scheduling_lms_discrete.py 11.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
14
import warnings
15
from dataclasses import dataclass
16
from typing import Optional, Tuple, Union
17
18
19
20
21
22
23

import numpy as np
import torch

from scipy import integrate

from ..configuration_utils import ConfigMixin, register_to_config
Anton Lozhkov's avatar
Anton Lozhkov committed
24
from ..utils import BaseOutput
25
26
27
28
from .scheduling_utils import SchedulerMixin


@dataclass
29
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->LMSDiscrete
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
class LMSDiscreteSchedulerOutput(BaseOutput):
    """
    Output class for the scheduler's step function output.

    Args:
        prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the
            denoising loop.
        pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
            The predicted denoised sample (x_{0}) based on the model output from the current timestep.
            `pred_original_sample` can be used to preview progress or for guidance.
    """

    prev_sample: torch.FloatTensor
    pred_original_sample: Optional[torch.FloatTensor] = None
45
46
47


class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin):
48
49
50
51
52
    """
    Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by
    Katherine Crowson:
    https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181

53
54
55
    [`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__`
    function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`.
    [`~ConfigMixin`] also provides general loading and saving functionality via the [`~ConfigMixin.save_config`] and
Nathan Lambert's avatar
Nathan Lambert committed
56
    [`~ConfigMixin.from_config`] functions.
57

58
59
60
61
62
63
64
    Args:
        num_train_timesteps (`int`): number of diffusion steps used to train the model.
        beta_start (`float`): the starting `beta` value of inference.
        beta_end (`float`): the final `beta` value.
        beta_schedule (`str`):
            the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
            `linear` or `scaled_linear`.
Nathan Lambert's avatar
Nathan Lambert committed
65
66
        trained_betas (`np.ndarray`, optional):
            option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc.
67
68
69

    """

70
71
72
73
74
75
    _compatible_classes = [
        "DDIMScheduler",
        "DDPMScheduler",
        "PNDMScheduler",
        "EulerDiscreteScheduler",
        "EulerAncestralDiscreteScheduler",
76
        "DPMSolverMultistepScheduler",
77
78
    ]

79
80
81
    @register_to_config
    def __init__(
        self,
82
83
84
85
86
        num_train_timesteps: int = 1000,
        beta_start: float = 0.0001,
        beta_end: float = 0.02,
        beta_schedule: str = "linear",
        trained_betas: Optional[np.ndarray] = None,
87
    ):
88
        if trained_betas is not None:
89
            self.betas = torch.from_numpy(trained_betas)
90
        elif beta_schedule == "linear":
91
            self.betas = torch.linspace(beta_start, beta_end, num_train_timesteps, dtype=torch.float32)
92
93
        elif beta_schedule == "scaled_linear":
            # this schedule is very specific to the latent diffusion model.
94
95
96
            self.betas = (
                torch.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=torch.float32) ** 2
            )
97
98
99
100
        else:
            raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")

        self.alphas = 1.0 - self.betas
101
        self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
102

103
104
105
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
        sigmas = np.concatenate([sigmas[::-1], [0.0]]).astype(np.float32)
        self.sigmas = torch.from_numpy(sigmas)
106

107
108
109
        # standard deviation of the initial noise distribution
        self.init_noise_sigma = self.sigmas.max()

110
111
        # setable values
        self.num_inference_steps = None
112
113
        timesteps = np.linspace(0, num_train_timesteps - 1, num_train_timesteps, dtype=float)[::-1].copy()
        self.timesteps = torch.from_numpy(timesteps)
114
        self.derivatives = []
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
        self.is_scale_input_called = False

    def scale_model_input(
        self, sample: torch.FloatTensor, timestep: Union[float, torch.FloatTensor]
    ) -> torch.FloatTensor:
        """
        Scales the denoising model input by `(sigma**2 + 1) ** 0.5` to match the K-LMS algorithm.

        Args:
            sample (`torch.FloatTensor`): input sample
            timestep (`float` or `torch.FloatTensor`): the current timestep in the diffusion chain

        Returns:
            `torch.FloatTensor`: scaled input sample
        """
        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
        step_index = (self.timesteps == timestep).nonzero().item()
        sigma = self.sigmas[step_index]
        sample = sample / ((sigma**2 + 1) ** 0.5)
        self.is_scale_input_called = True
        return sample
137
138
139

    def get_lms_coefficient(self, order, t, current_order):
        """
140
141
142
143
144
145
        Compute a linear multistep coefficient.

        Args:
            order (TODO):
            t (TODO):
            current_order (TODO):
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        """

        def lms_derivative(tau):
            prod = 1.0
            for k in range(order):
                if current_order == k:
                    continue
                prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k])
            return prod

        integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0]

        return integrated_coeff

160
    def set_timesteps(self, num_inference_steps: int, device: Union[str, torch.device] = None):
161
162
163
164
165
166
        """
        Sets the timesteps used for the diffusion chain. Supporting function to be run before inference.

        Args:
            num_inference_steps (`int`):
                the number of diffusion steps used when generating samples with a pre-trained model.
167
168
            device (`str` or `torch.device`, optional):
                the device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
169
        """
170
171
        self.num_inference_steps = num_inference_steps

172
        timesteps = np.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps, dtype=float)[::-1].copy()
173
        sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5)
174
        sigmas = np.interp(timesteps, np.arange(0, len(sigmas)), sigmas)
175
        sigmas = np.concatenate([sigmas, [0.0]]).astype(np.float32)
176

177
        self.sigmas = torch.from_numpy(sigmas).to(device=device)
178
179
180
181
182
        if str(device).startswith("mps"):
            # mps does not support float64
            self.timesteps = torch.from_numpy(timesteps).to(device, dtype=torch.float32)
        else:
            self.timesteps = torch.from_numpy(timesteps).to(device=device)
183
184
185
186
187

        self.derivatives = []

    def step(
        self,
188
        model_output: torch.FloatTensor,
189
        timestep: Union[float, torch.FloatTensor],
190
        sample: torch.FloatTensor,
191
        order: int = 4,
192
        return_dict: bool = True,
193
    ) -> Union[LMSDiscreteSchedulerOutput, Tuple]:
194
195
196
197
198
        """
        Predict the sample at the previous timestep by reversing the SDE. Core function to propagate the diffusion
        process from the learned model outputs (most often the predicted noise).

        Args:
199
            model_output (`torch.FloatTensor`): direct output from learned diffusion model.
200
            timestep (`float`): current timestep in the diffusion chain.
201
            sample (`torch.FloatTensor`):
202
203
                current instance of sample being created by diffusion process.
            order: coefficient for multi-step inference.
204
            return_dict (`bool`): option for returning tuple rather than LMSDiscreteSchedulerOutput class
205
206

        Returns:
207
208
209
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] or `tuple`:
            [`~schedulers.scheduling_utils.LMSDiscreteSchedulerOutput`] if `return_dict` is True, otherwise a `tuple`.
            When returning a tuple, the first element is the sample tensor.
210
211

        """
212
213
214
215
216
217
218
219
        if not self.is_scale_input_called:
            warnings.warn(
                "The `scale_model_input` function should be called before `step` to ensure correct denoising. "
                "See `StableDiffusionPipeline` for a usage example."
            )

        if isinstance(timestep, torch.Tensor):
            timestep = timestep.to(self.timesteps.device)
Anton Lozhkov's avatar
Anton Lozhkov committed
220
        step_index = (self.timesteps == timestep).nonzero().item()
221
        sigma = self.sigmas[step_index]
222
223
224
225
226
227
228
229
230
231
232

        # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise
        pred_original_sample = sample - sigma * model_output

        # 2. Convert to an ODE derivative
        derivative = (sample - pred_original_sample) / sigma
        self.derivatives.append(derivative)
        if len(self.derivatives) > order:
            self.derivatives.pop(0)

        # 3. Compute linear multistep coefficients
233
234
        order = min(step_index + 1, order)
        lms_coeffs = [self.get_lms_coefficient(order, step_index, curr_order) for curr_order in range(order)]
235
236
237
238
239
240

        # 4. Compute previous sample based on the derivatives path
        prev_sample = sample + sum(
            coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives))
        )

241
242
243
        if not return_dict:
            return (prev_sample,)

244
        return LMSDiscreteSchedulerOutput(prev_sample=prev_sample, pred_original_sample=pred_original_sample)
245

246
247
    def add_noise(
        self,
248
249
        original_samples: torch.FloatTensor,
        noise: torch.FloatTensor,
250
        timesteps: torch.FloatTensor,
251
    ) -> torch.FloatTensor:
252
253
        # Make sure sigmas and timesteps have the same device and dtype as original_samples
        self.sigmas = self.sigmas.to(device=original_samples.device, dtype=original_samples.dtype)
254
255
256
257
258
259
260
        if original_samples.device.type == "mps" and torch.is_floating_point(timesteps):
            # mps does not support float64
            self.timesteps = self.timesteps.to(original_samples.device, dtype=torch.float32)
            timesteps = timesteps.to(original_samples.device, dtype=torch.float32)
        else:
            self.timesteps = self.timesteps.to(original_samples.device)
            timesteps = timesteps.to(original_samples.device)
261
262

        schedule_timesteps = self.timesteps
Anton Lozhkov's avatar
Anton Lozhkov committed
263
        step_indices = [(schedule_timesteps == t).nonzero().item() for t in timesteps]
264

265
        sigma = self.sigmas[step_indices].flatten()
266
267
268
269
        while len(sigma.shape) < len(original_samples.shape):
            sigma = sigma.unsqueeze(-1)

        noisy_samples = original_samples + noise * sigma
270
271
272
273
        return noisy_samples

    def __len__(self):
        return self.config.num_train_timesteps