Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
renzhc
diffusers_dcu
Commits
0d1c5b0c
Unverified
Commit
0d1c5b0c
authored
Aug 26, 2025
by
sqt
Committed by
GitHub
Aug 25, 2025
Browse files
Fix typo: 'will ge generated' -> 'will be generated' (#12231)
parent
0e46c559
Changes
145
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
23 additions
and
23 deletions
+23
-23
examples/community/composable_stable_diffusion.py
examples/community/composable_stable_diffusion.py
+1
-1
examples/community/imagic_stable_diffusion.py
examples/community/imagic_stable_diffusion.py
+1
-1
examples/community/img2img_inpainting.py
examples/community/img2img_inpainting.py
+1
-1
examples/community/interpolate_stable_diffusion.py
examples/community/interpolate_stable_diffusion.py
+1
-1
examples/community/lpw_stable_diffusion.py
examples/community/lpw_stable_diffusion.py
+2
-2
examples/community/lpw_stable_diffusion_onnx.py
examples/community/lpw_stable_diffusion_onnx.py
+2
-2
examples/community/lpw_stable_diffusion_xl.py
examples/community/lpw_stable_diffusion_xl.py
+1
-1
examples/community/multilingual_stable_diffusion.py
examples/community/multilingual_stable_diffusion.py
+1
-1
examples/community/pipeline_controlnet_xl_kolors.py
examples/community/pipeline_controlnet_xl_kolors.py
+1
-1
examples/community/pipeline_controlnet_xl_kolors_img2img.py
examples/community/pipeline_controlnet_xl_kolors_img2img.py
+1
-1
examples/community/pipeline_controlnet_xl_kolors_inpaint.py
examples/community/pipeline_controlnet_xl_kolors_inpaint.py
+1
-1
examples/community/pipeline_demofusion_sdxl.py
examples/community/pipeline_demofusion_sdxl.py
+1
-1
examples/community/pipeline_faithdiff_stable_diffusion_xl.py
examples/community/pipeline_faithdiff_stable_diffusion_xl.py
+1
-1
examples/community/pipeline_flux_differential_img2img.py
examples/community/pipeline_flux_differential_img2img.py
+2
-2
examples/community/pipeline_flux_kontext_multiple_images.py
examples/community/pipeline_flux_kontext_multiple_images.py
+1
-1
examples/community/pipeline_flux_rf_inversion.py
examples/community/pipeline_flux_rf_inversion.py
+1
-1
examples/community/pipeline_flux_semantic_guidance.py
examples/community/pipeline_flux_semantic_guidance.py
+1
-1
examples/community/pipeline_flux_with_cfg.py
examples/community/pipeline_flux_with_cfg.py
+1
-1
examples/community/pipeline_kolors_differential_img2img.py
examples/community/pipeline_kolors_differential_img2img.py
+1
-1
examples/community/pipeline_kolors_inpainting.py
examples/community/pipeline_kolors_inpainting.py
+1
-1
No files found.
examples/community/composable_stable_diffusion.py
View file @
0d1c5b0c
...
...
@@ -398,7 +398,7 @@ class ComposableStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin)
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
...
...
examples/community/imagic_stable_diffusion.py
View file @
0d1c5b0c
...
...
@@ -147,7 +147,7 @@ class ImagicStableDiffusionPipeline(DiffusionPipeline, StableDiffusionMixin):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
...
...
examples/community/img2img_inpainting.py
View file @
0d1c5b0c
...
...
@@ -197,7 +197,7 @@ class ImageToImageInpaintingPipeline(DiffusionPipeline):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
...
...
examples/community/interpolate_stable_diffusion.py
View file @
0d1c5b0c
...
...
@@ -173,7 +173,7 @@ class StableDiffusionWalkPipeline(DiffusionPipeline, StableDiffusionMixin):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
...
...
examples/community/lpw_stable_diffusion.py
View file @
0d1c5b0c
...
...
@@ -888,7 +888,7 @@ class StableDiffusionLongPromptWeightingPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
@@ -1131,7 +1131,7 @@ class StableDiffusionLongPromptWeightingPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/lpw_stable_diffusion_onnx.py
View file @
0d1c5b0c
...
...
@@ -721,7 +721,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
latents (`np.ndarray`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
output_type (`str`, *optional*, defaults to `"pil"`):
...
...
@@ -918,7 +918,7 @@ class OnnxStableDiffusionLongPromptWeightingPipeline(OnnxStableDiffusionPipeline
latents (`np.ndarray`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
max_embeddings_multiples (`int`, *optional*, defaults to `3`):
The max multiple length of prompt embeddings compared to the max output length of text encoder.
output_type (`str`, *optional*, defaults to `"pil"`):
...
...
examples/community/lpw_stable_diffusion_xl.py
View file @
0d1c5b0c
...
...
@@ -1519,7 +1519,7 @@ class SDXLLongPromptWeightingPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
ip_adapter_image: (`PipelineImageInput`, *optional*):
Optional image input to work with IP Adapters.
prompt_embeds (`torch.Tensor`, *optional*):
...
...
examples/community/multilingual_stable_diffusion.py
View file @
0d1c5b0c
...
...
@@ -187,7 +187,7 @@ class MultilingualStableDiffusion(DiffusionPipeline, StableDiffusionMixin):
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
...
...
examples/community/pipeline_controlnet_xl_kolors.py
View file @
0d1c5b0c
...
...
@@ -888,7 +888,7 @@ class KolorsControlNetPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_controlnet_xl_kolors_img2img.py
View file @
0d1c5b0c
...
...
@@ -1066,7 +1066,7 @@ class KolorsControlNetImg2ImgPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_controlnet_xl_kolors_inpaint.py
View file @
0d1c5b0c
...
...
@@ -1298,7 +1298,7 @@ class KolorsControlNetInpaintPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
...
...
examples/community/pipeline_demofusion_sdxl.py
View file @
0d1c5b0c
...
...
@@ -724,7 +724,7 @@ class DemoFusionSDXLPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_faithdiff_stable_diffusion_xl.py
View file @
0d1c5b0c
...
...
@@ -1906,7 +1906,7 @@ class FaithDiffStableDiffusionXLPipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_flux_differential_img2img.py
View file @
0d1c5b0c
...
...
@@ -730,7 +730,7 @@ class FluxDifferentialImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
1)`, or `(H, W)`.
mask_image_latent (`torch.Tensor`, `List[torch.Tensor]`):
`Tensor` representing an image batch to mask `image` generated by VAE. If not provided, the mask
latents tensor will
g
e generated by `mask_image`.
latents tensor will
b
e generated by `mask_image`.
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
The height in pixels of the generated image. This is set to 1024 by default for the best results.
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
...
...
@@ -769,7 +769,7 @@ class FluxDifferentialImg2ImgPipeline(DiffusionPipeline, FluxLoraLoaderMixin):
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_flux_kontext_multiple_images.py
View file @
0d1c5b0c
...
...
@@ -885,7 +885,7 @@ class FluxKontextPipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_flux_rf_inversion.py
View file @
0d1c5b0c
...
...
@@ -711,7 +711,7 @@ class RFInversionFluxPipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_flux_semantic_guidance.py
View file @
0d1c5b0c
...
...
@@ -853,7 +853,7 @@ class FluxSemanticGuidancePipeline(
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_flux_with_cfg.py
View file @
0d1c5b0c
...
...
@@ -639,7 +639,7 @@ class FluxCFGPipeline(DiffusionPipeline, FluxLoraLoaderMixin, FromSingleFileMixi
latents (`torch.FloatTensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.FloatTensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_kolors_differential_img2img.py
View file @
0d1c5b0c
...
...
@@ -904,7 +904,7 @@ class KolorsDifferentialImg2ImgPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
...
...
examples/community/pipeline_kolors_inpainting.py
View file @
0d1c5b0c
...
...
@@ -1246,7 +1246,7 @@ class KolorsInpaintPipeline(
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor will
g
e generated by sampling using the supplied random `generator`.
tensor will
b
e generated by sampling using the supplied random `generator`.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
...
...
Prev
1
2
3
4
5
…
8
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment