"vscode:/vscode.git/clone" did not exist on "1ed7c06f49cf14757f1ab6b4b1d9cd3ebbbb3169"
utils.py 118 KB
Newer Older
1
# coding=utf-8
2
# Copyright 2025 HuggingFace Inc.
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sayak Paul's avatar
Sayak Paul committed
15
import inspect
16
import os
Aryan's avatar
Aryan committed
17
import re
18
19
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
20
from itertools import product
21
22

import numpy as np
23
import pytest
24
import torch
25
from parameterized import parameterized
26
27
28
29
30
31
32

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    LCMScheduler,
    UNet2DConditionModel,
)
33
from diffusers.utils import logging
34
35
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
36
    CaptureLogger,
37
    check_if_dicts_are_equal,
38
    floats_tensor,
39
    is_torch_version,
40
41
    require_peft_backend,
    require_peft_version_greater,
42
    require_torch_accelerator,
43
    require_transformers_version_greater,
44
    skip_mps,
45
46
47
48
49
    torch_device,
)


if is_peft_available():
50
    from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


77
78
79
80
81
82
83
def check_module_lora_metadata(parsed_metadata: dict, lora_metadatas: dict, module_key: str):
    extracted = {
        k.removeprefix(f"{module_key}."): v for k, v in parsed_metadata.items() if k.startswith(f"{module_key}.")
    }
    check_if_dicts_are_equal(extracted, lora_metadatas[f"{module_key}_lora_adapter_metadata"])


84
85
86
87
88
89
def initialize_dummy_state_dict(state_dict):
    if not all(v.device.type == "meta" for _, v in state_dict.items()):
        raise ValueError("`state_dict` has non-meta values.")
    return {k: torch.randn(v.shape, device=torch_device, dtype=v.dtype) for k, v in state_dict.items()}


90
91
92
POSSIBLE_ATTENTION_KWARGS_NAMES = ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]


93
94
95
96
97
98
99
100
101
102
103
104
def determine_attention_kwargs_name(pipeline_class):
    call_signature_keys = inspect.signature(pipeline_class.__call__).parameters.keys()

    # TODO(diffusers): Discuss a common naming convention across library for 1.0.0 release
    for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
        if possible_attention_kwargs in call_signature_keys:
            attention_kwargs_name = possible_attention_kwargs
            break
    assert attention_kwargs_name is not None
    return attention_kwargs_name


105
106
107
@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
Aryan's avatar
Aryan committed
108

109
110
    scheduler_cls = None
    scheduler_kwargs = None
Aryan's avatar
Aryan committed
111
    scheduler_classes = [DDIMScheduler, LCMScheduler]
Sayak Paul's avatar
Sayak Paul committed
112

113
    has_two_text_encoders = False
114
    has_three_text_encoders = False
115
116
117
118
119
120
    text_encoder_cls, text_encoder_id, text_encoder_subfolder = None, None, ""
    text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = None, None, ""
    text_encoder_3_cls, text_encoder_3_id, text_encoder_3_subfolder = None, None, ""
    tokenizer_cls, tokenizer_id, tokenizer_subfolder = None, None, ""
    tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = None, None, ""
    tokenizer_3_cls, tokenizer_3_id, tokenizer_3_subfolder = None, None, ""
Sayak Paul's avatar
Sayak Paul committed
121

122
    unet_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
123
    transformer_cls = None
124
    transformer_kwargs = None
Aryan's avatar
Aryan committed
125
    vae_cls = AutoencoderKL
126
127
    vae_kwargs = None

Aryan's avatar
Aryan committed
128
    text_encoder_target_modules = ["q_proj", "k_proj", "v_proj", "out_proj"]
129
    denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
Aryan's avatar
Aryan committed
130

131
    def get_dummy_components(self, scheduler_cls=None, use_dora=False, lora_alpha=None):
132
133
134
135
136
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

137
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
138
        rank = 4
139
        lora_alpha = rank if lora_alpha is None else lora_alpha
140
141

        torch.manual_seed(0)
142
143
144
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
Sayak Paul's avatar
Sayak Paul committed
145
            transformer = self.transformer_cls(**self.transformer_kwargs)
146
147
148
149

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
Aryan's avatar
Aryan committed
150
        vae = self.vae_cls(**self.vae_kwargs)
151

152
153
154
155
        text_encoder = self.text_encoder_cls.from_pretrained(
            self.text_encoder_id, subfolder=self.text_encoder_subfolder
        )
        tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id, subfolder=self.tokenizer_subfolder)
156

Sayak Paul's avatar
Sayak Paul committed
157
        if self.text_encoder_2_cls is not None:
158
159
160
161
162
163
            text_encoder_2 = self.text_encoder_2_cls.from_pretrained(
                self.text_encoder_2_id, subfolder=self.text_encoder_2_subfolder
            )
            tokenizer_2 = self.tokenizer_2_cls.from_pretrained(
                self.tokenizer_2_id, subfolder=self.tokenizer_2_subfolder
            )
164

Sayak Paul's avatar
Sayak Paul committed
165
        if self.text_encoder_3_cls is not None:
166
167
168
169
170
171
            text_encoder_3 = self.text_encoder_3_cls.from_pretrained(
                self.text_encoder_3_id, subfolder=self.text_encoder_3_subfolder
            )
            tokenizer_3 = self.tokenizer_3_cls.from_pretrained(
                self.tokenizer_3_id, subfolder=self.tokenizer_3_subfolder
            )
172

173
174
        text_lora_config = LoraConfig(
            r=rank,
175
            lora_alpha=lora_alpha,
Aryan's avatar
Aryan committed
176
            target_modules=self.text_encoder_target_modules,
177
            init_lora_weights=False,
178
            use_dora=use_dora,
179
180
        )

181
        denoiser_lora_config = LoraConfig(
182
            r=rank,
183
            lora_alpha=lora_alpha,
184
            target_modules=self.denoiser_target_modules,
185
186
            init_lora_weights=False,
            use_dora=use_dora,
187
188
        )

Sayak Paul's avatar
Sayak Paul committed
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
        pipeline_components = {
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        # Denoiser
        if self.unet_kwargs is not None:
            pipeline_components.update({"unet": unet})
        elif self.transformer_kwargs is not None:
            pipeline_components.update({"transformer": transformer})

        # Remaining text encoders.
        if self.text_encoder_2_cls is not None:
            pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
        if self.text_encoder_3_cls is not None:
            pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})

        # Remaining stuff
        init_params = inspect.signature(self.pipeline_class.__init__).parameters
        if "safety_checker" in init_params:
            pipeline_components.update({"safety_checker": None})
        if "feature_extractor" in init_params:
            pipeline_components.update({"feature_extractor": None})
        if "image_encoder" in init_params:
            pipeline_components.update({"image_encoder": None})
215

216
        return pipeline_components, text_lora_config, denoiser_lora_config
217

Sayak Paul's avatar
Sayak Paul committed
218
219
220
221
    @property
    def output_shape(self):
        raise NotImplementedError

222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

243
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
244
245
246
247
248
249
250
251
252
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

253
254
255
256
257
258
259
    def _get_lora_state_dicts(self, modules_to_save):
        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(module)
        return state_dicts

260
261
262
263
264
265
266
    def _get_lora_adapter_metadata(self, modules_to_save):
        metadatas = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                metadatas[f"{module_name}_lora_adapter_metadata"] = module.peft_config["default"].to_dict()
        return metadatas

267
268
269
270
    def _get_modules_to_save(self, pipe, has_denoiser=False):
        modules_to_save = {}
        lora_loadable_modules = self.pipeline_class._lora_loadable_modules

271
272
273
274
275
        if (
            "text_encoder" in lora_loadable_modules
            and hasattr(pipe, "text_encoder")
            and getattr(pipe.text_encoder, "peft_config", None) is not None
        ):
276
277
            modules_to_save["text_encoder"] = pipe.text_encoder

278
279
280
281
282
        if (
            "text_encoder_2" in lora_loadable_modules
            and hasattr(pipe, "text_encoder_2")
            and getattr(pipe.text_encoder_2, "peft_config", None) is not None
        ):
283
284
285
286
287
288
289
290
291
292
293
            modules_to_save["text_encoder_2"] = pipe.text_encoder_2

        if has_denoiser:
            if "unet" in lora_loadable_modules and hasattr(pipe, "unet"):
                modules_to_save["unet"] = pipe.unet

            if "transformer" in lora_loadable_modules and hasattr(pipe, "transformer"):
                modules_to_save["transformer"] = pipe.transformer

        return modules_to_save

294
    def add_adapters_to_pipeline(self, pipe, text_lora_config=None, denoiser_lora_config=None, adapter_name="default"):
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
        if text_lora_config is not None:
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, adapter_name=adapter_name)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

        if denoiser_lora_config is not None:
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, adapter_name=adapter_name)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
        else:
            denoiser = None

        if text_lora_config is not None and self.has_two_text_encoders or self.has_three_text_encoders:
            if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder_2.add_adapter(text_lora_config, adapter_name=adapter_name)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
        return pipe, denoiser

317
318
319
320
    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
321
        for scheduler_cls in self.scheduler_classes:
322
323
324
325
326
327
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
328
            output_no_lora = pipe(**inputs)[0]
Sayak Paul's avatar
Sayak Paul committed
329
            self.assertTrue(output_no_lora.shape == self.output_shape)
330
331
332
333
334
335

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
336
        for scheduler_cls in self.scheduler_classes:
337
338
339
340
341
342
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
343
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
344
            self.assertTrue(output_no_lora.shape == self.output_shape)
345

346
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
347

Aryan's avatar
Aryan committed
348
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
349
350
351
352
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
    @require_peft_version_greater("0.13.1")
    def test_low_cpu_mem_usage_with_injection(self):
        """Tests if we can inject LoRA state dict with low_cpu_mem_usage."""
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                inject_adapter_in_model(text_lora_config, pipe.text_encoder, low_cpu_mem_usage=True)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder."
                )
                self.assertTrue(
                    "meta" in {p.device.type for p in pipe.text_encoder.parameters()},
                    "The LoRA params should be on 'meta' device.",
                )

                te_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder))
                set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
                self.assertTrue(
                    "meta" not in {p.device.type for p in pipe.text_encoder.parameters()},
                    "No param should be on 'meta' device.",
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            inject_adapter_in_model(denoiser_lora_config, denoiser, low_cpu_mem_usage=True)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
            self.assertTrue(
                "meta" in {p.device.type for p in denoiser.parameters()}, "The LoRA params should be on 'meta' device."
            )

            denoiser_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(denoiser))
            set_peft_model_state_dict(denoiser, denoiser_state_dict, low_cpu_mem_usage=True)
            self.assertTrue(
                "meta" not in {p.device.type for p in denoiser.parameters()}, "No param should be on 'meta' device."
            )

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    inject_adapter_in_model(text_lora_config, pipe.text_encoder_2, low_cpu_mem_usage=True)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    self.assertTrue(
                        "meta" in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "The LoRA params should be on 'meta' device.",
                    )

                    te2_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder_2))
                    set_peft_model_state_dict(pipe.text_encoder_2, te2_state_dict, low_cpu_mem_usage=True)
                    self.assertTrue(
                        "meta" not in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "No param should be on 'meta' device.",
                    )

            _, _, inputs = self.get_dummy_inputs()
            output_lora = pipe(**inputs)[0]
            self.assertTrue(output_lora.shape == self.output_shape)

    @require_peft_version_greater("0.13.1")
415
    @require_transformers_version_greater("4.45.2")
416
417
418
419
420
421
422
423
424
425
426
427
428
    def test_low_cpu_mem_usage_with_loading(self):
        """Tests if we can load LoRA state dict with low_cpu_mem_usage."""

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

429
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467

            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=False)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results.",
                )

                # Now, check for `low_cpu_mem_usage.`
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=True)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained_low_cpu = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(
                        images_lora_from_pretrained_low_cpu, images_lora_from_pretrained, atol=1e-3, rtol=1e-3
                    ),
                    "Loading from saved checkpoints with `low_cpu_mem_usage` should give same results.",
                )

468
469
470
471
472
    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
473
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)
Aryan's avatar
Aryan committed
474

Aryan's avatar
Aryan committed
475
        for scheduler_cls in self.scheduler_classes:
476
477
478
479
480
481
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
482
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
483
            self.assertTrue(output_no_lora.shape == self.output_shape)
484

485
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
486

Aryan's avatar
Aryan committed
487
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
488
489
490
491
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
492
493
494
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

495
496
497
498
499
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
500
501
502
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

503
504
505
506
507
508
509
510
511
512
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
513
        for scheduler_cls in self.scheduler_classes:
514
515
516
517
518
519
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
520
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
521
            self.assertTrue(output_no_lora.shape == self.output_shape)
522

523
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
524
525
526
527
528

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

529
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
530
531
532
533
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
534

Aryan's avatar
Aryan committed
535
            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
536
537
538
539
540
541
542
543
544
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
545
        for scheduler_cls in self.scheduler_classes:
546
547
548
549
550
551
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
552
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
553
            self.assertTrue(output_no_lora.shape == self.output_shape)
554

555
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
556
557
558
559
560
561
562

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

563
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
564
565
566
567
568
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
569

Aryan's avatar
Aryan committed
570
            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
571
572
573
574
575
576
577
578
579
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Aryan's avatar
Aryan committed
580
        for scheduler_cls in self.scheduler_classes:
581
582
583
584
585
586
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
587
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
588
            self.assertTrue(output_no_lora.shape == self.output_shape)
589

590
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
591

Aryan's avatar
Aryan committed
592
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
593
594

            with tempfile.TemporaryDirectory() as tmpdirname:
595
596
                modules_to_save = self._get_modules_to_save(pipe)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
597

598
599
600
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )
Sayak Paul's avatar
Sayak Paul committed
601

602
603
604
605
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

606
607
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
608

609
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
610
611
612
613
614
615

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

616
617
618
619
620
621
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
622
        for scheduler_cls in self.scheduler_classes:
623
            components, _, _ = self.get_dummy_components(scheduler_cls)
624
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
625
626
            text_lora_config = LoraConfig(
                r=4,
627
                rank_pattern={self.text_encoder_target_modules[i]: i + 1 for i in range(3)},
628
                lora_alpha=4,
629
                target_modules=self.text_encoder_target_modules,
630
631
632
633
634
635
636
637
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
638
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
639
            self.assertTrue(output_no_lora.shape == self.output_shape)
640

641
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
642
643
644
645
646
647
648
649
650
651

            state_dict = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
                # supports missing layers (PR#8324).
                state_dict = {
                    f"text_encoder.{module_name}": param
                    for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                    if "text_model.encoder.layers.4" not in module_name
                }
652

653
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
654
655
656
657
658
659
660
661
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    state_dict.update(
                        {
                            f"text_encoder_2.{module_name}": param
                            for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                            if "text_model.encoder.layers.4" not in module_name
                        }
                    )
662

Aryan's avatar
Aryan committed
663
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
664
665
666
667
668
669
670
671
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

Aryan's avatar
Aryan committed
672
            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
673
674
675
676
677
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

678
    def test_simple_inference_save_pretrained_with_text_lora(self):
679
680
681
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Aryan's avatar
Aryan committed
682
        for scheduler_cls in self.scheduler_classes:
683
684
685
686
687
688
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
689
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
690
            self.assertTrue(output_no_lora.shape == self.output_shape)
691

692
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config=None)
Aryan's avatar
Aryan committed
693
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
694
695
696
697
698
699
700

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

701
702
703
704
705
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                    "Lora not correctly set in text encoder",
                )
706

707
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
708
709
710
711
712
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                        "Lora not correctly set in text encoder 2",
                    )
713

Aryan's avatar
Aryan committed
714
            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
715
716
717
718
719
720

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

721
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
722
723
724
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Aryan's avatar
Aryan committed
725
        for scheduler_cls in self.scheduler_classes:
726
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
727
728
729
730
731
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
732
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
733
            self.assertTrue(output_no_lora.shape == self.output_shape)
734

735
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
736

Aryan's avatar
Aryan committed
737
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
738
739

            with tempfile.TemporaryDirectory() as tmpdirname:
740
741
742
743
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
Aryan's avatar
Aryan committed
744
                )
745

746
747
748
749
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

750
751
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
752

753
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
754
755
756
757
758
            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

759
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
760
761
762
763
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
764
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)
Aryan's avatar
Aryan committed
765

Aryan's avatar
Aryan committed
766
        for scheduler_cls in self.scheduler_classes:
767
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
768
769
770
771
772
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
773
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
774
            self.assertTrue(output_no_lora.shape == self.output_shape)
775

776
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
777

Aryan's avatar
Aryan committed
778
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
779
780
781
782
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
783
784
785
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

786
787
788
789
790
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
791
792
793
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

794
795
796
797
798
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

Aryan's avatar
Aryan committed
799
800
801
802
803
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                    "The scaling parameter has not been correctly restored!",
                )
804

805
    def test_simple_inference_with_text_lora_denoiser_fused(self):
806
807
808
809
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Aryan's avatar
Aryan committed
810
        for scheduler_cls in self.scheduler_classes:
811
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
812
813
814
815
816
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
817
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
818
            self.assertTrue(output_no_lora.shape == self.output_shape)
819

820
            pipe, denoiser = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
821

Aryan's avatar
Aryan committed
822
823
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)

824
            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
825
826
827
828
829
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
830
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser")
831

832
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
833
834
835
836
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
837

Aryan's avatar
Aryan committed
838
            output_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
839
            self.assertFalse(
Aryan's avatar
Aryan committed
840
                np.allclose(output_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
841
842
            )

843
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
844
845
846
847
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
848
        for scheduler_cls in self.scheduler_classes:
849
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
850
851
852
853
854
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
855
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
856
            self.assertTrue(output_no_lora.shape == self.output_shape)
857

858
            pipe, denoiser = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
859
860
861
862
863
864

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
Aryan's avatar
Aryan committed
865
            self.assertFalse(check_if_lora_correctly_set(denoiser), "Lora not correctly unloaded in denoiser")
866

867
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
868
869
870
871
872
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
873

Aryan's avatar
Aryan committed
874
            output_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
875
            self.assertTrue(
Aryan's avatar
Aryan committed
876
                np.allclose(output_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
877
878
879
                "Fused lora should change the output",
            )

Aryan's avatar
Aryan committed
880
881
882
    def test_simple_inference_with_text_denoiser_lora_unfused(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
883
884
885
886
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
887
        for scheduler_cls in self.scheduler_classes:
888
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
889
890
891
892
893
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

894
            pipe, denoiser = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
895

Aryan's avatar
Aryan committed
896
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)
897
            self.assertTrue(pipe.num_fused_loras == 1, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
Aryan's avatar
Aryan committed
898
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
899

Aryan's avatar
Aryan committed
900
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
901
            self.assertTrue(pipe.num_fused_loras == 0, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
Aryan's avatar
Aryan committed
902
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
903
904

            # unloading should remove the LoRA layers
Aryan's avatar
Aryan committed
905
906
907
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

Aryan's avatar
Aryan committed
908
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")
909

910
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
911
912
913
914
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )
915
916
917

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
Aryan's avatar
Aryan committed
918
919
                np.allclose(output_fused_lora, output_unfused_lora, atol=expected_atol, rtol=expected_rtol),
                "Fused lora should not change the output",
920
921
            )

922
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
923
924
925
926
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
927
        for scheduler_cls in self.scheduler_classes:
928
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
929
930
931
932
933
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
934
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
935

Aryan's avatar
Aryan committed
936
937
938
939
940
941
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
942

Aryan's avatar
Aryan committed
943
944
945
946
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
947

948
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
949
950
951
952
953
954
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
955
956

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
957
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
958
959
960
961
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_1, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
962
963

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
964
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
965
966
967
968
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
969
970

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
971
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
972
973
974
975
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
994
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
995
996
997
998
999
1000

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1001
    def test_wrong_adapter_name_raises_error(self):
1002
1003
        adapter_name = "adapter-1"

1004
1005
1006
1007
1008
1009
1010
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

1011
        pipe, _ = self.add_adapters_to_pipeline(
1012
1013
            pipe, text_lora_config, denoiser_lora_config, adapter_name=adapter_name
        )
1014
1015
1016
1017
1018
1019
1020

        with self.assertRaises(ValueError) as err_context:
            pipe.set_adapters("test")

        self.assertTrue("not in the list of present adapters" in str(err_context.exception))

        # test this works.
1021
        pipe.set_adapters(adapter_name)
1022
1023
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1024
    def test_multiple_wrong_adapter_name_raises_error(self):
1025
        adapter_name = "adapter-1"
1026
1027
1028
1029
1030
1031
1032
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

1033
        pipe, _ = self.add_adapters_to_pipeline(
1034
1035
            pipe, text_lora_config, denoiser_lora_config, adapter_name=adapter_name
        )
1036
1037
1038
1039
1040

        scale_with_wrong_components = {"foo": 0.0, "bar": 0.0, "tik": 0.0}
        logger = logging.get_logger("diffusers.loaders.lora_base")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
1041
            pipe.set_adapters(adapter_name, adapter_weights=scale_with_wrong_components)
1042
1043
1044
1045
1046
1047

        wrong_components = sorted(set(scale_with_wrong_components.keys()))
        msg = f"The following components in `adapter_weights` are not part of the pipeline: {wrong_components}. "
        self.assertTrue(msg in str(cap_logger.out))

        # test this works.
1048
        pipe.set_adapters(adapter_name)
1049
1050
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1051
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
1052
1053
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
Aryan's avatar
Aryan committed
1054
        one adapter and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1055
        """
Aryan's avatar
Aryan committed
1056
        for scheduler_cls in self.scheduler_classes:
1057
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1058
1059
1060
1061
1062
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1063
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1064
1065
1066

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1067
1068
1069
1070

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1071

1072
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1073
1074
1075
1076
1077
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1078
1079
1080

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
Aryan's avatar
Aryan committed
1081
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1082
1083
1084

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
Aryan's avatar
Aryan committed
1085
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1101
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1102
1103
1104
1105
1106
1107

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1108
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1109
1110
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
1111
        multiple adapters and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1112
        """
Aryan's avatar
Aryan committed
1113
        for scheduler_cls in self.scheduler_classes:
1114
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1115
1116
1117
1118
1119
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1120
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1121

Aryan's avatar
Aryan committed
1122
1123
1124
1125
1126
1127
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
UmerHA's avatar
UmerHA committed
1128

Aryan's avatar
Aryan committed
1129
1130
1131
1132
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1133

1134
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1135
1136
1137
1138
1139
1140
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1141
1142
1143
1144

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}

Aryan's avatar
Aryan committed
1145
1146
            pipe.set_adapters("adapter-1", scales_1)
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1147
1148

            pipe.set_adapters("adapter-2", scales_2)
Aryan's avatar
Aryan committed
1149
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1150
1151

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])
Aryan's avatar
Aryan committed
1152
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1171
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1182
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1248
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1249
1250
1251
1252
1253
1254
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1255
1256
1257

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1258

1259
        if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1260
1261
1262
            lora_loadable_components = self.pipeline_class._lora_loadable_modules
            if "text_encoder_2" in lora_loadable_components:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1263
1264
1265
1266
1267
1268
1269
1270

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1271
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1272
1273
1274
1275
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
Aryan's avatar
Aryan committed
1276
        for scheduler_cls in self.scheduler_classes:
1277
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1278
1279
1280
1281
1282
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1283
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1284

Aryan's avatar
Aryan committed
1285
1286
1287
1288
1289
1290
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1291

Aryan's avatar
Aryan committed
1292
1293
1294
1295
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1296

1297
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1298
1299
1300
1301
1302
1303
1304
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1305
1306

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1307
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1308
1309

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1310
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1311
1312

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1313
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
Aryan's avatar
Aryan committed
1331
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1332
1333
1334
1335
1336
1337
1338

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
Aryan's avatar
Aryan committed
1339
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1340
1341
1342
1343
1344
1345

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

Aryan's avatar
Aryan committed
1346
1347
1348
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1349

Aryan's avatar
Aryan committed
1350
1351
1352
1353
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1354
1355
1356
1357

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

Aryan's avatar
Aryan committed
1358
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1359
1360
1361
1362
1363
1364

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1365
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1366
1367
1368
1369
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1370
        for scheduler_cls in self.scheduler_classes:
1371
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1372
1373
1374
1375
1376
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1377
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1378

Aryan's avatar
Aryan committed
1379
1380
1381
1382
1383
1384
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1385

Aryan's avatar
Aryan committed
1386
1387
1388
1389
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1390

1391
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1392
1393
1394
1395
1396
1397
1398
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1399
1400

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1401
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1402
1403

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1404
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1405
1406

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1407
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
Aryan's avatar
Aryan committed
1426
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0))[0]
1427
1428
1429
1430
1431
1432
1433

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1434
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1435
1436
1437
1438
1439
1440

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1441
    @skip_mps
1442
    @pytest.mark.xfail(
1443
        condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
1444
        reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
1445
        strict=False,
1446
    )
1447
    def test_lora_fuse_nan(self):
Aryan's avatar
Aryan committed
1448
        for scheduler_cls in self.scheduler_classes:
1449
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1450
1451
1452
1453
1454
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1455
1456
1457
1458
1459
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1460

Aryan's avatar
Aryan committed
1461
1462
1463
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1464
1465
1466

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1467
1468
1469
1470
1471
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
1472
                    named_modules = [name for name, _ in pipe.transformer.named_modules()]
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
                    possible_tower_names = [
                        "transformer_blocks",
                        "blocks",
                        "joint_transformer_blocks",
                        "single_transformer_blocks",
                    ]
                    filtered_tower_names = [
                        tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
                    ]
                    if len(filtered_tower_names) == 0:
                        reason = (
                            f"`pipe.transformer` didn't have any of the following attributes: {possible_tower_names}."
                        )
                        raise ValueError(reason)
                    for tower_name in filtered_tower_names:
                        transformer_tower = getattr(pipe.transformer, tower_name)
                        has_attn1 = any("attn1" in name for name in named_modules)
                        if has_attn1:
                            transformer_tower[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
                        else:
                            transformer_tower[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1494
1495
1496

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
Aryan's avatar
Aryan committed
1497
                pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
1498
1499

            # without we should not see an error, but every image will be black
Aryan's avatar
Aryan committed
1500
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
Sayak Paul's avatar
Sayak Paul committed
1501
            out = pipe(**inputs)[0]
1502
1503
1504
1505
1506
1507
1508
1509

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1510
        for scheduler_cls in self.scheduler_classes:
1511
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1512
1513
1514
1515
1516
1517
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1518
1519
1520

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1521
1522
1523
1524
1525

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1526
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1539
        for scheduler_cls in self.scheduler_classes:
1540
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1541
1542
1543
1544
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

Aryan's avatar
Aryan committed
1545
1546
1547
1548
1549
1550
            # 1.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                dicts_to_be_checked = {"text_encoder": ["adapter-1"]}

1551
1552
1553
1554
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
Aryan's avatar
Aryan committed
1555
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1556
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
1557

Aryan's avatar
Aryan committed
1558
1559
1560
1561
1562
1563
1564
1565
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 2.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1566
1567
1568
1569
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
Aryan's avatar
Aryan committed
1570
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1571
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1572

Aryan's avatar
Aryan committed
1573
1574
1575
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 3.
1576
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1577
1578
1579
1580
1581

            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1582
1583
1584
1585
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
Aryan's avatar
Aryan committed
1586

1587
1588
            self.assertDictEqual(
                pipe.get_list_adapters(),
1589
                dicts_to_be_checked,
1590
1591
            )

Aryan's avatar
Aryan committed
1592
1593
1594
1595
1596
            # 4.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1597
            if self.unet_kwargs is not None:
Aryan's avatar
Aryan committed
1598
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
1599
1600
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
Aryan's avatar
Aryan committed
1601
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")
1602
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
Aryan's avatar
Aryan committed
1603

1604
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1605
1606

    @require_peft_version_greater(peft_version="0.6.2")
Aryan's avatar
Aryan committed
1607
1608
1609
    def test_simple_inference_with_text_lora_denoiser_fused_multi(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
1610
1611
1612
1613
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
Aryan's avatar
Aryan committed
1614
        for scheduler_cls in self.scheduler_classes:
1615
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1616
1617
1618
1619
1620
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1621
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1622
            self.assertTrue(output_no_lora.shape == self.output_shape)
1623

Aryan's avatar
Aryan committed
1624
1625
1626
1627
1628
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1629
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1630

Aryan's avatar
Aryan committed
1631
1632
1633
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1634
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1635

1636
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1637
1638
1639
1640
1641
1642
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1643
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
1644
1645
1646

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1647
            outputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1648
1649

            pipe.set_adapters(["adapter-1"])
Aryan's avatar
Aryan committed
1650
            outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1651

Aryan's avatar
Aryan committed
1652
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-1"])
1653
            self.assertTrue(pipe.num_fused_loras == 1, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
1654

1655
            # Fusing should still keep the LoRA layers so output should remain the same
Aryan's avatar
Aryan committed
1656
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1657
1658

            self.assertTrue(
Aryan's avatar
Aryan committed
1659
                np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
1660
1661
1662
                "Fused lora should not change the output",
            )

Aryan's avatar
Aryan committed
1663
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
            self.assertTrue(pipe.num_fused_loras == 0, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )

Aryan's avatar
Aryan committed
1677
1678
1679
            pipe.fuse_lora(
                components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-2", "adapter-1"]
            )
1680
            self.assertTrue(pipe.num_fused_loras == 2, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
1681
1682

            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
1683
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1684
            self.assertTrue(
Aryan's avatar
Aryan committed
1685
                np.allclose(output_all_lora_fused, outputs_all_lora, atol=expected_atol, rtol=expected_rtol),
1686
1687
                "Fused lora should not change the output",
            )
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            self.assertTrue(pipe.num_fused_loras == 0, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")

    def test_lora_scale_kwargs_match_fusion(self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3):
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)

        for lora_scale in [1.0, 0.8]:
            for scheduler_cls in self.scheduler_classes:
                components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                _, _, inputs = self.get_dummy_inputs(with_generator=False)

                output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(output_no_lora.shape == self.output_shape)

                if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                    )

                denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
                denoiser.add_adapter(denoiser_lora_config, "adapter-1")
                self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

                if self.has_two_text_encoders or self.has_three_text_encoders:
                    lora_loadable_components = self.pipeline_class._lora_loadable_modules
                    if "text_encoder_2" in lora_loadable_components:
                        pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                        self.assertTrue(
                            check_if_lora_correctly_set(pipe.text_encoder_2),
                            "Lora not correctly set in text encoder 2",
                        )

                pipe.set_adapters(["adapter-1"])
                attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
                outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

                pipe.fuse_lora(
                    components=self.pipeline_class._lora_loadable_modules,
                    adapter_names=["adapter-1"],
                    lora_scale=lora_scale,
                )
                self.assertTrue(pipe.num_fused_loras == 1, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")

                outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]

                self.assertTrue(
                    np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
                    "Fused lora should not change the output",
                )
                self.assertFalse(
                    np.allclose(output_no_lora, outputs_lora_1, atol=expected_atol, rtol=expected_rtol),
                    "LoRA should change the output",
                )
1745

1746
1747
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
Aryan's avatar
Aryan committed
1748
        for scheduler_cls in self.scheduler_classes:
1749
1750
1751
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1752
1753
1754
1755
1756
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1757
            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1758
            self.assertTrue(output_no_dora_lora.shape == self.output_shape)
1759

1760
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
1761

Aryan's avatar
Aryan committed
1762
            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1763
1764
1765
1766
1767
1768

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
    def test_missing_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        # To make things dynamic since we cannot settle with a single key for all the models where we
        # offer PEFT support.
        missing_key = [k for k in state_dict if "lora_A" in k][0]
        del state_dict[missing_key]

1796
        logger = logging.get_logger("diffusers.utils.peft_utils")
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        # Since the missing key won't contain the adapter name ("default_0").
        # Also strip out the component prefix (such as "unet." from `missing_key`).
        component = list({k.split(".")[0] for k in state_dict})[0]
        self.assertTrue(missing_key.replace(f"{component}.", "") in cap_logger.out.replace("default_0.", ""))

    def test_unexpected_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        unexpected_key = [k for k in state_dict if "lora_A" in k][0] + ".diffusers_cat"
        state_dict[unexpected_key] = torch.tensor(1.0, device=torch_device)

1831
        logger = logging.get_logger("diffusers.utils.peft_utils")
1832
1833
1834
1835
1836
1837
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        self.assertTrue(".diffusers_cat" in cap_logger.out)

1838
    @unittest.skip("This is failing for now - need to investigate")
1839
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1840
1841
1842
1843
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
1844
        for scheduler_cls in self.scheduler_classes:
1845
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1846
1847
1848
1849
1850
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

1851
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
1852
1853
1854
1855

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1856
            if self.has_two_text_encoders or self.has_three_text_encoders:
1857
1858
1859
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
Aryan's avatar
Aryan committed
1860
            _ = pipe(**inputs, generator=torch.manual_seed(0))[0]
1861
1862
1863
1864
1865
1866
1867

    def test_modify_padding_mode(self):
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

Aryan's avatar
Aryan committed
1868
        for scheduler_cls in self.scheduler_classes:
1869
1870
1871
1872
1873
1874
1875
1876
1877
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
1878
            _ = pipe(**inputs)[0]
1879

1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
    def test_logs_info_when_no_lora_keys_found(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, _ = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        original_out = pipe(**inputs, generator=torch.manual_seed(0))[0]

        no_op_state_dict = {"lora_foo": torch.tensor(2.0), "lora_bar": torch.tensor(3.0)}
        logger = logging.get_logger("diffusers.loaders.peft")
1893
        logger.setLevel(logging.WARNING)
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912

        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(no_op_state_dict)
        out_after_lora_attempt = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser = getattr(pipe, "unet") if self.unet_kwargs is not None else getattr(pipe, "transformer")
        self.assertTrue(cap_logger.out.startswith(f"No LoRA keys associated to {denoiser.__class__.__name__}"))
        self.assertTrue(np.allclose(original_out, out_after_lora_attempt, atol=1e-5, rtol=1e-5))

        # test only for text encoder
        for lora_module in self.pipeline_class._lora_loadable_modules:
            if "text_encoder" in lora_module:
                text_encoder = getattr(pipe, lora_module)
                if lora_module == "text_encoder":
                    prefix = "text_encoder"
                elif lora_module == "text_encoder_2":
                    prefix = "text_encoder_2"

                logger = logging.get_logger("diffusers.loaders.lora_base")
1913
                logger.setLevel(logging.WARNING)
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923

                with CaptureLogger(logger) as cap_logger:
                    self.pipeline_class.load_lora_into_text_encoder(
                        no_op_state_dict, network_alphas=None, text_encoder=text_encoder, prefix=prefix
                    )

                self.assertTrue(
                    cap_logger.out.startswith(f"No LoRA keys associated to {text_encoder.__class__.__name__}")
                )

1924
1925
    def test_set_adapters_match_attention_kwargs(self):
        """Test to check if outputs after `set_adapters()` and attention kwargs match."""
1926
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

1938
            pipe, _ = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987

            lora_scale = 0.5
            attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
            self.assertFalse(
                np.allclose(output_no_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            pipe.set_adapters("default", lora_scale)
            output_lora_scale_wo_kwargs = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(
                not np.allclose(output_no_lora, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
            self.assertTrue(
                np.allclose(output_lora_scale, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should match the output of `set_adapters()`.",
            )

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                output_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
                self.assertTrue(
                    not np.allclose(output_no_lora, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Lora + scale should change the output",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as attention_kwargs.",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale_wo_kwargs, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as set_adapters().",
                )
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001

    @require_peft_version_greater("0.13.2")
    def test_lora_B_bias(self):
        # Currently, this test is only relevant for Flux Control LoRA as we are not
        # aware of any other LoRA checkpoint that has its `lora_B` biases trained.
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # keep track of the bias values of the base layers to perform checks later.
        bias_values = {}
        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, module in denoiser.named_modules():
2002
            if any(k in name for k in self.denoiser_target_modules):
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
                if module.bias is not None:
                    bias_values[name] = module.bias.data.clone()

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser_lora_config.lora_bias = False
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_false_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
        pipe.delete_adapters("adapter-1")

        denoiser_lora_config.lora_bias = True
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_true_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        self.assertFalse(np.allclose(original_output, lora_bias_false_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(original_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(lora_bias_false_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))

    def test_correct_lora_configs_with_different_ranks(self):
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")

        lora_output_same_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, _ in denoiser.named_modules():
            if "to_k" in name and "attn" in name and "lora" not in name:
                module_name_to_rank_update = name.replace(".base_layer.", ".")
                break

        # change the rank_pattern
        updated_rank = denoiser_lora_config.r * 2
        denoiser_lora_config.rank_pattern = {module_name_to_rank_update: updated_rank}

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.unet.peft_config["adapter-1"].rank_pattern
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.transformer.peft_config["adapter-1"].rank_pattern

        self.assertTrue(updated_rank_pattern == {module_name_to_rank_update: updated_rank})

        lora_output_diff_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_same_rank, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_rank, lora_output_same_rank, atol=1e-3, rtol=1e-3))

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        # similarly change the alpha_pattern
        updated_alpha = denoiser_lora_config.lora_alpha * 2
        denoiser_lora_config.alpha_pattern = {module_name_to_rank_update: updated_alpha}
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.unet.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.transformer.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )

        lora_output_diff_alpha = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))
Aryan's avatar
Aryan committed
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119

    def test_layerwise_casting_inference_denoiser(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if "lora" in name or any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def initialize_pipeline(storage_dtype=None, compute_dtype=torch.float32):
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)

2120
            pipe, denoiser = self.add_adapters_to_pipeline(pipe, text_lora_config, denoiser_lora_config)
Aryan's avatar
Aryan committed
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137

            if storage_dtype is not None:
                denoiser.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
                check_linear_dtype(denoiser, storage_dtype, compute_dtype)

            return pipe

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe_fp32 = initialize_pipeline(storage_dtype=None)
        pipe_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_fp32 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.float32)
        pipe_float8_e4m3_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_bf16 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
        pipe_float8_e4m3_bf16(**inputs, generator=torch.manual_seed(0))[0]
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228

    @require_peft_version_greater("0.14.0")
    def test_layerwise_casting_peft_input_autocast_denoiser(self):
        r"""
        A test that checks if layerwise casting works correctly with PEFT layers and forward pass does not fail. This
        is different from `test_layerwise_casting_inference_denoiser` as that disables the application of layerwise
        cast hooks on the PEFT layers (relevant logic in `models.modeling_utils.ModelMixin.enable_layerwise_casting`).
        In this test, we enable the layerwise casting on the PEFT layers as well. If run with PEFT version <= 0.14.0,
        this test will fail with the following error:

        ```
        RuntimeError: expected mat1 and mat2 to have the same dtype, but got: c10::Float8_e4m3fn != float
        ```

        See the docstring of [`hooks.layerwise_casting.PeftInputAutocastDisableHook`] for more details.
        """

        from diffusers.hooks.layerwise_casting import (
            _PEFT_AUTOCAST_DISABLE_HOOK,
            DEFAULT_SKIP_MODULES_PATTERN,
            SUPPORTED_PYTORCH_LAYERS,
            apply_layerwise_casting,
        )

        storage_dtype = torch.float8_e4m3fn
        compute_dtype = torch.float32

        def check_module(denoiser):
            # This will also check if the peft layers are in torch.float8_e4m3fn dtype (unlike test_layerwise_casting_inference_denoiser)
            for name, module in denoiser.named_modules():
                if not isinstance(module, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(module, "weight", None) is not None:
                    self.assertEqual(module.weight.dtype, dtype_to_check)
                if getattr(module, "bias", None) is not None:
                    self.assertEqual(module.bias.dtype, dtype_to_check)
                if isinstance(module, BaseTunerLayer):
                    self.assertTrue(getattr(module, "_diffusers_hook", None) is not None)
                    self.assertTrue(module._diffusers_hook.get_hook(_PEFT_AUTOCAST_DISABLE_HOOK) is not None)

        # 1. Test forward with add_adapter
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device, dtype=compute_dtype)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
        if getattr(denoiser, "_skip_layerwise_casting_patterns", None) is not None:
            patterns_to_check += tuple(denoiser._skip_layerwise_casting_patterns)

        apply_layerwise_casting(
            denoiser, storage_dtype=storage_dtype, compute_dtype=compute_dtype, skip_modules_pattern=patterns_to_check
        )
        check_module(denoiser)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        pipe(**inputs, generator=torch.manual_seed(0))[0]

        # 2. Test forward with load_lora_weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
            )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            components, _, _ = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)
            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            apply_layerwise_casting(
                denoiser,
                storage_dtype=storage_dtype,
                compute_dtype=compute_dtype,
                skip_modules_pattern=patterns_to_check,
            )
            check_module(denoiser)

            _, _, inputs = self.get_dummy_inputs(with_generator=False)
            pipe(**inputs, generator=torch.manual_seed(0))[0]
2229

2230
2231
2232
2233
2234
2235
2236
2237
    @parameterized.expand([4, 8, 16])
    def test_lora_adapter_metadata_is_loaded_correctly(self, lora_alpha):
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
            scheduler_cls, lora_alpha=lora_alpha
        )
        pipe = self.pipeline_class(**components)

2238
        pipe, _ = self.add_adapters_to_pipeline(
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
            pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
        )

        with tempfile.TemporaryDirectory() as tmpdir:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            lora_metadatas = self._get_lora_adapter_metadata(modules_to_save)
            self.pipeline_class.save_lora_weights(save_directory=tmpdir, **lora_state_dicts, **lora_metadatas)
            pipe.unload_lora_weights()

            out = pipe.lora_state_dict(tmpdir, return_lora_metadata=True)
            if len(out) == 3:
                _, _, parsed_metadata = out
            elif len(out) == 2:
                _, parsed_metadata = out

            denoiser_key = (
                f"{self.pipeline_class.transformer_name}"
                if self.transformer_kwargs is not None
                else f"{self.pipeline_class.unet_name}"
            )
            self.assertTrue(any(k.startswith(f"{denoiser_key}.") for k in parsed_metadata))
            check_module_lora_metadata(
                parsed_metadata=parsed_metadata, lora_metadatas=lora_metadatas, module_key=denoiser_key
            )

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                text_encoder_key = self.pipeline_class.text_encoder_name
                self.assertTrue(any(k.startswith(f"{text_encoder_key}.") for k in parsed_metadata))
                check_module_lora_metadata(
                    parsed_metadata=parsed_metadata, lora_metadatas=lora_metadatas, module_key=text_encoder_key
                )

            if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                text_encoder_2_key = "text_encoder_2"
                self.assertTrue(any(k.startswith(f"{text_encoder_2_key}.") for k in parsed_metadata))
                check_module_lora_metadata(
                    parsed_metadata=parsed_metadata, lora_metadatas=lora_metadatas, module_key=text_encoder_2_key
                )

    @parameterized.expand([4, 8, 16])
    def test_lora_adapter_metadata_save_load_inference(self, lora_alpha):
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
            scheduler_cls, lora_alpha=lora_alpha
        )
        pipe = self.pipeline_class(**components).to(torch_device)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(output_no_lora.shape == self.output_shape)

2291
        pipe, _ = self.add_adapters_to_pipeline(
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
            pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
        )
        output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            lora_metadatas = self._get_lora_adapter_metadata(modules_to_save)
            self.pipeline_class.save_lora_weights(save_directory=tmpdir, **lora_state_dicts, **lora_metadatas)
            pipe.unload_lora_weights()
            pipe.load_lora_weights(tmpdir)

            output_lora_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]

            self.assertTrue(
                np.allclose(output_lora, output_lora_pretrained, atol=1e-3, rtol=1e-3), "Lora outputs should match."
            )

2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
    def test_lora_unload_add_adapter(self):
        """Tests if `unload_lora_weights()` -> `add_adapter()` works."""
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components).to(torch_device)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe, _ = self.add_adapters_to_pipeline(
            pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
        )
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

        # unload and then add.
        pipe.unload_lora_weights()
        pipe, _ = self.add_adapters_to_pipeline(
            pipe, text_lora_config=text_lora_config, denoiser_lora_config=denoiser_lora_config
        )
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
    def test_inference_load_delete_load_adapters(self):
        "Tests if `load_lora_weights()` -> `delete_adapters()` -> `load_lora_weights()` works."
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(save_directory=tmpdirname, **lora_state_dicts)
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))

                # First, delete adapter and compare.
                pipe.delete_adapters(pipe.get_active_adapters()[0])
                output_no_adapter = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertFalse(np.allclose(output_adapter_1, output_no_adapter, atol=1e-3, rtol=1e-3))
                self.assertTrue(np.allclose(output_no_lora, output_no_adapter, atol=1e-3, rtol=1e-3))

                # Then load adapter and compare.
                pipe.load_lora_weights(tmpdirname)
                output_lora_loaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(np.allclose(output_adapter_1, output_lora_loaded, atol=1e-3, rtol=1e-3))
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445

    def _test_group_offloading_inference_denoiser(self, offload_type, use_stream):
        from diffusers.hooks.group_offloading import _get_top_level_group_offload_hook

        onload_device = torch_device
        offload_device = torch.device("cpu")

        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
            )
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))

            components, _, _ = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet

            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
            check_if_lora_correctly_set(denoiser)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            # Test group offloading with load_lora_weights
            denoiser.enable_group_offload(
                onload_device=onload_device,
                offload_device=offload_device,
                offload_type=offload_type,
                num_blocks_per_group=1,
                use_stream=use_stream,
            )
            group_offload_hook_1 = _get_top_level_group_offload_hook(denoiser)
            self.assertTrue(group_offload_hook_1 is not None)
            output_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]

            # Test group offloading after removing the lora
            pipe.unload_lora_weights()
            group_offload_hook_2 = _get_top_level_group_offload_hook(denoiser)
            self.assertTrue(group_offload_hook_2 is not None)
            output_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]  # noqa: F841

            # Add the lora again and check if group offloading works
            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))
            check_if_lora_correctly_set(denoiser)
            group_offload_hook_3 = _get_top_level_group_offload_hook(denoiser)
            self.assertTrue(group_offload_hook_3 is not None)
            output_3 = pipe(**inputs, generator=torch.manual_seed(0))[0]

            self.assertTrue(np.allclose(output_1, output_3, atol=1e-3, rtol=1e-3))

    @parameterized.expand([("block_level", True), ("leaf_level", False), ("leaf_level", True)])
    @require_torch_accelerator
    def test_group_offloading_inference_denoiser(self, offload_type, use_stream):
        for cls in inspect.getmro(self.__class__):
            if "test_group_offloading_inference_denoiser" in cls.__dict__ and cls is not PeftLoraLoaderMixinTests:
                # Skip this test if it is overwritten by child class. We need to do this because parameterized
                # materializes the test methods on invocation which cannot be overridden.
                return
        self._test_group_offloading_inference_denoiser(offload_type, use_stream)