
from typing import Dict, List, Optional, Union
26
from uuid import uuid4
anton-l's avatar
anton-l committed
27

28
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
29
    DDUFEntry,
30
31
32
33
    ModelCard,
    ModelCardData,
    create_repo,
    hf_hub_download,
34
35
    model_info,
    snapshot_download,
36
37
    upload_folder,
)
38
from huggingface_hub.constants import HF_HUB_CACHE, HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
39
from huggingface_hub.file_download import REGEX_COMMIT_HASH
40
41
42
43
44
from huggingface_hub.utils import (
    EntryNotFoundError,
    RepositoryNotFoundError,
    RevisionNotFoundError,
    is_jinja_available,
45
    validate_hf_hub_args,
46
47
48
)
from packaging import version
from requests import HTTPError
anton-l's avatar
anton-l committed
49

50
from .. import __version__
51
52
53
54
55
56
from .constants import (
    DEPRECATED_REVISION_ARGS,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
)
57
58
from .import_utils import (
    ENV_VARS_TRUE_VALUES,
59
60
61
62
63
64
65
66
    _flax_version,
    _jax_version,
    _onnxruntime_version,
    _torch_version,
    is_flax_available,
    is_onnx_available,
    is_torch_available,
)
67
from .logging import get_logger
68
69


70
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
71

72
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
73
74
75
76
77
78
79
80
SESSION_ID = uuid4().hex


def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
    ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
81
    if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
        return ua + "; telemetry/off"
    if is_torch_available():
        ua += f"; torch/{_torch_version}"
    if is_flax_available():
        ua += f"; jax/{_jax_version}"
        ua += f"; flax/{_flax_version}"
    if is_onnx_available():
        ua += f"; onnxruntime/{_onnxruntime_version}"
    # CI will set this value to True
    if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    return ua
anton-l's avatar
anton-l committed
98
99


100
def load_or_create_model_card(
101
102
103
104
105
106
107
108
109
110
    repo_id_or_path: str = None,
    token: Optional[str] = None,
    is_pipeline: bool = False,
    from_training: bool = False,
    model_description: Optional[str] = None,
    base_model: str = None,
    prompt: Optional[str] = None,
    license: Optional[str] = None,
    widget: Optional[List[dict]] = None,
    inference: Optional[bool] = None,
111
112
113
114
115
) -> ModelCard:
    """
    Loads or creates a model card.

    Args:
116
117
        repo_id_or_path (`str`):
            The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card.
118
        token (`str`, *optional*):
119
120
            Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
            details.
121
        is_pipeline (`bool`):
122
            Boolean to indicate if we're adding tag to a [`DiffusionPipeline`].
123
124
125
126
127
128
129
130
131
132
133
        from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script.
        model_description (`str`, *optional*): Model description to add to the model card. Helpful when using
            `load_or_create_model_card` from a training script.
        base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful
            for DreamBooth-like training.
        prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training.
        license: (`str`, *optional*): License of the output artifact. Helpful when using
            `load_or_create_model_card` from a training script.
        widget (`List[dict]`, *optional*): Widget to accompany a gallery template.
        inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using
            `load_or_create_model_card` from a training script.
134
    """
Lucain's avatar
Lucain committed
135
    if not is_jinja_available():
136
        raise ValueError(
Lucain's avatar
Lucain committed
137
            "Modelcard rendering is based on Jinja templates."
138
            " Please make sure to have `jinja` installed before using `load_or_create_model_card`."
Lucain's avatar
Lucain committed
139
            " To install it, please run `pip install Jinja2`."
140
141
        )

142
143
144
    try:
        # Check if the model card is present on the remote repo
        model_card = ModelCard.load(repo_id_or_path, token=token)
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
    except (EntryNotFoundError, RepositoryNotFoundError):
        # Otherwise create a model card from template
        if from_training:
            model_card = ModelCard.from_template(
                card_data=ModelCardData(  # Card metadata object that will be converted to YAML block
                    license=license,
                    library_name="diffusers",
                    inference=inference,
                    base_model=base_model,
                    instance_prompt=prompt,
                    widget=widget,
                ),
                template_path=MODEL_CARD_TEMPLATE_PATH,
                model_description=model_description,
            )
        else:
            card_data = ModelCardData()
            component = "pipeline" if is_pipeline else "model"
            if model_description is None:
                model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated."
            model_card = ModelCard.from_template(card_data, model_description=model_description)
166
167
168
169

    return model_card


170
171
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard:
    """Populates the `model_card` with library name and optional tags."""
172
173
    if model_card.data.library_name is None:
        model_card.data.library_name = "diffusers"
174
175
176
177
178
179
180
181
182

    if tags is not None:
        if isinstance(tags, str):
            tags = [tags]
        if model_card.data.tags is None:
            model_card.data.tags = []
        for tag in tags:
            model_card.data.tags.append(tag)

183
    return model_card
184
185


186
187
188
189
190
191
192
193
194
195
196
197
198
199
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
    """
    Extracts the commit hash from a resolved filename toward a cache file.
    """
    if resolved_file is None or commit_hash is not None:
        return commit_hash
    resolved_file = str(Path(resolved_file).as_posix())
    search = re.search(r"snapshots/([^/]+)/", resolved_file)
    if search is None:
        return None
    commit_hash = search.groups()[0]
    return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None


200
201
202
203
204
205
206
207
208
209
210
211
# Old default cache path, potentially to be migrated.
# This logic was more or less taken from `transformers`, with the following differences:
# - Diffusers doesn't use custom environment variables to specify the cache path.
# - There is no need to migrate the cache format, just move the files to the new location.
hf_cache_home = os.path.expanduser(
    os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface"))
)
old_diffusers_cache = os.path.join(hf_cache_home, "diffusers")


def move_cache(old_cache_dir: Optional[str] = None, new_cache_dir: Optional[str] = None) -> None:
    if new_cache_dir is None:
212
        new_cache_dir = HF_HUB_CACHE
213
214
215
216
217
    if old_cache_dir is None:
        old_cache_dir = old_diffusers_cache

    old_cache_dir = Path(old_cache_dir).expanduser()
    new_cache_dir = Path(new_cache_dir).expanduser()
218
    for old_blob_path in old_cache_dir.glob("**/blobs/*"):
219
220
221
222
223
224
225
226
227
228
229
230
231
        if old_blob_path.is_file() and not old_blob_path.is_symlink():
            new_blob_path = new_cache_dir / old_blob_path.relative_to(old_cache_dir)
            new_blob_path.parent.mkdir(parents=True, exist_ok=True)
            os.replace(old_blob_path, new_blob_path)
            try:
                os.symlink(new_blob_path, old_blob_path)
            except OSError:
                logger.warning(
                    "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded."
                )
    # At this point, old_cache_dir contains symlinks to the new cache (it can still be used).


232
cache_version_file = os.path.join(HF_HUB_CACHE, "version_diffusers_cache.txt")
233
234
235
236
if not os.path.isfile(cache_version_file):
    cache_version = 0
else:
    with open(cache_version_file) as f:
237
238
239
240
        try:
            cache_version = int(f.read())
        except ValueError:
            cache_version = 0
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

if cache_version < 1:
    old_cache_is_not_empty = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0
    if old_cache_is_not_empty:
        logger.warning(
            "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your "
            "existing cached models. This is a one-time operation, you can interrupt it or run it "
            "later by calling `diffusers.utils.hub_utils.move_cache()`."
        )
        try:
            move_cache()
        except Exception as e:
            trace = "\n".join(traceback.format_tb(e.__traceback__))
            logger.error(
                f"There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease "
                "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole "
                "message and we will do our best to help."
            )

if cache_version < 1:
    try:
262
        os.makedirs(HF_HUB_CACHE, exist_ok=True)
263
264
265
266
        with open(cache_version_file, "w") as f:
            f.write("1")
    except Exception:
        logger.warning(
267
            f"There was a problem when trying to write in your cache folder ({HF_HUB_CACHE}). Please, ensure "
268
269
            "the directory exists and can be written to."
        )
270
271
272
273
274


def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
275
        splits = splits[:-1] + [variant] + splits[-1:]
276
277
278
279
280
        weights_name = ".".join(splits)

    return weights_name


281
@validate_hf_hub_args
282
def _get_model_file(
283
    pretrained_model_name_or_path: Union[str, Path],
284
    *,
285
    weights_name: str,
286
287
288
289
290
291
292
293
    subfolder: Optional[str] = None,
    cache_dir: Optional[str] = None,
    force_download: bool = False,
    proxies: Optional[Dict] = None,
    local_files_only: bool = False,
    token: Optional[str] = None,
    user_agent: Optional[Union[Dict, str]] = None,
    revision: Optional[str] = None,
294
    commit_hash: Optional[str] = None,
Marc Sun's avatar
Marc Sun committed
295
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
296
297
):
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
Marc Sun's avatar
Marc Sun committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

    if dduf_entries:
        if subfolder is not None:
            raise ValueError(
                "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
                "Please check the DDUF structure"
            )
        model_file = (
            weights_name
            if pretrained_model_name_or_path == ""
            else "/".join([pretrained_model_name_or_path, weights_name])
        )
        if model_file in dduf_entries:
            return model_file
        else:
            raise EnvironmentError(f"Error no file named {weights_name} found in archive {dduf_entries.keys()}.")
    elif os.path.isfile(pretrained_model_name_or_path):
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
        return pretrained_model_name_or_path
    elif os.path.isdir(pretrained_model_name_or_path):
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            # Load from a PyTorch checkpoint
            model_file = os.path.join(pretrained_model_name_or_path, weights_name)
            return model_file
        elif subfolder is not None and os.path.isfile(
            os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
        ):
            model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
            return model_file
        else:
            raise EnvironmentError(
                f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
            )
    else:
        # 1. First check if deprecated way of loading from branches is used
        if (
            revision in DEPRECATED_REVISION_ARGS
            and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
Patrick von Platen's avatar
Patrick von Platen committed
335
            and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
336
337
338
339
340
341
342
343
344
        ):
            try:
                model_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=_add_variant(weights_name, revision),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
345
                    token=token,
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
                    user_agent=user_agent,
                    subfolder=subfolder,
                    revision=revision or commit_hash,
                )
                warnings.warn(
                    f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
                    FutureWarning,
                )
                return model_file
            except:  # noqa: E722
                warnings.warn(
                    f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
                    FutureWarning,
                )
        try:
            # 2. Load model file as usual
            model_file = hf_hub_download(
                pretrained_model_name_or_path,
                filename=weights_name,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
369
                token=token,
370
371
372
373
374
375
                user_agent=user_agent,
                subfolder=subfolder,
                revision=revision or commit_hash,
            )
            return model_file

376
        except RepositoryNotFoundError as e:
377
378
379
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
380
                "token having permission to this repo with `token` or log in with `huggingface-cli "
381
                "login`."
382
383
            ) from e
        except RevisionNotFoundError as e:
384
385
386
387
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                "this model name. Check the model page at "
                f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
388
389
            ) from e
        except EntryNotFoundError as e:
390
391
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
392
393
            ) from e
        except HTTPError as e:
394
            raise EnvironmentError(
395
396
397
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}"
            ) from e
        except ValueError as e:
398
399
400
401
402
403
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                f" directory containing a file named {weights_name} or"
                " \nCheckout your internet connection or see how to run the library in"
                " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
404
405
            ) from e
        except EnvironmentError as e:
406
407
408
409
410
            raise EnvironmentError(
                f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a file named {weights_name}"
411
            ) from e
412
413


414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
# Adapted from
# https://github.com/huggingface/transformers/blob/1360801a69c0b169e3efdbb0cd05d9a0e72bfb70/src/transformers/utils/hub.py#L976
# Differences are in parallelization of shard downloads and checking if shards are present.


def _check_if_shards_exist_locally(local_dir, subfolder, original_shard_filenames):
    shards_path = os.path.join(local_dir, subfolder)
    shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames]
    for shard_file in shard_filenames:
        if not os.path.exists(shard_file):
            raise ValueError(
                f"{shards_path} does not appear to have a file named {shard_file} which is "
                "required according to the checkpoint index."
            )


def _get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    proxies=None,
    local_files_only=False,
    token=None,
    user_agent=None,
    revision=None,
    subfolder="",
Marc Sun's avatar
Marc Sun committed
440
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
441
442
443
444
445
446
447
448
449
450
451
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
Marc Sun's avatar
Marc Sun committed
452
453
454
455
456
457
    if dduf_entries:
        if index_filename not in dduf_entries:
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
    else:
        if not os.path.isfile(index_filename):
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
458

Marc Sun's avatar
Marc Sun committed
459
460
461
462
463
    if dduf_entries:
        index = json.loads(dduf_entries[index_filename].read_text())
    else:
        with open(index_filename, "r") as f:
            index = json.loads(f.read())
464
465
466
467
468
469
470
471
472
473
474
475

    original_shard_filenames = sorted(set(index["weight_map"].values()))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
    sharded_metadata["weight_map"] = index["weight_map"].copy()
    shards_path = os.path.join(pretrained_model_name_or_path, subfolder)

    # First, let's deal with local folder.
    if os.path.isdir(pretrained_model_name_or_path):
        _check_if_shards_exist_locally(
            pretrained_model_name_or_path, subfolder=subfolder, original_shard_filenames=original_shard_filenames
        )
476
        return shards_path, sharded_metadata
Marc Sun's avatar
Marc Sun committed
477
478
    elif dduf_entries:
        return shards_path, sharded_metadata
479
480
481

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    allow_patterns = original_shard_filenames
482
483
484
    if subfolder is not None:
        allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns]

485
    ignore_patterns = ["*.json", "*.md"]
486
487
488
489
490
    # `model_info` call must guarded with the above condition.
    model_files_info = model_info(pretrained_model_name_or_path, revision=revision, token=token)
    for shard_file in original_shard_filenames:
        shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings)
        if not shard_file_present:
491
            raise EnvironmentError(
492
493
494
                f"{shards_path} does not appear to have a file named {shard_file} which is "
                "required according to the checkpoint index."
            )
495

496
497
498
499
500
501
502
503
504
505
506
507
    try:
        # Load from URL
        cached_folder = snapshot_download(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
508
        )
509
        if subfolder is not None:
510
511
512
513
514
515
516
517
518
            cached_folder = os.path.join(cached_folder, subfolder)

    # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
    # we don't have to catch them here. We have also dealt with EntryNotFoundError.
    except HTTPError as e:
        raise EnvironmentError(
            f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try"
            " again after checking your internet connection."
        ) from e
519
520
521
522

    return cached_folder, sharded_metadata


523
524
525
526
527
528
529
530
531
532
533
534
535
def _check_legacy_sharding_variant_format(folder: str = None, filenames: List[str] = None, variant: str = None):
    if filenames and folder:
        raise ValueError("Both `filenames` and `folder` cannot be provided.")
    if not filenames:
        filenames = []
        for _, _, files in os.walk(folder):
            for file in files:
                filenames.append(os.path.basename(file))
    transformers_index_format = r"\d{5}-of-\d{5}"
    variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
    return any(variant_file_re.match(f) is not None for f in filenames)


536
537
class PushToHubMixin:
    """
538
    A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
    """

    def _upload_folder(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        token: Optional[str] = None,
        commit_message: Optional[str] = None,
        create_pr: bool = False,
    ):
        """
        Uploads all files in `working_dir` to `repo_id`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Scheduler" in self.__class__.__name__:
                commit_message = "Upload scheduler"
            else:
                commit_message = f"Upload {self.__class__.__name__}"

        logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
        return upload_folder(
            repo_id=repo_id, folder_path=working_dir, token=token, commit_message=commit_message, create_pr=create_pr
        )

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        create_pr: bool = False,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
    ) -> str:
        """
Steven Liu's avatar
Steven Liu committed
576
        Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub.
577
578
579

        Parameters:
            repo_id (`str`):
Steven Liu's avatar
Steven Liu committed
580
581
582
                The name of the repository you want to push your model, scheduler, or pipeline files to. It should
                contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
                directory.
583
            commit_message (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
584
                Message to commit while pushing. Default to `"Upload {object}"`.
585
            private (`bool`, *optional*):
586
587
                Whether to make the repo private. If `None` (default), the repo will be public unless the
                organization's default is private. This value is ignored if the repo already exists.
588
589
590
591
592
            token (`str`, *optional*):
                The token to use as HTTP bearer authorization for remote files. The token generated when running
                `huggingface-cli login` (stored in `~/.huggingface`).
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
Steven Liu's avatar
Steven Liu committed
593
594
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether or not to convert the model weights to the `safetensors` format.
595
596
597
598
599
600
601
602
603
604
605
606
607
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

        Examples:

        ```python
        from diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

        # Push the `unet` to your namespace with the name "my-finetuned-unet".
        unet.push_to_hub("my-finetuned-unet")

608
        # Push the `unet` to an organization with the name "my-finetuned-unet".
609
610
611
612
613
        unet.push_to_hub("your-org/my-finetuned-unet")
        ```
        """
        repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

614
615
616
617
        # Create a new empty model card and eventually tag it
        model_card = load_or_create_model_card(repo_id, token=token)
        model_card = populate_model_card(model_card)

618
619
620
621
622
623
624
625
        # Save all files.
        save_kwargs = {"safe_serialization": safe_serialization}
        if "Scheduler" not in self.__class__.__name__:
            save_kwargs.update({"variant": variant})

        with tempfile.TemporaryDirectory() as tmpdir:
            self.save_pretrained(tmpdir, **save_kwargs)

626
627
628
            # Update model card if needed:
            model_card.save(os.path.join(tmpdir, "README.md"))

629
630
631
632
633
634
635
            return self._upload_folder(
                tmpdir,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
            )