scheduling_lms_discrete.py 17.6 KB
Newer Older
Patrick von Platen's avatar
Patrick von Platen committed
1
# Copyright 2023 Katherine Crowson and The HuggingFace Team. All rights reserved.
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import math
15
import warnings
16
from dataclasses import dataclass
17
from typing import List, Optional, Tuple, Union
18
19
20
21
22
23

import numpy as np
import torch
from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Kashif Rasul's avatar
Kashif Rasul committed
24
25
from ..utils import BaseOutput
from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
26
27
28


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46


47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
def betas_for_alpha_bar(num_diffusion_timesteps, max_beta=0.999):
    """
    Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of
    (1-beta) over time from t = [0,1].

    Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up
    to that part of the diffusion process.


    Args:
        num_diffusion_timesteps (`int`): the number of betas to produce.
        max_beta (`float`): the maximum beta to use; use values lower than 1 to
                     prevent singularities.

    Returns:
        betas (`np.ndarray`): the betas used by the scheduler to step the model outputs
    """

    def alpha_bar(time_step):
        return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2

    betas = []
    for i in range(num_diffusion_timesteps):
        t1 = i / num_diffusion_timesteps
        t2 = (i + 1) / num_diffusion_timesteps
        betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta))
    return torch.tensor(betas, dtype=torch.float32)


77
class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
78
79
80
81
82
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

83
84
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
85
86
    [`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and
    [`~SchedulerMixin.from_pretrained`] functions.
87

88
89
90
91
92
93
94
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
95
96
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
97
98
99
100
        use_karras_sigmas (`bool`, *optional*, defaults to `False`):
            This parameter controls whether to use Karras sigmas (Karras et al. (2022) scheme) for step sizes in the
            noise schedule during the sampling process. If True, the sigmas will be determined according to a sequence
            of noise levels {σi} as defined in Equation (5) of the paper https://arxiv.org/pdf/2206.00364.pdf.
101
102
103
104
        prediction_type (`str`, default `epsilon`, optional):
            prediction type of the scheduler function, one of `epsilon` (predicting the noise of the diffusion
            process), `sample` (directly predicting the noisy sample`) or `v_prediction` (see section 2.4
            https://imagen.research.google/video/paper.pdf)
105
106
107
108
109
110
111
        timestep_spacing (`str`, default `"linspace"`):
            The way the timesteps should be scaled. Refer to Table 2. of [Common Diffusion Noise Schedules and Sample
            Steps are Flawed](https://arxiv.org/abs/2305.08891) for more information.
        steps_offset (`int`, default `0`):
            an offset added to the inference steps. You can use a combination of `offset=1` and
            `set_alpha_to_one=False`, to make the last step use step 0 for the previous alpha product, as done in
            stable diffusion.
112
113
    """

Kashif Rasul's avatar
Kashif Rasul committed
114
    _compatibles = [e.name for e in KarrasDiffusionSchedulers]
115
    order = 1
116

117
118
119
    @register_to_config
    def __init__(
        self,
120
121
122
123
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
124
        trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
125
        use_karras_sigmas: Optional[bool] = False,
126
        prediction_type: str = "epsilon",
127
128
        timestep_spacing: str = "linspace",
        steps_offset: int = 0,
129
    ):
130
        if trained_betas is not None:
131
            self.betas = torch.tensor(trained_betas, dtype=torch.float32)
132
        elif beta_schedule == "linear":
133
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
134
135
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
136
137
138
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
139
140
141
        elif beta_schedule == "squaredcos_cap_v2":
            # Glide cosine schedule
            self.betas = betas_for_alpha_bar(num_train_timesteps)
142
143
144
145
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
146
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
147

148
149
150
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
151
152
153

        # setable values
        self.num_inference_steps = None
154
155
        self.use_karras_sigmas = use_karras_sigmas
        self.set_timesteps(num_train_timesteps, None)
156
        self.derivatives = []
157
158
        self.is_scale_input_called = False

159
160
161
162
163
164
165
166
    @property
    def init_noise_sigma(self):
        # standard deviation of the initial noise distribution
        if self.config.timestep_spacing in ["linspace", "trailing"]:
            return self.sigmas.max()

        return (self.sigmas.max() ** 2 + 1) ** 0.5

167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
187
188
189

    def get_lms_coefficient(self, order, t, current_order):
        """
190
191
192
193
194
195
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

210
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
211
212
213
214
215
216
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
217
218
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
219
        """
220
221
        self.num_inference_steps = num_inference_steps

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
        # "linspace", "leading", "trailing" corresponds to annotation of Table 2. of https://arxiv.org/abs/2305.08891
        if self.config.timestep_spacing == "linspace":
            timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[
                ::-1
            ].copy()
        elif self.config.timestep_spacing == "leading":
            step_ratio = self.config.num_train_timesteps // self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(0, num_inference_steps) * step_ratio).round()[::-1].copy().astype(float)
            timesteps += self.config.steps_offset
        elif self.config.timestep_spacing == "trailing":
            step_ratio = self.config.num_train_timesteps / self.num_inference_steps
            # creates integer timesteps by multiplying by ratio
            # casting to int to avoid issues when num_inference_step is power of 3
            timesteps = (np.arange(self.config.num_train_timesteps, 0, -step_ratio)).round().copy().astype(float)
            timesteps -= 1
        else:
            raise ValueError(
                f"{self.config.timestep_spacing} is not supported. Please make sure to choose one of 'linspace', 'leading' or 'trailing'."
            )
243

244
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
245
        log_sigmas = np.log(sigmas)
246
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
247
248
249
250
251

        if self.use_karras_sigmas:
            sigmas = self._convert_to_karras(in_sigmas=sigmas)
            timesteps = np.array([self._sigma_to_t(sigma, log_sigmas) for sigma in sigmas])

252
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
253

254
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
255
256
257
258
259
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
260
261
262

        self.derivatives = []

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    # copied from diffusers.schedulers.scheduling_euler_discrete._sigma_to_t
    def _sigma_to_t(self, sigma, log_sigmas):
        # get log sigma
        log_sigma = np.log(sigma)

        # get distribution
        dists = log_sigma - log_sigmas[:, np.newaxis]

        # get sigmas range
        low_idx = np.cumsum((dists >= 0), axis=0).argmax(axis=0).clip(max=log_sigmas.shape[0] - 2)
        high_idx = low_idx + 1

        low = log_sigmas[low_idx]
        high = log_sigmas[high_idx]

        # interpolate sigmas
        w = (low - log_sigma) / (low - high)
        w = np.clip(w, 0, 1)

        # transform interpolation to time range
        t = (1 - w) * low_idx + w * high_idx
        t = t.reshape(sigma.shape)
        return t

    # copied from diffusers.schedulers.scheduling_euler_discrete._convert_to_karras
    def _convert_to_karras(self, in_sigmas: torch.FloatTensor) -> torch.FloatTensor:
        """Constructs the noise schedule of Karras et al. (2022)."""

        sigma_min: float = in_sigmas[-1].item()
        sigma_max: float = in_sigmas[0].item()

        rho = 7.0  # 7.0 is the value used in the paper
        ramp = np.linspace(0, 1, self.num_inference_steps)
        min_inv_rho = sigma_min ** (1 / rho)
        max_inv_rho = sigma_max ** (1 / rho)
        sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
        return sigmas

301
302
    def step(
        self,
303
        model_output: torch.FloatTensor,
304
        timestep: Union[float, torch.FloatTensor],
305
        sample: torch.FloatTensor,
306
        order: int = 4,
307
        return_dict: bool = True,
308
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
309
310
311
312
313
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
314
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
315
            timestep (`float`): current timestep in the diffusion chain.
316
            sample (`torch.FloatTensor`):
317
318
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
319
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
320
321

        Returns:
322
323
324
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
325
326

        """
327
328
329
330
331
332
333
334
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
335
        step_index = (self.timesteps == timestep).nonzero().item()
336
        sigma = self.sigmas[step_index]
337
338

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
339
340
341
342
343
        if self.config.prediction_type == "epsilon":
            pred_original_sample = sample - sigma * model_output
        elif self.config.prediction_type == "v_prediction":
            # * c_out + input * c_skip
            pred_original_sample = model_output * (-sigma / (sigma**2 + 1) ** 0.5) + (sample / (sigma**2 + 1))
344
345
        elif self.config.prediction_type == "sample":
            pred_original_sample = model_output
346
347
348
349
        else:
            raise ValueError(
                f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, or `v_prediction`"
            )
350
351
352
353
354
355
356
357

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
358
359
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
360
361
362
363
364
365

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

366
367
368
        if not return_dict:
            return (prev_sample,)

369
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
370

371
    # Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler.add_noise
372
373
    def add_noise(
        self,
374
375
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
376
        timesteps: torch.FloatTensor,
377
    ) -> torch.FloatTensor:
378
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
379
        sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
380
381
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
382
            schedule_timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
383
384
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
385
            schedule_timesteps = self.timesteps.to(original_samples.device)
386
            timesteps = timesteps.to(original_samples.device)
387

Anton Lozhkov's avatar
Anton Lozhkov committed
388
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
389

390
        sigma = sigmas[step_indices].flatten()
391
392
393
394
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
395
396
397
398
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps