lpw_stable_diffusion.py 73.2 KB
Newer Older
1
2
import inspect
import re
3
from typing import Any, Callable, Dict, List, Optional, Union
4
5

import numpy as np
Anh71me's avatar
Anh71me committed
6
import PIL.Image
7
import torch
8
from packaging import version
9
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer
10

11
12
13
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.image_processor import VaeImageProcessor
14
from diffusers.loaders import FromSingleFileMixin, StableDiffusionLoraLoaderMixin, TextualInversionLoaderMixin
15
from diffusers.models import AutoencoderKL, UNet2DConditionModel
16
from diffusers.models.lora import adjust_lora_scale_text_encoder
17
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
18
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
19
20
21
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    PIL_INTERPOLATION,
22
    USE_PEFT_BACKEND,
23
24
    deprecate,
    logging,
25
26
    scale_lora_layers,
    unscale_lora_layers,
27
)
Dhruv Nair's avatar
Dhruv Nair committed
28
from diffusers.utils.torch_utils import randn_tensor
29
30


31
32
# ------------------------------------------------------------------------------

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

re_attention = re.compile(
    r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
    re.X,
)


def parse_prompt_attention(text):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
57
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
58
59
60
61
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
62
63
64
65
      \\( - literal character '('
      \\[ - literal character '['
      \\) - literal character ')'
      \\] - literal character ']'
66
67
68
69
70
71
72
73
      \\ - literal character '\'
      anything else - just text
    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
74
    >>> parse_prompt_attention('\\(literal\\]')
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            res.append([text, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


141
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], max_length: int):
142
143
144
145
146
147
148
    r"""
    Tokenize a list of prompts and return its tokens with weights of each token.

    No padding, starting or ending token is included.
    """
    tokens = []
    weights = []
149
    truncated = False
150
151
152
153
154
155
156
157
158
159
160
161
    for text in prompt:
        texts_and_weights = parse_prompt_attention(text)
        text_token = []
        text_weight = []
        for word, weight in texts_and_weights:
            # tokenize and discard the starting and the ending token
            token = pipe.tokenizer(word).input_ids[1:-1]
            text_token += token
            # copy the weight by length of token
            text_weight += [weight] * len(token)
            # stop if the text is too long (longer than truncation limit)
            if len(text_token) > max_length:
162
                truncated = True
163
164
165
                break
        # truncate
        if len(text_token) > max_length:
166
            truncated = True
167
168
169
170
            text_token = text_token[:max_length]
            text_weight = text_weight[:max_length]
        tokens.append(text_token)
        weights.append(text_weight)
171
172
    if truncated:
        logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
173
174
175
    return tokens, weights


176
def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, pad, no_boseos_middle=True, chunk_length=77):
177
178
179
180
181
182
    r"""
    Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
    """
    max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
    weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
    for i in range(len(tokens)):
183
        tokens[i] = [bos] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos]
184
185
186
187
188
189
190
        if no_boseos_middle:
            weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
        else:
            w = []
            if len(weights[i]) == 0:
                w = [1.0] * weights_length
            else:
191
                for j in range(max_embeddings_multiples):
192
                    w.append(1.0)  # weight for starting token in this chunk
193
                    w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
194
195
196
197
198
199
200
201
                    w.append(1.0)  # weight for ending token in this chunk
                w += [1.0] * (weights_length - len(w))
            weights[i] = w[:]

    return tokens, weights


def get_unweighted_text_embeddings(
202
    pipe: DiffusionPipeline,
203
204
205
    text_input: torch.Tensor,
    chunk_length: int,
    no_boseos_middle: Optional[bool] = True,
206
    clip_skip: Optional[int] = None,
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
):
    """
    When the length of tokens is a multiple of the capacity of the text encoder,
    it should be split into chunks and sent to the text encoder individually.
    """
    max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
    if max_embeddings_multiples > 1:
        text_embeddings = []
        for i in range(max_embeddings_multiples):
            # extract the i-th chunk
            text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()

            # cover the head and the tail by the starting and the ending tokens
            text_input_chunk[:, 0] = text_input[0, 0]
            text_input_chunk[:, -1] = text_input[0, -1]
222
223
224
225
226
227
228
229
230
231
232
233
234
235
            if clip_skip is None:
                prompt_embeds = pipe.text_encoder(text_input_chunk.to(pipe.device))
                text_embedding = prompt_embeds[0]
            else:
                prompt_embeds = pipe.text_encoder(text_input_chunk.to(pipe.device), output_hidden_states=True)
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                text_embedding = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

            if no_boseos_middle:
                if i == 0:
                    # discard the ending token
                    text_embedding = text_embedding[:, :-1]
                elif i == max_embeddings_multiples - 1:
                    # discard the starting token
                    text_embedding = text_embedding[:, 1:]
                else:
                    # discard both starting and ending tokens
                    text_embedding = text_embedding[:, 1:-1]

            text_embeddings.append(text_embedding)
        text_embeddings = torch.concat(text_embeddings, axis=1)
    else:
251
252
253
254
        if clip_skip is None:
            clip_skip = 0
        prompt_embeds = pipe.text_encoder(text_input, output_hidden_states=True)[-1][-(clip_skip + 1)]
        text_embeddings = pipe.text_encoder.text_model.final_layer_norm(prompt_embeds)
255
256
257
258
    return text_embeddings


def get_weighted_text_embeddings(
259
    pipe: DiffusionPipeline,
260
261
    prompt: Union[str, List[str]],
    uncond_prompt: Optional[Union[str, List[str]]] = None,
262
    max_embeddings_multiples: Optional[int] = 3,
263
264
265
    no_boseos_middle: Optional[bool] = False,
    skip_parsing: Optional[bool] = False,
    skip_weighting: Optional[bool] = False,
266
267
    clip_skip=None,
    lora_scale=None,
268
269
270
271
):
    r"""
    Prompts can be assigned with local weights using brackets. For example,
    prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
Yuta Hayashibe's avatar
Yuta Hayashibe committed
272
    and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
273

Yuta Hayashibe's avatar
Yuta Hayashibe committed
274
    Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
275
276

    Args:
277
        pipe (`DiffusionPipeline`):
278
279
280
281
282
283
            Pipe to provide access to the tokenizer and the text encoder.
        prompt (`str` or `List[str]`):
            The prompt or prompts to guide the image generation.
        uncond_prompt (`str` or `List[str]`):
            The unconditional prompt or prompts for guide the image generation. If unconditional prompt
            is provided, the embeddings of prompt and uncond_prompt are concatenated.
284
        max_embeddings_multiples (`int`, *optional*, defaults to `3`):
285
286
287
288
289
290
291
292
293
            The max multiple length of prompt embeddings compared to the max output length of text encoder.
        no_boseos_middle (`bool`, *optional*, defaults to `False`):
            If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
            ending token in each of the chunk in the middle.
        skip_parsing (`bool`, *optional*, defaults to `False`):
            Skip the parsing of brackets.
        skip_weighting (`bool`, *optional*, defaults to `False`):
            Skip the weighting. When the parsing is skipped, it is forced True.
    """
294
295
296
297
298
299
300
301
302
303
    # set lora scale so that monkey patched LoRA
    # function of text encoder can correctly access it
    if lora_scale is not None and isinstance(pipe, StableDiffusionLoraLoaderMixin):
        pipe._lora_scale = lora_scale

        # dynamically adjust the LoRA scale
        if not USE_PEFT_BACKEND:
            adjust_lora_scale_text_encoder(pipe.text_encoder, lora_scale)
        else:
            scale_lora_layers(pipe.text_encoder, lora_scale)
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
    if isinstance(prompt, str):
        prompt = [prompt]

    if not skip_parsing:
        prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
    else:
        prompt_tokens = [
            token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
        ]
        prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens = [
                token[1:-1]
                for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
            ]
            uncond_weights = [[1.0] * len(token) for token in uncond_tokens]

    # round up the longest length of tokens to a multiple of (model_max_length - 2)
    max_length = max([len(token) for token in prompt_tokens])
    if uncond_prompt is not None:
        max_length = max(max_length, max([len(token) for token in uncond_tokens]))

    max_embeddings_multiples = min(
334
335
        max_embeddings_multiples,
        (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
336
337
338
339
340
341
342
    )
    max_embeddings_multiples = max(1, max_embeddings_multiples)
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2

    # pad the length of tokens and weights
    bos = pipe.tokenizer.bos_token_id
    eos = pipe.tokenizer.eos_token_id
343
    pad = getattr(pipe.tokenizer, "pad_token_id", eos)
344
345
346
347
348
349
    prompt_tokens, prompt_weights = pad_tokens_and_weights(
        prompt_tokens,
        prompt_weights,
        max_length,
        bos,
        eos,
350
        pad,
351
352
353
354
355
356
357
358
359
360
361
        no_boseos_middle=no_boseos_middle,
        chunk_length=pipe.tokenizer.model_max_length,
    )
    prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
    if uncond_prompt is not None:
        uncond_tokens, uncond_weights = pad_tokens_and_weights(
            uncond_tokens,
            uncond_weights,
            max_length,
            bos,
            eos,
362
            pad,
363
364
365
366
367
368
369
            no_boseos_middle=no_boseos_middle,
            chunk_length=pipe.tokenizer.model_max_length,
        )
        uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)

    # get the embeddings
    text_embeddings = get_unweighted_text_embeddings(
370
        pipe, prompt_tokens, pipe.tokenizer.model_max_length, no_boseos_middle=no_boseos_middle, clip_skip=clip_skip
371
    )
372
    prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=text_embeddings.device)
373
374
    if uncond_prompt is not None:
        uncond_embeddings = get_unweighted_text_embeddings(
375
376
377
378
            pipe,
            uncond_tokens,
            pipe.tokenizer.model_max_length,
            no_boseos_middle=no_boseos_middle,
379
            clip_skip=clip_skip,
380
        )
381
        uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=uncond_embeddings.device)
382
383
384
385

    # assign weights to the prompts and normalize in the sense of mean
    # TODO: should we normalize by chunk or in a whole (current implementation)?
    if (not skip_parsing) and (not skip_weighting):
386
        previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
387
        text_embeddings *= prompt_weights.unsqueeze(-1)
388
389
        current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
        text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
390
        if uncond_prompt is not None:
391
            previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
392
            uncond_embeddings *= uncond_weights.unsqueeze(-1)
393
394
            current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
            uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
395

396
397
398
399
400
    if pipe.text_encoder is not None:
        if isinstance(pipe, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
            # Retrieve the original scale by scaling back the LoRA layers
            unscale_lora_layers(pipe.text_encoder, lora_scale)

401
402
403
404
405
    if uncond_prompt is not None:
        return text_embeddings, uncond_embeddings
    return text_embeddings, None


406
def preprocess_image(image, batch_size):
407
    w, h = image.size
408
    w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
409
    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
410
    image = np.array(image).astype(np.float32) / 255.0
411
    image = np.vstack([image[None].transpose(0, 3, 1, 2)] * batch_size)
412
413
414
415
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0


416
def preprocess_mask(mask, batch_size, scale_factor=8):
417
    if not isinstance(mask, torch.Tensor):
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
        mask = mask.convert("L")
        w, h = mask.size
        w, h = (x - x % 8 for x in (w, h))  # resize to integer multiple of 8
        mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
        mask = np.array(mask).astype(np.float32) / 255.0
        mask = np.tile(mask, (4, 1, 1))
        mask = np.vstack([mask[None]] * batch_size)
        mask = 1 - mask  # repaint white, keep black
        mask = torch.from_numpy(mask)
        return mask

    else:
        valid_mask_channel_sizes = [1, 3]
        # if mask channel is fourth tensor dimension, permute dimensions to pytorch standard (B, C, H, W)
        if mask.shape[3] in valid_mask_channel_sizes:
            mask = mask.permute(0, 3, 1, 2)
        elif mask.shape[1] not in valid_mask_channel_sizes:
            raise ValueError(
                f"Mask channel dimension of size in {valid_mask_channel_sizes} should be second or fourth dimension,"
                f" but received mask of shape {tuple(mask.shape)}"
            )
        # (potentially) reduce mask channel dimension from 3 to 1 for broadcasting to latent shape
        mask = mask.mean(dim=1, keepdim=True)
        h, w = mask.shape[-2:]
        h, w = (x - x % 8 for x in (h, w))  # resize to integer multiple of 8
        mask = torch.nn.functional.interpolate(mask, (h // scale_factor, w // scale_factor))
        return mask
445
446


447
class StableDiffusionLongPromptWeightingPipeline(
448
449
450
451
452
    DiffusionPipeline,
    StableDiffusionMixin,
    TextualInversionLoaderMixin,
    StableDiffusionLoraLoaderMixin,
    FromSingleFileMixin,
453
):
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
    r"""
    Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
    weighting in prompt.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
473
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
474
475
476
477
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
478
        feature_extractor ([`CLIPImageProcessor`]):
479
480
481
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

482
    model_cpu_offload_seq = "text_encoder-->unet->vae"
483
    _optional_components = ["safety_checker", "feature_extractor"]
484
    _exclude_from_cpu_offload = ["safety_checker"]
485
486
487
488
489
490
491
492
493
494
495
496
497
498

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
        scheduler: KarrasDiffusionSchedulers,
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPImageProcessor,
        requires_safety_checker: bool = True,
    ):
        super().__init__()

499
        if scheduler is not None and getattr(scheduler.config, "steps_offset", 1) != 1:
500
501
502
503
504
505
506
507
508
509
510
511
512
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`"
                f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure "
                "to update the config accordingly as leaving `steps_offset` might led to incorrect results"
                " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,"
                " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`"
                " file"
            )
            deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["steps_offset"] = 1
            scheduler._internal_dict = FrozenDict(new_config)

513
        if scheduler is not None and getattr(scheduler.config, "clip_sample", False) is True:
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
            deprecation_message = (
                f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`."
                " `clip_sample` should be set to False in the configuration file. Please make sure to update the"
                " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in"
                " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very"
                " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file"
            )
            deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(scheduler.config)
            new_config["clip_sample"] = False
            scheduler._internal_dict = FrozenDict(new_config)

        if safety_checker is None and requires_safety_checker:
            logger.warning(
                f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure"
                " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered"
                " results in services or applications open to the public. Both the diffusers team and Hugging Face"
                " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling"
                " it only for use-cases that involve analyzing network behavior or auditing its results. For more"
                " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ."
534
535
            )

536
537
538
539
540
        if safety_checker is not None and feature_extractor is None:
            raise ValueError(
                "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety"
                " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead."
            )
541

hlky's avatar
hlky committed
542
543
544
545
546
547
548
549
        is_unet_version_less_0_9_0 = (
            unet is not None
            and hasattr(unet.config, "_diffusers_version")
            and version.parse(version.parse(unet.config._diffusers_version).base_version) < version.parse("0.9.0.dev0")
        )
        is_unet_sample_size_less_64 = (
            unet is not None and hasattr(unet.config, "sample_size") and unet.config.sample_size < 64
        )
550
551
552
553
554
        if is_unet_version_less_0_9_0 and is_unet_sample_size_less_64:
            deprecation_message = (
                "The configuration file of the unet has set the default `sample_size` to smaller than"
                " 64 which seems highly unlikely. If your checkpoint is a fine-tuned version of any of the"
                " following: \n- CompVis/stable-diffusion-v1-4 \n- CompVis/stable-diffusion-v1-3 \n-"
555
556
                " CompVis/stable-diffusion-v1-2 \n- CompVis/stable-diffusion-v1-1 \n- stable-diffusion-v1-5/stable-diffusion-v1-5"
                " \n- stable-diffusion-v1-5/stable-diffusion-inpainting \n you should change 'sample_size' to 64 in the"
557
558
559
560
                " configuration file. Please make sure to update the config accordingly as leaving `sample_size=32`"
                " in the config might lead to incorrect results in future versions. If you have downloaded this"
                " checkpoint from the Hugging Face Hub, it would be very nice if you could open a Pull request for"
                " the `unet/config.json` file"
561
            )
562
563
564
565
566
567
568
569
570
571
572
573
574
            deprecate("sample_size<64", "1.0.0", deprecation_message, standard_warn=False)
            new_config = dict(unet.config)
            new_config["sample_size"] = 64
            unet._internal_dict = FrozenDict(new_config)
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
        )
hlky's avatar
hlky committed
575
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
576
577
578
579
580
581

        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(
            requires_safety_checker=requires_safety_checker,
        )

582
583
584
585
586
587
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
588
589
        negative_prompt=None,
        max_embeddings_multiples=3,
590
591
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
592
593
        clip_skip: Optional[int] = None,
        lora_scale: Optional[float] = None,
594
    ):
595
        r"""
596
        Encodes the prompt into text encoder hidden states.
597
598

        Args:
599
600
601
602
603
604
605
606
607
608
609
610
611
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
612
        """
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if negative_prompt_embeds is None:
            if negative_prompt is None:
                negative_prompt = [""] * batch_size
            elif isinstance(negative_prompt, str):
                negative_prompt = [negative_prompt] * batch_size
            if batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
        if prompt_embeds is None or negative_prompt_embeds is None:
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
                if do_classifier_free_guidance and negative_prompt_embeds is None:
                    negative_prompt = self.maybe_convert_prompt(negative_prompt, self.tokenizer)

            prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings(
                pipe=self,
                prompt=prompt,
                uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
                max_embeddings_multiples=max_embeddings_multiples,
642
643
                clip_skip=clip_skip,
                lora_scale=lora_scale,
644
            )
645
646
647
648
            if prompt_embeds is None:
                prompt_embeds = prompt_embeds1
            if negative_prompt_embeds is None:
                negative_prompt_embeds = negative_prompt_embeds1
649

650
651
652
653
        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
654
655

        if do_classifier_free_guidance:
656
657
658
659
            bs_embed, seq_len, _ = negative_prompt_embeds.shape
            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
660

661
        return prompt_embeds
662

663
664
665
666
667
668
669
670
671
672
673
674
675
    def check_inputs(
        self,
        prompt,
        height,
        width,
        strength,
        callback_steps,
        negative_prompt=None,
        prompt_embeds=None,
        negative_prompt_embeds=None,
    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
676
677
678
679
680
681
682
683
684
685
686
687

        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

714
715
716
717
718
    def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
        if is_text2img:
            return self.scheduler.timesteps.to(device), num_inference_steps
        else:
            # get the original timestep using init_timestep
719
720
721
722
            init_timestep = min(int(num_inference_steps * strength), num_inference_steps)

            t_start = max(num_inference_steps - init_timestep, 0)
            timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :]
723
724
725
726
727
728
729
730
731

            return timesteps, num_inference_steps - t_start

    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
732
        else:
733
734
735
736
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
737
        latents = 1 / self.vae.config.scaling_factor * latents
738
739
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
740
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
741
742
743
744
745
746
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
Quentin Gallouédec's avatar
Quentin Gallouédec committed
747
        # eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
748
        # and should be between [0, 1]
749

750
751
752
753
754
755
756
757
758
759
760
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

761
762
763
764
765
766
767
768
769
770
771
772
773
774
    def prepare_latents(
        self,
        image,
        timestep,
        num_images_per_prompt,
        batch_size,
        num_channels_latents,
        height,
        width,
        dtype,
        device,
        generator,
        latents=None,
    ):
775
        if image is None:
776
            batch_size = batch_size * num_images_per_prompt
777
778
779
780
781
782
            shape = (
                batch_size,
                num_channels_latents,
                int(height) // self.vae_scale_factor,
                int(width) // self.vae_scale_factor,
            )
783
784
785
786
787
            if isinstance(generator, list) and len(generator) != batch_size:
                raise ValueError(
                    f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                    f" size of {batch_size}. Make sure the batch size matches the length of the generators."
                )
788
789

            if latents is None:
790
                latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
791
792
793
794
795
796
797
            else:
                latents = latents.to(device)

            # scale the initial noise by the standard deviation required by the scheduler
            latents = latents * self.scheduler.init_noise_sigma
            return latents, None, None
        else:
798
            image = image.to(device=self.device, dtype=dtype)
799
800
            init_latent_dist = self.vae.encode(image).latent_dist
            init_latents = init_latent_dist.sample(generator=generator)
801
802
803
804
            init_latents = self.vae.config.scaling_factor * init_latents

            # Expand init_latents for batch_size and num_images_per_prompt
            init_latents = torch.cat([init_latents] * num_images_per_prompt, dim=0)
805
            init_latents_orig = init_latents
806

807
            # add noise to latents using the timesteps
808
809
810
            noise = randn_tensor(init_latents.shape, generator=generator, device=self.device, dtype=dtype)
            init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
            latents = init_latents
811
            return latents, init_latents_orig, noise
812

813
814
815
816
817
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
818
819
        image: Union[torch.Tensor, PIL.Image.Image] = None,
        mask_image: Union[torch.Tensor, PIL.Image.Image] = None,
820
821
822
823
824
825
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        strength: float = 0.8,
        num_images_per_prompt: Optional[int] = 1,
826
        add_predicted_noise: Optional[bool] = False,
827
        eta: float = 0.0,
828
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
829
830
831
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
832
833
834
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
835
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
836
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
837
        clip_skip: Optional[int] = None,
838
        callback_steps: int = 1,
839
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
840
841
842
843
844
845
846
847
848
849
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
850
            image (`torch.Tensor` or `PIL.Image.Image`):
851
852
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
853
            mask_image (`torch.Tensor` or `PIL.Image.Image`):
854
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
855
856
857
858
859
860
861
862
863
864
865
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
866
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
867
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
868
                Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
869
870
871
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            strength (`float`, *optional*, defaults to 0.8):
872
873
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
874
875
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
876
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
877
878
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
879
880
881
            add_predicted_noise (`bool`, *optional*, defaults to True):
                Use predicted noise instead of random noise when constructing noisy versions of the original image in
                the reverse diffusion process
882
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
883
                Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
884
                [`schedulers.DDIMScheduler`], will be ignored for others.
885
886
887
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
888
            latents (`torch.Tensor`, *optional*):
889
890
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
891
                tensor will be generated by sampling using the supplied random `generator`.
892
            prompt_embeds (`torch.Tensor`, *optional*):
893
894
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
895
            negative_prompt_embeds (`torch.Tensor`, *optional*):
896
897
898
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
899
900
901
902
903
904
905
906
907
908
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
909
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
910
911
912
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
913
914
915
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
916
917
918
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
919
920
921
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
Patrick von Platen's avatar
Patrick von Platen committed
922
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
923
924

        Returns:
925
            `None` if cancelled by `is_cancelled_callback`,
926
927
928
929
930
931
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
932
933
934
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
935

936
        # 1. Check inputs. Raise error if not correct
937
938
939
        self.check_inputs(
            prompt, height, width, strength, callback_steps, negative_prompt, prompt_embeds, negative_prompt_embeds
        )
940

941
        # 2. Define call parameters
942
943
944
945
946
947
948
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

949
        device = self._execution_device
950
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
Quentin Gallouédec's avatar
Quentin Gallouédec committed
951
        # of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
952
953
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0
954
        lora_scale = cross_attention_kwargs.get("scale", None) if cross_attention_kwargs is not None else None
955

956
        # 3. Encode input prompt
957
        prompt_embeds = self._encode_prompt(
958
959
960
961
962
963
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            max_embeddings_multiples,
964
965
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
966
967
            clip_skip=clip_skip,
            lora_scale=lora_scale,
968
        )
969
        dtype = prompt_embeds.dtype
970
971
972

        # 4. Preprocess image and mask
        if isinstance(image, PIL.Image.Image):
973
            image = preprocess_image(image, batch_size)
974
975
976
        if image is not None:
            image = image.to(device=self.device, dtype=dtype)
        if isinstance(mask_image, PIL.Image.Image):
977
            mask_image = preprocess_mask(mask_image, batch_size, self.vae_scale_factor)
978
979
        if mask_image is not None:
            mask = mask_image.to(device=self.device, dtype=dtype)
980
            mask = torch.cat([mask] * num_images_per_prompt)
981
        else:
982
983
984
985
986
987
988
989
990
991
992
            mask = None

        # 5. set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)

        # 6. Prepare latent variables
        latents, init_latents_orig, noise = self.prepare_latents(
            image,
            latent_timestep,
993
994
995
            num_images_per_prompt,
            batch_size,
            self.unet.config.in_channels,
996
997
998
999
1000
1001
1002
            height,
            width,
            dtype,
            device,
            generator,
            latents,
        )
1003

1004
1005
1006
1007
        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    cross_attention_kwargs=cross_attention_kwargs,
                ).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                if mask is not None:
                    # masking
                    if add_predicted_noise:
                        init_latents_proper = self.scheduler.add_noise(
                            init_latents_orig, noise_pred_uncond, torch.tensor([t])
                        )
                    else:
                        init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
                    latents = (init_latents_proper * mask) + (latents * (1 - mask))

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if i % callback_steps == 0:
                        if callback is not None:
1046
1047
                            step_idx = i // getattr(self.scheduler, "order", 1)
                            callback(step_idx, t, latents)
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
                        if is_cancelled_callback is not None and is_cancelled_callback():
                            return None

        if output_type == "latent":
            image = latents
            has_nsfw_concept = None
        elif output_type == "pil":
            # 9. Post-processing
            image = self.decode_latents(latents)

            # 10. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

            # 11. Convert to PIL
1062
            image = self.numpy_to_pil(image)
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
        else:
            # 9. Post-processing
            image = self.decode_latents(latents)

            # 10. Run safety checker
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)

        # Offload last model to CPU
        if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
            self.final_offload_hook.offload()
1073
1074

        if not return_dict:
1075
            return image, has_nsfw_concept
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def text2img(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
1089
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1090
1091
1092
        latents: Optional[torch.Tensor] = None,
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
1093
1094
1095
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
1096
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
1097
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
1098
        clip_skip=None,
1099
        callback_steps: int = 1,
1100
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
    ):
        r"""
        Function for text-to-image generation.
        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1118
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
1119
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1120
                Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
1121
1122
1123
1124
1125
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1126
                Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
1127
                [`schedulers.DDIMScheduler`], will be ignored for others.
1128
1129
1130
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
1131
            latents (`torch.Tensor`, *optional*):
1132
1133
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
1134
                tensor will be generated by sampling using the supplied random `generator`.
1135
            prompt_embeds (`torch.Tensor`, *optional*):
1136
1137
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
1138
            negative_prompt_embeds (`torch.Tensor`, *optional*):
1139
1140
1141
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
1152
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
1153
1154
1155
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
1156
1157
1158
            clip_skip (`int`, *optional*):
                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
                the output of the pre-final layer will be used for computing the prompt embeddings.
1159
1160
1161
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
1162
1163
1164
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
Patrick von Platen's avatar
Patrick von Platen committed
1165
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1166

1167
        Returns:
1168
            `None` if cancelled by `is_cancelled_callback`,
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
1186
1187
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1188
1189
1190
1191
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
1192
            is_cancelled_callback=is_cancelled_callback,
1193
            clip_skip=clip_skip,
1194
            callback_steps=callback_steps,
1195
            cross_attention_kwargs=cross_attention_kwargs,
1196
1197
1198
1199
        )

    def img2img(
        self,
1200
        image: Union[torch.Tensor, PIL.Image.Image],
1201
1202
1203
1204
1205
1206
1207
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
1208
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1209
1210
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
1211
1212
1213
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
1214
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
1215
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
1216
        callback_steps: int = 1,
1217
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1218
1219
1220
1221
    ):
        r"""
        Function for image-to-image generation.
        Args:
1222
            image (`torch.Tensor` or `PIL.Image.Image`):
1223
1224
1225
1226
1227
1228
1229
1230
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            strength (`float`, *optional*, defaults to 0.8):
1231
1232
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
1233
1234
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
1235
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
1236
1237
1238
1239
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter will be modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1240
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
1241
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1242
                Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
1243
1244
1245
1246
1247
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1248
                Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
1249
                [`schedulers.DDIMScheduler`], will be ignored for others.
1250
1251
1252
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
1253
            prompt_embeds (`torch.Tensor`, *optional*):
1254
1255
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
1256
            negative_prompt_embeds (`torch.Tensor`, *optional*):
1257
1258
1259
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
1270
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
1271
1272
1273
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
1274
1275
1276
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
1277
1278
1279
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
Patrick von Platen's avatar
Patrick von Platen committed
1280
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1281

1282
        Returns:
1283
            `None` if cancelled by `is_cancelled_callback`,
1284
1285
1286
1287
1288
1289
1290
1291
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
1292
            image=image,
1293
1294
1295
1296
1297
1298
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            strength=strength,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
1299
1300
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1301
1302
1303
1304
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
1305
            is_cancelled_callback=is_cancelled_callback,
1306
            callback_steps=callback_steps,
1307
            cross_attention_kwargs=cross_attention_kwargs,
1308
1309
1310
1311
        )

    def inpaint(
        self,
1312
1313
        image: Union[torch.Tensor, PIL.Image.Image],
        mask_image: Union[torch.Tensor, PIL.Image.Image],
1314
1315
1316
1317
1318
1319
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        num_images_per_prompt: Optional[int] = 1,
1320
        add_predicted_noise: Optional[bool] = False,
1321
        eta: Optional[float] = 0.0,
1322
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
1323
1324
        prompt_embeds: Optional[torch.Tensor] = None,
        negative_prompt_embeds: Optional[torch.Tensor] = None,
1325
1326
1327
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
1328
        callback: Optional[Callable[[int, int, torch.Tensor], None]] = None,
1329
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
1330
        callback_steps: int = 1,
1331
        cross_attention_kwargs: Optional[Dict[str, Any]] = None,
1332
1333
1334
1335
    ):
        r"""
        Function for inpaint.
        Args:
1336
            image (`torch.Tensor` or `PIL.Image.Image`):
1337
1338
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process. This is the image whose masked region will be inpainted.
1339
            mask_image (`torch.Tensor` or `PIL.Image.Image`):
1340
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            strength (`float`, *optional*, defaults to 0.8):
                Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
                is 1, the denoising process will be run on the masked area for the full number of iterations specified
1352
                in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
1353
1354
1355
1356
1357
                noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
                the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
            guidance_scale (`float`, *optional*, defaults to 7.5):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1358
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598).
1359
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1360
                Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale >
1361
1362
1363
1364
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
1365
1366
1367
            add_predicted_noise (`bool`, *optional*, defaults to True):
                Use predicted noise instead of random noise when constructing noisy versions of the original image in
                the reverse diffusion process
1368
            eta (`float`, *optional*, defaults to 0.0):
Quentin Gallouédec's avatar
Quentin Gallouédec committed
1369
                Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to
1370
                [`schedulers.DDIMScheduler`], will be ignored for others.
1371
1372
1373
            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
1374
            prompt_embeds (`torch.Tensor`, *optional*):
1375
1376
                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
                provided, text embeddings will be generated from `prompt` input argument.
1377
            negative_prompt_embeds (`torch.Tensor`, *optional*):
1378
1379
1380
                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
                argument.
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
1391
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`.
1392
1393
1394
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
1395
1396
1397
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
1398
1399
1400
            cross_attention_kwargs (`dict`, *optional*):
                A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
                `self.processor` in
Patrick von Platen's avatar
Patrick von Platen committed
1401
                [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
1402

1403
        Returns:
1404
            `None` if cancelled by `is_cancelled_callback`,
1405
1406
1407
1408
1409
1410
1411
1412
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
1413
            image=image,
1414
1415
1416
1417
1418
            mask_image=mask_image,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            strength=strength,
            num_images_per_prompt=num_images_per_prompt,
1419
            add_predicted_noise=add_predicted_noise,
1420
1421
            eta=eta,
            generator=generator,
1422
1423
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
1424
1425
1426
1427
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
1428
            is_cancelled_callback=is_cancelled_callback,
1429
            callback_steps=callback_steps,
1430
            cross_attention_kwargs=cross_attention_kwargs,
1431
        )