hub_utils.py 23.9 KB
Newer Older
anton-l's avatar
anton-l committed
1
# coding=utf-8
2
# Copyright 2025 The HuggingFace Inc. team.
anton-l's avatar
anton-l committed
3
4
5
6
7
8
9
10
11
12
13
14
15
16
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


17
import json
anton-l's avatar
anton-l committed
18
import os
19
import re
20
import sys
21
import tempfile
22
import warnings
anton-l's avatar
anton-l committed
23
from pathlib import Path
24
from typing import Dict, List, Optional, Union
25
from uuid import uuid4
anton-l's avatar
anton-l committed
26

27
from huggingface_hub import (
Marc Sun's avatar
Marc Sun committed
28
    DDUFEntry,
29
30
31
32
    ModelCard,
    ModelCardData,
    create_repo,
    hf_hub_download,
33
34
    model_info,
    snapshot_download,
35
36
    upload_folder,
)
37
from huggingface_hub.constants import HF_HUB_DISABLE_TELEMETRY, HF_HUB_OFFLINE
38
from huggingface_hub.file_download import REGEX_COMMIT_HASH
39
40
from huggingface_hub.utils import (
    EntryNotFoundError,
41
    HfHubHTTPError,
42
43
44
    RepositoryNotFoundError,
    RevisionNotFoundError,
    is_jinja_available,
45
    validate_hf_hub_args,
46
47
)
from packaging import version
anton-l's avatar
anton-l committed
48

49
from .. import __version__
50
51
52
53
54
55
from .constants import (
    DEPRECATED_REVISION_ARGS,
    HUGGINGFACE_CO_RESOLVE_ENDPOINT,
    SAFETENSORS_WEIGHTS_NAME,
    WEIGHTS_NAME,
)
56
57
from .import_utils import (
    ENV_VARS_TRUE_VALUES,
58
59
60
61
62
63
64
65
    _flax_version,
    _jax_version,
    _onnxruntime_version,
    _torch_version,
    is_flax_available,
    is_onnx_available,
    is_torch_available,
)
66
from .logging import get_logger
67
68


69
logger = get_logger(__name__)
anton-l's avatar
anton-l committed
70

71
MODEL_CARD_TEMPLATE_PATH = Path(__file__).parent / "model_card_template.md"
72
73
74
75
76
77
78
79
SESSION_ID = uuid4().hex


def http_user_agent(user_agent: Union[Dict, str, None] = None) -> str:
    """
    Formats a user-agent string with basic info about a request.
    """
    ua = f"diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}"
80
    if HF_HUB_DISABLE_TELEMETRY or HF_HUB_OFFLINE:
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        return ua + "; telemetry/off"
    if is_torch_available():
        ua += f"; torch/{_torch_version}"
    if is_flax_available():
        ua += f"; jax/{_jax_version}"
        ua += f"; flax/{_flax_version}"
    if is_onnx_available():
        ua += f"; onnxruntime/{_onnxruntime_version}"
    # CI will set this value to True
    if os.environ.get("DIFFUSERS_IS_CI", "").upper() in ENV_VARS_TRUE_VALUES:
        ua += "; is_ci/true"
    if isinstance(user_agent, dict):
        ua += "; " + "; ".join(f"{k}/{v}" for k, v in user_agent.items())
    elif isinstance(user_agent, str):
        ua += "; " + user_agent
    return ua
anton-l's avatar
anton-l committed
97
98


99
def load_or_create_model_card(
100
101
102
103
104
105
106
107
108
109
    repo_id_or_path: str = None,
    token: Optional[str] = None,
    is_pipeline: bool = False,
    from_training: bool = False,
    model_description: Optional[str] = None,
    base_model: str = None,
    prompt: Optional[str] = None,
    license: Optional[str] = None,
    widget: Optional[List[dict]] = None,
    inference: Optional[bool] = None,
110
111
112
113
114
) -> ModelCard:
    """
    Loads or creates a model card.

    Args:
115
116
        repo_id_or_path (`str`):
            The repo id (e.g., "runwayml/stable-diffusion-v1-5") or local path where to look for the model card.
117
        token (`str`, *optional*):
118
119
            Authentication token. Will default to the stored token. See https://huggingface.co/settings/token for more
            details.
120
        is_pipeline (`bool`):
121
            Boolean to indicate if we're adding tag to a [`DiffusionPipeline`].
122
123
124
125
126
127
128
129
130
131
132
        from_training: (`bool`): Boolean flag to denote if the model card is being created from a training script.
        model_description (`str`, *optional*): Model description to add to the model card. Helpful when using
            `load_or_create_model_card` from a training script.
        base_model (`str`): Base model identifier (e.g., "stabilityai/stable-diffusion-xl-base-1.0"). Useful
            for DreamBooth-like training.
        prompt (`str`, *optional*): Prompt used for training. Useful for DreamBooth-like training.
        license: (`str`, *optional*): License of the output artifact. Helpful when using
            `load_or_create_model_card` from a training script.
        widget (`List[dict]`, *optional*): Widget to accompany a gallery template.
        inference: (`bool`, optional): Whether to turn on inference widget. Helpful when using
            `load_or_create_model_card` from a training script.
133
    """
Lucain's avatar
Lucain committed
134
    if not is_jinja_available():
135
        raise ValueError(
Lucain's avatar
Lucain committed
136
            "Modelcard rendering is based on Jinja templates."
137
            " Please make sure to have `jinja` installed before using `load_or_create_model_card`."
Lucain's avatar
Lucain committed
138
            " To install it, please run `pip install Jinja2`."
139
140
        )

141
142
143
    try:
        # Check if the model card is present on the remote repo
        model_card = ModelCard.load(repo_id_or_path, token=token)
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
    except (EntryNotFoundError, RepositoryNotFoundError):
        # Otherwise create a model card from template
        if from_training:
            model_card = ModelCard.from_template(
                card_data=ModelCardData(  # Card metadata object that will be converted to YAML block
                    license=license,
                    library_name="diffusers",
                    inference=inference,
                    base_model=base_model,
                    instance_prompt=prompt,
                    widget=widget,
                ),
                template_path=MODEL_CARD_TEMPLATE_PATH,
                model_description=model_description,
            )
        else:
            card_data = ModelCardData()
            component = "pipeline" if is_pipeline else "model"
            if model_description is None:
                model_description = f"This is the model card of a 🧨 diffusers {component} that has been pushed on the Hub. This model card has been automatically generated."
            model_card = ModelCard.from_template(card_data, model_description=model_description)
165
166
167
168

    return model_card


169
170
def populate_model_card(model_card: ModelCard, tags: Union[str, List[str]] = None) -> ModelCard:
    """Populates the `model_card` with library name and optional tags."""
171
172
    if model_card.data.library_name is None:
        model_card.data.library_name = "diffusers"
173
174
175
176
177
178
179
180
181

    if tags is not None:
        if isinstance(tags, str):
            tags = [tags]
        if model_card.data.tags is None:
            model_card.data.tags = []
        for tag in tags:
            model_card.data.tags.append(tag)

182
    return model_card
183
184


185
186
187
188
189
190
191
192
193
194
195
196
197
198
def extract_commit_hash(resolved_file: Optional[str], commit_hash: Optional[str] = None):
    """
    Extracts the commit hash from a resolved filename toward a cache file.
    """
    if resolved_file is None or commit_hash is not None:
        return commit_hash
    resolved_file = str(Path(resolved_file).as_posix())
    search = re.search(r"snapshots/([^/]+)/", resolved_file)
    if search is None:
        return None
    commit_hash = search.groups()[0]
    return commit_hash if REGEX_COMMIT_HASH.match(commit_hash) else None


199
200
201
def _add_variant(weights_name: str, variant: Optional[str] = None) -> str:
    if variant is not None:
        splits = weights_name.split(".")
202
        splits = splits[:-1] + [variant] + splits[-1:]
203
204
205
206
207
        weights_name = ".".join(splits)

    return weights_name


208
@validate_hf_hub_args
209
def _get_model_file(
210
    pretrained_model_name_or_path: Union[str, Path],
211
    *,
212
    weights_name: str,
213
214
215
216
217
218
219
220
    subfolder: Optional[str] = None,
    cache_dir: Optional[str] = None,
    force_download: bool = False,
    proxies: Optional[Dict] = None,
    local_files_only: bool = False,
    token: Optional[str] = None,
    user_agent: Optional[Union[Dict, str]] = None,
    revision: Optional[str] = None,
221
    commit_hash: Optional[str] = None,
Marc Sun's avatar
Marc Sun committed
222
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
223
224
):
    pretrained_model_name_or_path = str(pretrained_model_name_or_path)
Marc Sun's avatar
Marc Sun committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241

    if dduf_entries:
        if subfolder is not None:
            raise ValueError(
                "DDUF file only allow for 1 level of directory (e.g transformer/model1/model.safetentors is not allowed). "
                "Please check the DDUF structure"
            )
        model_file = (
            weights_name
            if pretrained_model_name_or_path == ""
            else "/".join([pretrained_model_name_or_path, weights_name])
        )
        if model_file in dduf_entries:
            return model_file
        else:
            raise EnvironmentError(f"Error no file named {weights_name} found in archive {dduf_entries.keys()}.")
    elif os.path.isfile(pretrained_model_name_or_path):
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
        return pretrained_model_name_or_path
    elif os.path.isdir(pretrained_model_name_or_path):
        if os.path.isfile(os.path.join(pretrained_model_name_or_path, weights_name)):
            # Load from a PyTorch checkpoint
            model_file = os.path.join(pretrained_model_name_or_path, weights_name)
            return model_file
        elif subfolder is not None and os.path.isfile(
            os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
        ):
            model_file = os.path.join(pretrained_model_name_or_path, subfolder, weights_name)
            return model_file
        else:
            raise EnvironmentError(
                f"Error no file named {weights_name} found in directory {pretrained_model_name_or_path}."
            )
    else:
        # 1. First check if deprecated way of loading from branches is used
        if (
            revision in DEPRECATED_REVISION_ARGS
            and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME)
Patrick von Platen's avatar
Patrick von Platen committed
262
            and version.parse(version.parse(__version__).base_version) >= version.parse("0.22.0")
263
264
265
266
267
268
269
270
271
        ):
            try:
                model_file = hf_hub_download(
                    pretrained_model_name_or_path,
                    filename=_add_variant(weights_name, revision),
                    cache_dir=cache_dir,
                    force_download=force_download,
                    proxies=proxies,
                    local_files_only=local_files_only,
272
                    token=token,
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
                    user_agent=user_agent,
                    subfolder=subfolder,
                    revision=revision or commit_hash,
                )
                warnings.warn(
                    f"Loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'` is deprecated. Loading instead from `revision='main'` with `variant={revision}`. Loading model variants via `revision='{revision}'` will be removed in diffusers v1. Please use `variant='{revision}'` instead.",
                    FutureWarning,
                )
                return model_file
            except:  # noqa: E722
                warnings.warn(
                    f"You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision='{revision}'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant='{revision}'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(weights_name, revision)} file in the 'main' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title '{pretrained_model_name_or_path} is missing {_add_variant(weights_name, revision)}' so that the correct variant file can be added.",
                    FutureWarning,
                )
        try:
            # 2. Load model file as usual
            model_file = hf_hub_download(
                pretrained_model_name_or_path,
                filename=weights_name,
                cache_dir=cache_dir,
                force_download=force_download,
                proxies=proxies,
                local_files_only=local_files_only,
296
                token=token,
297
298
299
300
301
302
                user_agent=user_agent,
                subfolder=subfolder,
                revision=revision or commit_hash,
            )
            return model_file

303
        except RepositoryNotFoundError as e:
304
305
306
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier "
                "listed on 'https://huggingface.co/models'\nIf this is a private repository, make sure to pass a "
307
                "token having permission to this repo with `token` or log in with `hf auth login`."
308
309
            ) from e
        except RevisionNotFoundError as e:
310
311
312
313
            raise EnvironmentError(
                f"{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for "
                "this model name. Check the model page at "
                f"'https://huggingface.co/{pretrained_model_name_or_path}' for available revisions."
314
315
            ) from e
        except EntryNotFoundError as e:
316
317
            raise EnvironmentError(
                f"{pretrained_model_name_or_path} does not appear to have a file named {weights_name}."
318
            ) from e
319
        except HfHubHTTPError as e:
320
            raise EnvironmentError(
321
322
323
                f"There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{e}"
            ) from e
        except ValueError as e:
324
325
326
327
328
329
            raise EnvironmentError(
                f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load this model, couldn't find it"
                f" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a"
                f" directory containing a file named {weights_name} or"
                " \nCheckout your internet connection or see how to run the library in"
                " offline mode at 'https://huggingface.co/docs/diffusers/installation#offline-mode'."
330
331
            ) from e
        except EnvironmentError as e:
332
333
334
335
336
            raise EnvironmentError(
                f"Can't load the model for '{pretrained_model_name_or_path}'. If you were trying to load it from "
                "'https://huggingface.co/models', make sure you don't have a local directory with the same name. "
                f"Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a directory "
                f"containing a file named {weights_name}"
337
            ) from e
338
339


340
341
342
343
344
345
346
347
348
349
def _get_checkpoint_shard_files(
    pretrained_model_name_or_path,
    index_filename,
    cache_dir=None,
    proxies=None,
    local_files_only=False,
    token=None,
    user_agent=None,
    revision=None,
    subfolder="",
Marc Sun's avatar
Marc Sun committed
350
    dduf_entries: Optional[Dict[str, DDUFEntry]] = None,
351
352
353
354
355
356
357
358
359
360
361
):
    """
    For a given model:

    - download and cache all the shards of a sharded checkpoint if `pretrained_model_name_or_path` is a model ID on the
      Hub
    - returns the list of paths to all the shards, as well as some metadata.

    For the description of each arg, see [`PreTrainedModel.from_pretrained`]. `index_filename` is the full path to the
    index (downloaded and cached if `pretrained_model_name_or_path` is a model ID on the Hub).
    """
Marc Sun's avatar
Marc Sun committed
362
363
364
365
366
367
    if dduf_entries:
        if index_filename not in dduf_entries:
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
    else:
        if not os.path.isfile(index_filename):
            raise ValueError(f"Can't find a checkpoint index ({index_filename}) in {pretrained_model_name_or_path}.")
368

Marc Sun's avatar
Marc Sun committed
369
370
371
372
373
    if dduf_entries:
        index = json.loads(dduf_entries[index_filename].read_text())
    else:
        with open(index_filename, "r") as f:
            index = json.loads(f.read())
374
375
376
377
378
379
380
381

    original_shard_filenames = sorted(set(index["weight_map"].values()))
    sharded_metadata = index["metadata"]
    sharded_metadata["all_checkpoint_keys"] = list(index["weight_map"].keys())
    sharded_metadata["weight_map"] = index["weight_map"].copy()
    shards_path = os.path.join(pretrained_model_name_or_path, subfolder)

    # First, let's deal with local folder.
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    if os.path.isdir(pretrained_model_name_or_path) or dduf_entries:
        shard_filenames = [os.path.join(shards_path, f) for f in original_shard_filenames]
        for shard_file in shard_filenames:
            if dduf_entries:
                if shard_file not in dduf_entries:
                    raise FileNotFoundError(
                        f"{shards_path} does not appear to have a file named {shard_file} which is "
                        "required according to the checkpoint index."
                    )
            else:
                if not os.path.exists(shard_file):
                    raise FileNotFoundError(
                        f"{shards_path} does not appear to have a file named {shard_file} which is "
                        "required according to the checkpoint index."
                    )
        return shard_filenames, sharded_metadata
398
399
400

    # At this stage pretrained_model_name_or_path is a model identifier on the Hub
    allow_patterns = original_shard_filenames
401
402
403
    if subfolder is not None:
        allow_patterns = [os.path.join(subfolder, p) for p in allow_patterns]

404
    ignore_patterns = ["*.json", "*.md"]
405
406
407
408
409
410
411
412
413
414
415

    # If the repo doesn't have the required shards, error out early even before downloading anything.
    if not local_files_only:
        model_files_info = model_info(pretrained_model_name_or_path, revision=revision, token=token)
        for shard_file in original_shard_filenames:
            shard_file_present = any(shard_file in k.rfilename for k in model_files_info.siblings)
            if not shard_file_present:
                raise EnvironmentError(
                    f"{shards_path} does not appear to have a file named {shard_file} which is "
                    "required according to the checkpoint index."
                )
416

417
418
419
420
421
422
423
424
425
426
427
428
    try:
        # Load from URL
        cached_folder = snapshot_download(
            pretrained_model_name_or_path,
            cache_dir=cache_dir,
            proxies=proxies,
            local_files_only=local_files_only,
            token=token,
            revision=revision,
            allow_patterns=allow_patterns,
            ignore_patterns=ignore_patterns,
            user_agent=user_agent,
429
        )
430
        if subfolder is not None:
431
432
433
434
            cached_folder = os.path.join(cached_folder, subfolder)

    # We have already dealt with RepositoryNotFoundError and RevisionNotFoundError when getting the index, so
    # we don't have to catch them here. We have also dealt with EntryNotFoundError.
435
    except HfHubHTTPError as e:
436
437
438
439
        raise EnvironmentError(
            f"We couldn't connect to '{HUGGINGFACE_CO_RESOLVE_ENDPOINT}' to load {pretrained_model_name_or_path}. You should try"
            " again after checking your internet connection."
        ) from e
440

441
    cached_filenames = [os.path.join(cached_folder, f) for f in original_shard_filenames]
442
443
444
445
446
    for cached_file in cached_filenames:
        if not os.path.isfile(cached_file):
            raise EnvironmentError(
                f"{cached_folder} does not have a file named {cached_file} which is required according to the checkpoint index."
            )
447
448

    return cached_filenames, sharded_metadata
449
450


451
452
453
454
455
456
457
458
459
460
461
462
463
def _check_legacy_sharding_variant_format(folder: str = None, filenames: List[str] = None, variant: str = None):
    if filenames and folder:
        raise ValueError("Both `filenames` and `folder` cannot be provided.")
    if not filenames:
        filenames = []
        for _, _, files in os.walk(folder):
            for file in files:
                filenames.append(os.path.basename(file))
    transformers_index_format = r"\d{5}-of-\d{5}"
    variant_file_re = re.compile(rf".*-{transformers_index_format}\.{variant}\.[a-z]+$")
    return any(variant_file_re.match(f) is not None for f in filenames)


464
465
class PushToHubMixin:
    """
466
    A Mixin to push a model, scheduler, or pipeline to the Hugging Face Hub.
467
468
469
470
471
472
473
474
475
    """

    def _upload_folder(
        self,
        working_dir: Union[str, os.PathLike],
        repo_id: str,
        token: Optional[str] = None,
        commit_message: Optional[str] = None,
        create_pr: bool = False,
YiYi Xu's avatar
YiYi Xu committed
476
        subfolder: Optional[str] = None,
477
478
479
480
481
482
483
484
485
486
487
488
489
490
    ):
        """
        Uploads all files in `working_dir` to `repo_id`.
        """
        if commit_message is None:
            if "Model" in self.__class__.__name__:
                commit_message = "Upload model"
            elif "Scheduler" in self.__class__.__name__:
                commit_message = "Upload scheduler"
            else:
                commit_message = f"Upload {self.__class__.__name__}"

        logger.info(f"Uploading the files of {working_dir} to {repo_id}.")
        return upload_folder(
YiYi Xu's avatar
YiYi Xu committed
491
492
493
494
495
496
            repo_id=repo_id,
            folder_path=working_dir,
            token=token,
            commit_message=commit_message,
            create_pr=create_pr,
            path_in_repo=subfolder,
497
498
499
500
501
502
503
504
505
506
507
        )

    def push_to_hub(
        self,
        repo_id: str,
        commit_message: Optional[str] = None,
        private: Optional[bool] = None,
        token: Optional[str] = None,
        create_pr: bool = False,
        safe_serialization: bool = True,
        variant: Optional[str] = None,
YiYi Xu's avatar
YiYi Xu committed
508
        subfolder: Optional[str] = None,
509
510
    ) -> str:
        """
Steven Liu's avatar
Steven Liu committed
511
        Upload model, scheduler, or pipeline files to the 🤗 Hugging Face Hub.
512
513
514

        Parameters:
            repo_id (`str`):
Steven Liu's avatar
Steven Liu committed
515
516
517
                The name of the repository you want to push your model, scheduler, or pipeline files to. It should
                contain your organization name when pushing to an organization. `repo_id` can also be a path to a local
                directory.
518
            commit_message (`str`, *optional*):
Steven Liu's avatar
Steven Liu committed
519
                Message to commit while pushing. Default to `"Upload {object}"`.
520
            private (`bool`, *optional*):
521
522
                Whether to make the repo private. If `None` (default), the repo will be public unless the
                organization's default is private. This value is ignored if the repo already exists.
523
            token (`str`, *optional*):
524
525
                The token to use as HTTP bearer authorization for remote files. The token generated when running `hf
                auth login` (stored in `~/.huggingface`).
526
527
            create_pr (`bool`, *optional*, defaults to `False`):
                Whether or not to create a PR with the uploaded files or directly commit.
Steven Liu's avatar
Steven Liu committed
528
529
            safe_serialization (`bool`, *optional*, defaults to `True`):
                Whether or not to convert the model weights to the `safetensors` format.
530
531
532
533
534
535
536
537
538
539
540
541
542
            variant (`str`, *optional*):
                If specified, weights are saved in the format `pytorch_model.<variant>.bin`.

        Examples:

        ```python
        from diffusers import UNet2DConditionModel

        unet = UNet2DConditionModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="unet")

        # Push the `unet` to your namespace with the name "my-finetuned-unet".
        unet.push_to_hub("my-finetuned-unet")

543
        # Push the `unet` to an organization with the name "my-finetuned-unet".
544
545
546
547
548
        unet.push_to_hub("your-org/my-finetuned-unet")
        ```
        """
        repo_id = create_repo(repo_id, private=private, token=token, exist_ok=True).repo_id

549
        # Create a new empty model card and eventually tag it
YiYi Xu's avatar
YiYi Xu committed
550
551
552
        if not subfolder:
            model_card = load_or_create_model_card(repo_id, token=token)
            model_card = populate_model_card(model_card)
553

554
555
556
557
558
559
560
561
        # Save all files.
        save_kwargs = {"safe_serialization": safe_serialization}
        if "Scheduler" not in self.__class__.__name__:
            save_kwargs.update({"variant": variant})

        with tempfile.TemporaryDirectory() as tmpdir:
            self.save_pretrained(tmpdir, **save_kwargs)

562
            # Update model card if needed:
YiYi Xu's avatar
YiYi Xu committed
563
564
            if not subfolder:
                model_card.save(os.path.join(tmpdir, "README.md"))
565

566
567
568
569
570
571
            return self._upload_folder(
                tmpdir,
                repo_id,
                token=token,
                commit_message=commit_message,
                create_pr=create_pr,
YiYi Xu's avatar
YiYi Xu committed
572
                subfolder=subfolder,
573
            )