lpw_stable_diffusion.py 54 KB
Newer Older
1
2
3
4
5
6
7
8
import inspect
import re
from typing import Callable, List, Optional, Union

import numpy as np
import torch

import PIL
9
from diffusers import SchedulerMixin, StableDiffusionPipeline
10
from diffusers.models import AutoencoderKL, UNet2DConditionModel
11
12
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput, StableDiffusionSafetyChecker
from diffusers.utils import PIL_INTERPOLATION, deprecate, logging
Patrick von Platen's avatar
Patrick von Platen committed
13
14
15
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer


16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

re_attention = re.compile(
    r"""
\\\(|
\\\)|
\\\[|
\\]|
\\\\|
\\|
\(|
\[|
:([+-]?[.\d]+)\)|
\)|
]|
[^\\()\[\]:]+|
:
""",
    re.X,
)


def parse_prompt_attention(text):
    """
Yuta Hayashibe's avatar
Yuta Hayashibe committed
40
    Parses a string with attention tokens and returns a list of pairs: text and its associated weight.
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
    Accepted tokens are:
      (abc) - increases attention to abc by a multiplier of 1.1
      (abc:3.12) - increases attention to abc by a multiplier of 3.12
      [abc] - decreases attention to abc by a multiplier of 1.1
      \( - literal character '('
      \[ - literal character '['
      \) - literal character ')'
      \] - literal character ']'
      \\ - literal character '\'
      anything else - just text
    >>> parse_prompt_attention('normal text')
    [['normal text', 1.0]]
    >>> parse_prompt_attention('an (important) word')
    [['an ', 1.0], ['important', 1.1], [' word', 1.0]]
    >>> parse_prompt_attention('(unbalanced')
    [['unbalanced', 1.1]]
    >>> parse_prompt_attention('\(literal\]')
    [['(literal]', 1.0]]
    >>> parse_prompt_attention('(unnecessary)(parens)')
    [['unnecessaryparens', 1.1]]
    >>> parse_prompt_attention('a (((house:1.3)) [on] a (hill:0.5), sun, (((sky))).')
    [['a ', 1.0],
     ['house', 1.5730000000000004],
     [' ', 1.1],
     ['on', 1.0],
     [' a ', 1.1],
     ['hill', 0.55],
     [', sun, ', 1.1],
     ['sky', 1.4641000000000006],
     ['.', 1.1]]
    """

    res = []
    round_brackets = []
    square_brackets = []

    round_bracket_multiplier = 1.1
    square_bracket_multiplier = 1 / 1.1

    def multiply_range(start_position, multiplier):
        for p in range(start_position, len(res)):
            res[p][1] *= multiplier

    for m in re_attention.finditer(text):
        text = m.group(0)
        weight = m.group(1)

        if text.startswith("\\"):
            res.append([text[1:], 1.0])
        elif text == "(":
            round_brackets.append(len(res))
        elif text == "[":
            square_brackets.append(len(res))
        elif weight is not None and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), float(weight))
        elif text == ")" and len(round_brackets) > 0:
            multiply_range(round_brackets.pop(), round_bracket_multiplier)
        elif text == "]" and len(square_brackets) > 0:
            multiply_range(square_brackets.pop(), square_bracket_multiplier)
        else:
            res.append([text, 1.0])

    for pos in round_brackets:
        multiply_range(pos, round_bracket_multiplier)

    for pos in square_brackets:
        multiply_range(pos, square_bracket_multiplier)

    if len(res) == 0:
        res = [["", 1.0]]

    # merge runs of identical weights
    i = 0
    while i + 1 < len(res):
        if res[i][1] == res[i + 1][1]:
            res[i][0] += res[i + 1][0]
            res.pop(i + 1)
        else:
            i += 1

    return res


124
def get_prompts_with_weights(pipe: StableDiffusionPipeline, prompt: List[str], max_length: int):
125
126
127
128
129
130
131
    r"""
    Tokenize a list of prompts and return its tokens with weights of each token.

    No padding, starting or ending token is included.
    """
    tokens = []
    weights = []
132
    truncated = False
133
134
135
136
137
138
139
140
141
142
143
144
    for text in prompt:
        texts_and_weights = parse_prompt_attention(text)
        text_token = []
        text_weight = []
        for word, weight in texts_and_weights:
            # tokenize and discard the starting and the ending token
            token = pipe.tokenizer(word).input_ids[1:-1]
            text_token += token
            # copy the weight by length of token
            text_weight += [weight] * len(token)
            # stop if the text is too long (longer than truncation limit)
            if len(text_token) > max_length:
145
                truncated = True
146
147
148
                break
        # truncate
        if len(text_token) > max_length:
149
            truncated = True
150
151
152
153
            text_token = text_token[:max_length]
            text_weight = text_weight[:max_length]
        tokens.append(text_token)
        weights.append(text_weight)
154
155
    if truncated:
        logger.warning("Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples")
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
    return tokens, weights


def pad_tokens_and_weights(tokens, weights, max_length, bos, eos, no_boseos_middle=True, chunk_length=77):
    r"""
    Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length.
    """
    max_embeddings_multiples = (max_length - 2) // (chunk_length - 2)
    weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length
    for i in range(len(tokens)):
        tokens[i] = [bos] + tokens[i] + [eos] * (max_length - 1 - len(tokens[i]))
        if no_boseos_middle:
            weights[i] = [1.0] + weights[i] + [1.0] * (max_length - 1 - len(weights[i]))
        else:
            w = []
            if len(weights[i]) == 0:
                w = [1.0] * weights_length
            else:
174
                for j in range(max_embeddings_multiples):
175
                    w.append(1.0)  # weight for starting token in this chunk
176
                    w += weights[i][j * (chunk_length - 2) : min(len(weights[i]), (j + 1) * (chunk_length - 2))]
177
178
179
180
181
182
183
184
                    w.append(1.0)  # weight for ending token in this chunk
                w += [1.0] * (weights_length - len(w))
            weights[i] = w[:]

    return tokens, weights


def get_unweighted_text_embeddings(
185
    pipe: StableDiffusionPipeline,
186
187
188
    text_input: torch.Tensor,
    chunk_length: int,
    no_boseos_middle: Optional[bool] = True,
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
):
    """
    When the length of tokens is a multiple of the capacity of the text encoder,
    it should be split into chunks and sent to the text encoder individually.
    """
    max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2)
    if max_embeddings_multiples > 1:
        text_embeddings = []
        for i in range(max_embeddings_multiples):
            # extract the i-th chunk
            text_input_chunk = text_input[:, i * (chunk_length - 2) : (i + 1) * (chunk_length - 2) + 2].clone()

            # cover the head and the tail by the starting and the ending tokens
            text_input_chunk[:, 0] = text_input[0, 0]
            text_input_chunk[:, -1] = text_input[0, -1]
            text_embedding = pipe.text_encoder(text_input_chunk)[0]

            if no_boseos_middle:
                if i == 0:
                    # discard the ending token
                    text_embedding = text_embedding[:, :-1]
                elif i == max_embeddings_multiples - 1:
                    # discard the starting token
                    text_embedding = text_embedding[:, 1:]
                else:
                    # discard both starting and ending tokens
                    text_embedding = text_embedding[:, 1:-1]

            text_embeddings.append(text_embedding)
        text_embeddings = torch.concat(text_embeddings, axis=1)
    else:
        text_embeddings = pipe.text_encoder(text_input)[0]
    return text_embeddings


def get_weighted_text_embeddings(
225
    pipe: StableDiffusionPipeline,
226
227
    prompt: Union[str, List[str]],
    uncond_prompt: Optional[Union[str, List[str]]] = None,
228
    max_embeddings_multiples: Optional[int] = 3,
229
230
231
232
233
234
235
236
    no_boseos_middle: Optional[bool] = False,
    skip_parsing: Optional[bool] = False,
    skip_weighting: Optional[bool] = False,
    **kwargs,
):
    r"""
    Prompts can be assigned with local weights using brackets. For example,
    prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful',
Yuta Hayashibe's avatar
Yuta Hayashibe committed
237
    and the embedding tokens corresponding to the words get multiplied by a constant, 1.1.
238

Yuta Hayashibe's avatar
Yuta Hayashibe committed
239
    Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean.
240
241

    Args:
242
        pipe (`StableDiffusionPipeline`):
243
244
245
246
247
248
            Pipe to provide access to the tokenizer and the text encoder.
        prompt (`str` or `List[str]`):
            The prompt or prompts to guide the image generation.
        uncond_prompt (`str` or `List[str]`):
            The unconditional prompt or prompts for guide the image generation. If unconditional prompt
            is provided, the embeddings of prompt and uncond_prompt are concatenated.
249
        max_embeddings_multiples (`int`, *optional*, defaults to `3`):
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
            The max multiple length of prompt embeddings compared to the max output length of text encoder.
        no_boseos_middle (`bool`, *optional*, defaults to `False`):
            If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and
            ending token in each of the chunk in the middle.
        skip_parsing (`bool`, *optional*, defaults to `False`):
            Skip the parsing of brackets.
        skip_weighting (`bool`, *optional*, defaults to `False`):
            Skip the weighting. When the parsing is skipped, it is forced True.
    """
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2
    if isinstance(prompt, str):
        prompt = [prompt]

    if not skip_parsing:
        prompt_tokens, prompt_weights = get_prompts_with_weights(pipe, prompt, max_length - 2)
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens, uncond_weights = get_prompts_with_weights(pipe, uncond_prompt, max_length - 2)
    else:
        prompt_tokens = [
            token[1:-1] for token in pipe.tokenizer(prompt, max_length=max_length, truncation=True).input_ids
        ]
        prompt_weights = [[1.0] * len(token) for token in prompt_tokens]
        if uncond_prompt is not None:
            if isinstance(uncond_prompt, str):
                uncond_prompt = [uncond_prompt]
            uncond_tokens = [
                token[1:-1]
                for token in pipe.tokenizer(uncond_prompt, max_length=max_length, truncation=True).input_ids
            ]
            uncond_weights = [[1.0] * len(token) for token in uncond_tokens]

    # round up the longest length of tokens to a multiple of (model_max_length - 2)
    max_length = max([len(token) for token in prompt_tokens])
    if uncond_prompt is not None:
        max_length = max(max_length, max([len(token) for token in uncond_tokens]))

    max_embeddings_multiples = min(
289
290
        max_embeddings_multiples,
        (max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1,
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
    )
    max_embeddings_multiples = max(1, max_embeddings_multiples)
    max_length = (pipe.tokenizer.model_max_length - 2) * max_embeddings_multiples + 2

    # pad the length of tokens and weights
    bos = pipe.tokenizer.bos_token_id
    eos = pipe.tokenizer.eos_token_id
    prompt_tokens, prompt_weights = pad_tokens_and_weights(
        prompt_tokens,
        prompt_weights,
        max_length,
        bos,
        eos,
        no_boseos_middle=no_boseos_middle,
        chunk_length=pipe.tokenizer.model_max_length,
    )
    prompt_tokens = torch.tensor(prompt_tokens, dtype=torch.long, device=pipe.device)
    if uncond_prompt is not None:
        uncond_tokens, uncond_weights = pad_tokens_and_weights(
            uncond_tokens,
            uncond_weights,
            max_length,
            bos,
            eos,
            no_boseos_middle=no_boseos_middle,
            chunk_length=pipe.tokenizer.model_max_length,
        )
        uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=pipe.device)

    # get the embeddings
    text_embeddings = get_unweighted_text_embeddings(
322
323
324
325
        pipe,
        prompt_tokens,
        pipe.tokenizer.model_max_length,
        no_boseos_middle=no_boseos_middle,
326
327
328
329
    )
    prompt_weights = torch.tensor(prompt_weights, dtype=text_embeddings.dtype, device=pipe.device)
    if uncond_prompt is not None:
        uncond_embeddings = get_unweighted_text_embeddings(
330
331
332
333
            pipe,
            uncond_tokens,
            pipe.tokenizer.model_max_length,
            no_boseos_middle=no_boseos_middle,
334
335
336
337
338
339
        )
        uncond_weights = torch.tensor(uncond_weights, dtype=uncond_embeddings.dtype, device=pipe.device)

    # assign weights to the prompts and normalize in the sense of mean
    # TODO: should we normalize by chunk or in a whole (current implementation)?
    if (not skip_parsing) and (not skip_weighting):
340
        previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
341
        text_embeddings *= prompt_weights.unsqueeze(-1)
342
343
        current_mean = text_embeddings.float().mean(axis=[-2, -1]).to(text_embeddings.dtype)
        text_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
344
        if uncond_prompt is not None:
345
            previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
346
            uncond_embeddings *= uncond_weights.unsqueeze(-1)
347
348
            current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to(uncond_embeddings.dtype)
            uncond_embeddings *= (previous_mean / current_mean).unsqueeze(-1).unsqueeze(-1)
349
350
351
352
353
354
355
356
357

    if uncond_prompt is not None:
        return text_embeddings, uncond_embeddings
    return text_embeddings, None


def preprocess_image(image):
    w, h = image.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
358
    image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
359
360
361
362
363
364
    image = np.array(image).astype(np.float32) / 255.0
    image = image[None].transpose(0, 3, 1, 2)
    image = torch.from_numpy(image)
    return 2.0 * image - 1.0


365
def preprocess_mask(mask, scale_factor=8):
366
367
368
    mask = mask.convert("L")
    w, h = mask.size
    w, h = map(lambda x: x - x % 32, (w, h))  # resize to integer multiple of 32
369
    mask = mask.resize((w // scale_factor, h // scale_factor), resample=PIL_INTERPOLATION["nearest"])
370
371
372
373
374
375
376
377
    mask = np.array(mask).astype(np.float32) / 255.0
    mask = np.tile(mask, (4, 1, 1))
    mask = mask[None].transpose(0, 1, 2, 3)  # what does this step do?
    mask = 1 - mask  # repaint white, keep black
    mask = torch.from_numpy(mask)
    return mask


378
class StableDiffusionLongPromptWeightingPipeline(StableDiffusionPipeline):
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
    r"""
    Pipeline for text-to-image generation using Stable Diffusion without tokens length limit, and support parsing
    weighting in prompt.

    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Args:
        vae ([`AutoencoderKL`]):
            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
        text_encoder ([`CLIPTextModel`]):
            Frozen text-encoder. Stable Diffusion uses the text portion of
            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
        tokenizer (`CLIPTokenizer`):
            Tokenizer of class
            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
398
            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
399
400
401
402
403
404
405
406
407
408
409
410
411
412
            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
        safety_checker ([`StableDiffusionSafetyChecker`]):
            Classification module that estimates whether generated images could be considered offensive or harmful.
            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
        feature_extractor ([`CLIPFeatureExtractor`]):
            Model that extracts features from generated images to be used as inputs for the `safety_checker`.
    """

    def __init__(
        self,
        vae: AutoencoderKL,
        text_encoder: CLIPTextModel,
        tokenizer: CLIPTokenizer,
        unet: UNet2DConditionModel,
413
        scheduler: SchedulerMixin,
414
415
        safety_checker: StableDiffusionSafetyChecker,
        feature_extractor: CLIPFeatureExtractor,
416
        requires_safety_checker: bool = True,
417
    ):
418
        super().__init__(
419
420
421
422
423
424
425
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
426
            requires_safety_checker=requires_safety_checker,
427
428
        )

429
430
431
432
433
434
435
436
437
    def _encode_prompt(
        self,
        prompt,
        device,
        num_images_per_prompt,
        do_classifier_free_guidance,
        negative_prompt,
        max_embeddings_multiples,
    ):
438
        r"""
439
        Encodes the prompt into text encoder hidden states.
440
441

        Args:
442
443
444
445
446
447
448
449
450
451
452
453
454
            prompt (`str` or `list(int)`):
                prompt to be encoded
            device: (`torch.device`):
                torch device
            num_images_per_prompt (`int`):
                number of images that should be generated per prompt
            do_classifier_free_guidance (`bool`):
                whether to use classifier free guidance or not
            negative_prompt (`str` or `List[str]`):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
455
        """
456
        batch_size = len(prompt) if isinstance(prompt, list) else 1
457

458
459
460
461
462
463
464
465
466
467
        if negative_prompt is None:
            negative_prompt = [""] * batch_size
        elif isinstance(negative_prompt, str):
            negative_prompt = [negative_prompt] * batch_size
        if batch_size != len(negative_prompt):
            raise ValueError(
                f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                " the batch size of `prompt`."
            )
468

469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
        text_embeddings, uncond_embeddings = get_weighted_text_embeddings(
            pipe=self,
            prompt=prompt,
            uncond_prompt=negative_prompt if do_classifier_free_guidance else None,
            max_embeddings_multiples=max_embeddings_multiples,
        )
        bs_embed, seq_len, _ = text_embeddings.shape
        text_embeddings = text_embeddings.repeat(1, num_images_per_prompt, 1)
        text_embeddings = text_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)

        if do_classifier_free_guidance:
            bs_embed, seq_len, _ = uncond_embeddings.shape
            uncond_embeddings = uncond_embeddings.repeat(1, num_images_per_prompt, 1)
            uncond_embeddings = uncond_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1)
            text_embeddings = torch.cat([uncond_embeddings, text_embeddings])

        return text_embeddings

    def check_inputs(self, prompt, height, width, strength, callback_steps):
        if not isinstance(prompt, str) and not isinstance(prompt, list):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if strength < 0 or strength > 1:
            raise ValueError(f"The value of strength should in [0.0, 1.0] but is {strength}")

        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if (callback_steps is None) or (
            callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
        ):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )

    def get_timesteps(self, num_inference_steps, strength, device, is_text2img):
        if is_text2img:
            return self.scheduler.timesteps.to(device), num_inference_steps
        else:
            # get the original timestep using init_timestep
            offset = self.scheduler.config.get("steps_offset", 0)
            init_timestep = int(num_inference_steps * strength) + offset
            init_timestep = min(init_timestep, num_inference_steps)

            t_start = max(num_inference_steps - init_timestep + offset, 0)
            timesteps = self.scheduler.timesteps[t_start:].to(device)
            return timesteps, num_inference_steps - t_start

    def run_safety_checker(self, image, device, dtype):
        if self.safety_checker is not None:
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
            )
524
        else:
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
            has_nsfw_concept = None
        return image, has_nsfw_concept

    def decode_latents(self, latents):
        latents = 1 / 0.18215 * latents
        image = self.vae.decode(latents).sample
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]
541

542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    def prepare_latents(self, image, timestep, batch_size, height, width, dtype, device, generator, latents=None):
        if image is None:
            shape = (
                batch_size,
                self.unet.in_channels,
                height // self.vae_scale_factor,
                width // self.vae_scale_factor,
            )

            if latents is None:
                if device.type == "mps":
                    # randn does not work reproducibly on mps
                    latents = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
                else:
                    latents = torch.randn(shape, generator=generator, device=device, dtype=dtype)
            else:
                if latents.shape != shape:
                    raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
                latents = latents.to(device)

            # scale the initial noise by the standard deviation required by the scheduler
            latents = latents * self.scheduler.init_noise_sigma
            return latents, None, None
        else:
            init_latent_dist = self.vae.encode(image).latent_dist
            init_latents = init_latent_dist.sample(generator=generator)
            init_latents = 0.18215 * init_latents
            init_latents = torch.cat([init_latents] * batch_size, dim=0)
            init_latents_orig = init_latents
            shape = init_latents.shape
583

584
585
586
587
588
589
590
            # add noise to latents using the timesteps
            if device.type == "mps":
                noise = torch.randn(shape, generator=generator, device="cpu", dtype=dtype).to(device)
            else:
                noise = torch.randn(shape, generator=generator, device=device, dtype=dtype)
            latents = self.scheduler.add_noise(init_latents, noise, timestep)
            return latents, init_latents_orig, noise
591

592
593
594
595
596
    @torch.no_grad()
    def __call__(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
597
        image: Union[torch.FloatTensor, PIL.Image.Image] = None,
598
599
600
601
602
603
604
605
606
607
608
609
610
611
        mask_image: Union[torch.FloatTensor, PIL.Image.Image] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        strength: float = 0.8,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
612
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
613
614
615
616
617
618
619
620
621
622
623
624
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function invoked when calling the pipeline for generation.

        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
625
            image (`torch.FloatTensor` or `PIL.Image.Image`):
626
627
628
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
629
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            strength (`float`, *optional*, defaults to 0.8):
647
648
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
649
650
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
651
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
675
676
677
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
678
679
680
681
682
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.

        Returns:
683
            `None` if cancelled by `is_cancelled_callback`,
684
685
686
687
688
689
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
690
691
692
        message = "Please use `image` instead of `init_image`."
        init_image = deprecate("init_image", "0.12.0", message, take_from=kwargs)
        image = init_image or image
693

694
695
696
        # 0. Default height and width to unet
        height = height or self.unet.config.sample_size * self.vae_scale_factor
        width = width or self.unet.config.sample_size * self.vae_scale_factor
697

698
699
        # 1. Check inputs. Raise error if not correct
        self.check_inputs(prompt, height, width, strength, callback_steps)
700

701
702
703
        # 2. Define call parameters
        batch_size = 1 if isinstance(prompt, str) else len(prompt)
        device = self._execution_device
704
705
706
707
708
        # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
        # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
        # corresponds to doing no classifier free guidance.
        do_classifier_free_guidance = guidance_scale > 1.0

709
710
711
712
713
714
715
716
        # 3. Encode input prompt
        text_embeddings = self._encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            do_classifier_free_guidance,
            negative_prompt,
            max_embeddings_multiples,
717
        )
718
719
720
721
722
723
724
725
726
727
728
729
        dtype = text_embeddings.dtype

        # 4. Preprocess image and mask
        if isinstance(image, PIL.Image.Image):
            image = preprocess_image(image)
        if image is not None:
            image = image.to(device=self.device, dtype=dtype)
        if isinstance(mask_image, PIL.Image.Image):
            mask_image = preprocess_mask(mask_image, self.vae_scale_factor)
        if mask_image is not None:
            mask = mask_image.to(device=self.device, dtype=dtype)
            mask = torch.cat([mask] * batch_size * num_images_per_prompt)
730
        else:
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
            mask = None

        # 5. set timesteps
        self.scheduler.set_timesteps(num_inference_steps, device=device)
        timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device, image is None)
        latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)

        # 6. Prepare latent variables
        latents, init_latents_orig, noise = self.prepare_latents(
            image,
            latent_timestep,
            batch_size * num_images_per_prompt,
            height,
            width,
            dtype,
            device,
            generator,
            latents,
        )
750

751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
        # 7. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 8. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample

                # perform guidance
                if do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample

                if mask is not None:
                    # masking
                    init_latents_proper = self.scheduler.add_noise(init_latents_orig, noise, torch.tensor([t]))
                    latents = (init_latents_proper * mask) + (latents * (1 - mask))

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if i % callback_steps == 0:
                        if callback is not None:
                            callback(i, t, latents)
                        if is_cancelled_callback is not None and is_cancelled_callback():
                            return None

        # 9. Post-processing
        image = self.decode_latents(latents)

        # 10. Run safety checker
        image, has_nsfw_concept = self.run_safety_checker(image, device, text_embeddings.dtype)

        # 11. Convert to PIL
794
795
796
797
        if output_type == "pil":
            image = self.numpy_to_pil(image)

        if not return_dict:
798
            return image, has_nsfw_concept
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    def text2img(
        self,
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        height: int = 512,
        width: int = 512,
        num_inference_steps: int = 50,
        guidance_scale: float = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: float = 0.0,
        generator: Optional[torch.Generator] = None,
        latents: Optional[torch.FloatTensor] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
818
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function for text-to-image generation.
        Args:
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            height (`int`, *optional*, defaults to 512):
                The height in pixels of the generated image.
            width (`int`, *optional*, defaults to 512):
                The width in pixels of the generated image.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            latents (`torch.FloatTensor`, *optional*):
                Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
                tensor will ge generated by sampling using the supplied random `generator`.
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
866
867
868
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
894
            is_cancelled_callback=is_cancelled_callback,
895
896
897
898
899
900
            callback_steps=callback_steps,
            **kwargs,
        )

    def img2img(
        self,
901
        image: Union[torch.FloatTensor, PIL.Image.Image],
902
903
904
905
906
907
908
909
910
911
912
913
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[torch.Generator] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
914
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
915
916
917
918
919
920
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function for image-to-image generation.
        Args:
921
            image (`torch.FloatTensor` or `PIL.Image.Image`):
922
923
924
925
926
927
928
929
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            strength (`float`, *optional*, defaults to 0.8):
930
931
                Conceptually, indicates how much to transform the reference `image`. Must be between 0 and 1.
                `image` will be used as a starting point, adding more noise to it the larger the `strength`. The
932
933
                number of denoising steps depends on the amount of noise initially added. When `strength` is 1, added
                noise will be maximum and the denoising process will run for the full number of iterations specified in
934
                `num_inference_steps`. A value of 1, therefore, essentially ignores `image`.
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference. This parameter will be modulated by `strength`.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
963
964
965
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
966
967
968
969
970
971
972
973
974
975
976
977
978
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
979
            image=image,
980
981
982
983
984
985
986
987
988
989
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            strength=strength,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
990
            is_cancelled_callback=is_cancelled_callback,
991
992
993
994
995
996
            callback_steps=callback_steps,
            **kwargs,
        )

    def inpaint(
        self,
997
        image: Union[torch.FloatTensor, PIL.Image.Image],
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
        mask_image: Union[torch.FloatTensor, PIL.Image.Image],
        prompt: Union[str, List[str]],
        negative_prompt: Optional[Union[str, List[str]]] = None,
        strength: float = 0.8,
        num_inference_steps: Optional[int] = 50,
        guidance_scale: Optional[float] = 7.5,
        num_images_per_prompt: Optional[int] = 1,
        eta: Optional[float] = 0.0,
        generator: Optional[torch.Generator] = None,
        max_embeddings_multiples: Optional[int] = 3,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
1011
        is_cancelled_callback: Optional[Callable[[], bool]] = None,
1012
1013
1014
1015
1016
1017
        callback_steps: Optional[int] = 1,
        **kwargs,
    ):
        r"""
        Function for inpaint.
        Args:
1018
            image (`torch.FloatTensor` or `PIL.Image.Image`):
1019
1020
1021
                `Image`, or tensor representing an image batch, that will be used as the starting point for the
                process. This is the image whose masked region will be inpainted.
            mask_image (`torch.FloatTensor` or `PIL.Image.Image`):
1022
                `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
                replaced by noise and therefore repainted, while black pixels will be preserved. If `mask_image` is a
                PIL image, it will be converted to a single channel (luminance) before use. If it's a tensor, it should
                contain one color channel (L) instead of 3, so the expected shape would be `(B, H, W, 1)`.
            prompt (`str` or `List[str]`):
                The prompt or prompts to guide the image generation.
            negative_prompt (`str` or `List[str]`, *optional*):
                The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored
                if `guidance_scale` is less than `1`).
            strength (`float`, *optional*, defaults to 0.8):
                Conceptually, indicates how much to inpaint the masked area. Must be between 0 and 1. When `strength`
                is 1, the denoising process will be run on the masked area for the full number of iterations specified
1034
                in `num_inference_steps`. `image` will be used as a reference for the masked area, adding more
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
                noise to that region the larger the `strength`. If `strength` is 0, no inpainting will occur.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The reference number of denoising steps. More denoising steps usually lead to a higher quality image at
                the expense of slower inference. This parameter will be modulated by `strength`, as explained above.
            guidance_scale (`float`, *optional*, defaults to 7.5):
                Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
                `guidance_scale` is defined as `w` of equation 2. of [Imagen
                Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
                1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
                usually at the expense of lower image quality.
            num_images_per_prompt (`int`, *optional*, defaults to 1):
                The number of images to generate per prompt.
            eta (`float`, *optional*, defaults to 0.0):
                Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
                [`schedulers.DDIMScheduler`], will be ignored for others.
            generator (`torch.Generator`, *optional*):
                A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
                deterministic.
            max_embeddings_multiples (`int`, *optional*, defaults to `3`):
                The max multiple length of prompt embeddings compared to the max output length of text encoder.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
                plain tuple.
            callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. The function will be
                called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
1064
1065
1066
            is_cancelled_callback (`Callable`, *optional*):
                A function that will be called every `callback_steps` steps during inference. If the function returns
                `True`, the inference will be cancelled.
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
            callback_steps (`int`, *optional*, defaults to 1):
                The frequency at which the `callback` function will be called. If not specified, the callback will be
                called at every step.
        Returns:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
            When returning a tuple, the first element is a list with the generated images, and the second element is a
            list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
            (nsfw) content, according to the `safety_checker`.
        """
        return self.__call__(
            prompt=prompt,
            negative_prompt=negative_prompt,
1080
            image=image,
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
            mask_image=mask_image,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            strength=strength,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            max_embeddings_multiples=max_embeddings_multiples,
            output_type=output_type,
            return_dict=return_dict,
            callback=callback,
1092
            is_cancelled_callback=is_cancelled_callback,
1093
1094
1095
            callback_steps=callback_steps,
            **kwargs,
        )