Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
cd502b25
Unverified
Commit
cd502b25
authored
Nov 07, 2022
by
Duong A. Nguyen
Committed by
GitHub
Nov 07, 2022
Browse files
Fix typo latens -> latents (#1171)
fix typo
parent
e86a280c
Changes
17
Hide whitespace changes
Inline
Side-by-side
Showing
17 changed files
with
17 additions
and
17 deletions
+17
-17
examples/community/composable_stable_diffusion.py
examples/community/composable_stable_diffusion.py
+1
-1
examples/community/imagic_stable_diffusion.py
examples/community/imagic_stable_diffusion.py
+1
-1
examples/community/interpolate_stable_diffusion.py
examples/community/interpolate_stable_diffusion.py
+1
-1
examples/community/lpw_stable_diffusion.py
examples/community/lpw_stable_diffusion.py
+1
-1
examples/community/seed_resize_stable_diffusion.py
examples/community/seed_resize_stable_diffusion.py
+1
-1
examples/community/stable_diffusion_mega.py
examples/community/stable_diffusion_mega.py
+1
-1
examples/community/wildcard_stable_diffusion.py
examples/community/wildcard_stable_diffusion.py
+1
-1
src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
...s/pipelines/latent_diffusion/pipeline_latent_diffusion.py
+1
-1
src/diffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
...tent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py
...rs/pipelines/stable_diffusion/pipeline_cycle_diffusion.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py
...elines/stable_diffusion/pipeline_flax_stable_diffusion.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
...table_diffusion/pipeline_onnx_stable_diffusion_img2img.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
...table_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
...s/pipelines/stable_diffusion/pipeline_stable_diffusion.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
...nes/stable_diffusion/pipeline_stable_diffusion_img2img.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py
...nes/stable_diffusion/pipeline_stable_diffusion_inpaint.py
+1
-1
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
...ble_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
+1
-1
No files found.
examples/community/composable_stable_diffusion.py
View file @
cd502b25
...
@@ -32,7 +32,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
...
@@ -32,7 +32,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Classification module that estimates whether generated images could be considered offsensive or harmful.
...
...
examples/community/imagic_stable_diffusion.py
View file @
cd502b25
...
@@ -54,7 +54,7 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline):
...
@@ -54,7 +54,7 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offsensive or harmful.
Classification module that estimates whether generated images could be considered offsensive or harmful.
...
...
examples/community/interpolate_stable_diffusion.py
View file @
cd502b25
...
@@ -65,7 +65,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
...
@@ -65,7 +65,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
examples/community/lpw_stable_diffusion.py
View file @
cd502b25
...
@@ -398,7 +398,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
...
@@ -398,7 +398,7 @@ class StableDiffusionLongPromptWeightingPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
examples/community/seed_resize_stable_diffusion.py
View file @
cd502b25
...
@@ -37,7 +37,7 @@ class SeedResizeStableDiffusionPipeline(DiffusionPipeline):
...
@@ -37,7 +37,7 @@ class SeedResizeStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
examples/community/stable_diffusion_mega.py
View file @
cd502b25
...
@@ -42,7 +42,7 @@ class StableDiffusionMegaPipeline(DiffusionPipeline):
...
@@ -42,7 +42,7 @@ class StableDiffusionMegaPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
safety_checker ([`StableDiffusionMegaSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
examples/community/wildcard_stable_diffusion.py
View file @
cd502b25
...
@@ -99,7 +99,7 @@ class WildcardStableDiffusionPipeline(DiffusionPipeline):
...
@@ -99,7 +99,7 @@ class WildcardStableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/latent_diffusion/pipeline_latent_diffusion.py
View file @
cd502b25
...
@@ -32,7 +32,7 @@ class LDMTextToImagePipeline(DiffusionPipeline):
...
@@ -32,7 +32,7 @@ class LDMTextToImagePipeline(DiffusionPipeline):
[BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer).
[BertTokenizer](https://huggingface.co/docs/transformers/model_doc/bert#transformers.BertTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
"""
"""
...
...
src/diffusers/pipelines/latent_diffusion_uncond/pipeline_latent_diffusion_uncond.py
View file @
cd502b25
...
@@ -18,7 +18,7 @@ class LDMPipeline(DiffusionPipeline):
...
@@ -18,7 +18,7 @@ class LDMPipeline(DiffusionPipeline):
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latens.
[`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image laten
t
s.
"""
"""
def
__init__
(
self
,
vqvae
:
VQModel
,
unet
:
UNet2DModel
,
scheduler
:
DDIMScheduler
):
def
__init__
(
self
,
vqvae
:
VQModel
,
unet
:
UNet2DModel
,
scheduler
:
DDIMScheduler
):
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_cycle_diffusion.py
View file @
cd502b25
...
@@ -107,7 +107,7 @@ class CycleDiffusionPipeline(DiffusionPipeline):
...
@@ -107,7 +107,7 @@ class CycleDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_flax_stable_diffusion.py
View file @
cd502b25
...
@@ -47,7 +47,7 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
...
@@ -47,7 +47,7 @@ class FlaxStableDiffusionPipeline(FlaxDiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`FlaxUNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`FlaxUNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or
[`FlaxDDIMScheduler`], [`FlaxLMSDiscreteScheduler`], [`FlaxPNDMScheduler`], or
[`FlaxDPMSolverMultistepScheduler`].
[`FlaxDPMSolverMultistepScheduler`].
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
safety_checker ([`FlaxStableDiffusionSafetyChecker`]):
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_img2img.py
View file @
cd502b25
...
@@ -46,7 +46,7 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
...
@@ -46,7 +46,7 @@ class OnnxStableDiffusionImg2ImgPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_onnx_stable_diffusion_inpaint.py
View file @
cd502b25
...
@@ -59,7 +59,7 @@ class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline):
...
@@ -59,7 +59,7 @@ class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py
View file @
cd502b25
...
@@ -44,7 +44,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
...
@@ -44,7 +44,7 @@ class StableDiffusionPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_img2img.py
View file @
cd502b25
...
@@ -55,7 +55,7 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
...
@@ -55,7 +55,7 @@ class StableDiffusionImg2ImgPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint.py
View file @
cd502b25
...
@@ -56,7 +56,7 @@ class StableDiffusionInpaintPipeline(DiffusionPipeline):
...
@@ -56,7 +56,7 @@ class StableDiffusionInpaintPipeline(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion_inpaint_legacy.py
View file @
cd502b25
...
@@ -62,7 +62,7 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
...
@@ -62,7 +62,7 @@ class StableDiffusionInpaintPipelineLegacy(DiffusionPipeline):
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
scheduler ([`SchedulerMixin`]):
scheduler ([`SchedulerMixin`]):
A scheduler to be used in combination with `unet` to denoise the encoded image latens. Can be one of
A scheduler to be used in combination with `unet` to denoise the encoded image laten
t
s. Can be one of
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
safety_checker ([`StableDiffusionSafetyChecker`]):
safety_checker ([`StableDiffusionSafetyChecker`]):
Classification module that estimates whether generated images could be considered offensive or harmful.
Classification module that estimates whether generated images could be considered offensive or harmful.
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment