"vscode:/vscode.git/clone" did not exist on "ad0c19dde403ba67aa27247775e33c33c30ee235"
scheduling_pndm.py 7.23 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math

import numpy as np

from ..configuration_utils import ConfigMixin
from .scheduling_utils import SchedulerMixin, betas_for_alpha_bar, linear_beta_schedule


class PNDMScheduler(SchedulerMixin, ConfigMixin):
    def __init__(
        self,
        timesteps=1000,
        beta_start=0.0001,
        beta_end=0.02,
        beta_schedule="linear",
        tensor_format="np",
    ):
        super().__init__()
32
        self.register_to_config(
Patrick von Platen's avatar
Patrick von Platen committed
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
            timesteps=timesteps,
            beta_start=beta_start,
            beta_end=beta_end,
            beta_schedule=beta_schedule,
        )

        if beta_schedule == "linear":
            self.betas = linear_beta_schedule(timesteps, beta_start=beta_start, beta_end=beta_end)
        elif beta_schedule == "squaredcos_cap_v2":
            # GLIDE cosine schedule
            self.betas = betas_for_alpha_bar(
                timesteps,
                lambda t: math.cos((t + 0.008) / 1.008 * math.pi / 2) ** 2,
            )
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
        self.alphas_cumprod = np.cumprod(self.alphas, axis=0)

        self.one = np.array(1.0)

        self.set_format(tensor_format=tensor_format)

Patrick von Platen's avatar
Patrick von Platen committed
57
58
        # For now we only support F-PNDM, i.e. the runge-kutta method
        # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf
Patrick von Platen's avatar
Patrick von Platen committed
59
        # mainly at formula (9), (12), (13) and the Algorithm 2.
Patrick von Platen's avatar
Patrick von Platen committed
60
61
62
        self.pndm_order = 4

        # running values
Patrick von Platen's avatar
finish  
Patrick von Platen committed
63
        self.cur_residual = 0
64
        self.cur_sample = None
Patrick von Platen's avatar
Patrick von Platen committed
65
        self.ets = []
Patrick von Platen's avatar
Patrick von Platen committed
66
        self.prk_time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
67
        self.time_steps = {}
Patrick von Platen's avatar
Patrick von Platen committed
68
        self.set_prk_mode()
Patrick von Platen's avatar
Patrick von Platen committed
69

Patrick von Platen's avatar
Patrick von Platen committed
70
71
72
73
74
75
76
77
78
79
80
    def get_alpha(self, time_step):
        return self.alphas[time_step]

    def get_beta(self, time_step):
        return self.betas[time_step]

    def get_alpha_prod(self, time_step):
        if time_step < 0:
            return self.one
        return self.alphas_cumprod[time_step]

Patrick von Platen's avatar
Patrick von Platen committed
81
82
83
    def get_prk_time_steps(self, num_inference_steps):
        if num_inference_steps in self.prk_time_steps:
            return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
84

85
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
86

Patrick von Platen's avatar
Patrick von Platen committed
87
        prk_time_steps = np.array(inference_step_times[-self.pndm_order :]).repeat(2) + np.tile(
88
            np.array([0, self.config.timesteps // num_inference_steps // 2]), self.pndm_order
89
        )
Patrick von Platen's avatar
Patrick von Platen committed
90
        self.prk_time_steps[num_inference_steps] = list(reversed(prk_time_steps[:-1].repeat(2)[1:-1]))
Patrick von Platen's avatar
Patrick von Platen committed
91

Patrick von Platen's avatar
Patrick von Platen committed
92
        return self.prk_time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
93

Patrick von Platen's avatar
Patrick von Platen committed
94
95
96
    def get_time_steps(self, num_inference_steps):
        if num_inference_steps in self.time_steps:
            return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
97

98
        inference_step_times = list(range(0, self.config.timesteps, self.config.timesteps // num_inference_steps))
Patrick von Platen's avatar
Patrick von Platen committed
99
        self.time_steps[num_inference_steps] = list(reversed(inference_step_times[:-3]))
Patrick von Platen's avatar
Patrick von Platen committed
100

Patrick von Platen's avatar
Patrick von Platen committed
101
        return self.time_steps[num_inference_steps]
Patrick von Platen's avatar
Patrick von Platen committed
102

Patrick von Platen's avatar
Patrick von Platen committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
    def set_prk_mode(self):
        self.mode = "prk"

    def set_plms_mode(self):
        self.mode = "plms"

    def step(self, *args, **kwargs):
        if self.mode == "prk":
            return self.step_prk(*args, **kwargs)
        if self.mode == "plms":
            return self.step_plms(*args, **kwargs)

        raise ValueError(f"mode {self.mode} does not exist.")

117
    def step_prk(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
118
        prk_time_steps = self.get_prk_time_steps(num_inference_steps)
Patrick von Platen's avatar
Patrick von Platen committed
119

Patrick von Platen's avatar
Patrick von Platen committed
120
121
        t_orig = prk_time_steps[t // 4 * 4]
        t_orig_prev = prk_time_steps[min(t + 1, len(prk_time_steps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
122

Patrick von Platen's avatar
Patrick von Platen committed
123
124
125
        if t % 4 == 0:
            self.cur_residual += 1 / 6 * residual
            self.ets.append(residual)
126
            self.cur_sample = sample
Patrick von Platen's avatar
Patrick von Platen committed
127
128
129
130
131
132
133
        elif (t - 1) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 2) % 4 == 0:
            self.cur_residual += 1 / 3 * residual
        elif (t - 3) % 4 == 0:
            residual = self.cur_residual + 1 / 6 * residual
            self.cur_residual = 0
Patrick von Platen's avatar
Patrick von Platen committed
134

Patrick von Platen's avatar
Patrick von Platen committed
135
136
137
138
        # cur_sample should not be `None`
        cur_sample = self.cur_sample if self.cur_sample is not None else sample

        return self.get_prev_sample(cur_sample, t_orig, t_orig_prev, residual)
Patrick von Platen's avatar
Patrick von Platen committed
139

140
    def step_plms(self, residual, sample, t, num_inference_steps):
Patrick von Platen's avatar
Patrick von Platen committed
141
142
143
144
145
146
147
148
        if len(self.ets) < 3:
            raise ValueError(
                f"{self.__class__} can only be run AFTER scheduler has been run "
                "in 'prk' mode for at least 12 iterations "
                "See: https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/pipeline_pndm.py "
                "for more information."
            )

Patrick von Platen's avatar
Patrick von Platen committed
149
150
        timesteps = self.get_time_steps(num_inference_steps)

Patrick von Platen's avatar
Patrick von Platen committed
151
152
        t_orig = timesteps[t]
        t_orig_prev = timesteps[min(t + 1, len(timesteps) - 1)]
Patrick von Platen's avatar
Patrick von Platen committed
153
154
155
156
        self.ets.append(residual)

        residual = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4])

Patrick von Platen's avatar
Patrick von Platen committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        return self.get_prev_sample(sample, t_orig, t_orig_prev, residual)

    def get_prev_sample(self, sample, t_orig, t_orig_prev, residual):
        # See formula (9) of PNDM paper https://arxiv.org/pdf/2202.09778.pdf
        # this function computes x_(t−δ) using the formula of (9)
        # Note that x_t needs to be added to both sides of the equation

        # Notation (<variable name> -> <name in paper>
        # alpha_prod_t -> α_t
        # alpha_prod_t_prev -> α_(t−δ)
        # beta_prod_t -> (1 - α_t)
        # beta_prod_t_prev -> (1 - α_(t−δ))
        # sample -> x_t
        # residual -> e_θ(x_t, t)
        # prev_sample -> x_(t−δ)
        alpha_prod_t = self.get_alpha_prod(t_orig + 1)
        alpha_prod_t_prev = self.get_alpha_prod(t_orig_prev + 1)
        beta_prod_t = 1 - alpha_prod_t
        beta_prod_t_prev = 1 - alpha_prod_t_prev

        # corresponds to (α_(t−δ) - α_t) divided by
        # denominator of x_t in formula (9) and plus 1
        # Note: (α_(t−δ) - α_t) / (sqrt(α_t) * (sqrt(α_(t−δ)) + sqr(α_t))) =
        # sqrt(α_(t−δ)) / sqrt(α_t))
        sample_coeff = (alpha_prod_t_prev / alpha_prod_t) ** (0.5)

        # corresponds to denominator of e_θ(x_t, t) in formula (9)
        residual_denom_coeff = alpha_prod_t * beta_prod_t_prev ** (0.5) + (
            alpha_prod_t * beta_prod_t * alpha_prod_t_prev
        ) ** (0.5)

        # full formula (9)
        prev_sample = sample_coeff * sample - (alpha_prod_t_prev - alpha_prod_t) * residual / residual_denom_coeff

        return prev_sample
Patrick von Platen's avatar
Patrick von Platen committed
192
193

    def __len__(self):
194
        return self.config.timesteps