utils.py 82.8 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sayak Paul's avatar
Sayak Paul committed
15
import inspect
16
17
18
import os
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
19
from itertools import product
20
21
22
23
24
25
26

import numpy as np
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
27
    FlowMatchEulerDiscreteScheduler,
28
29
30
31
32
33
34
35
    LCMScheduler,
    UNet2DConditionModel,
)
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
    floats_tensor,
    require_peft_backend,
    require_peft_version_greater,
36
    skip_mps,
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    torch_device,
)


if is_peft_available():
    from peft import LoraConfig
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
    scheduler_cls = None
    scheduler_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
74
75
    uses_flow_matching = False

76
    has_two_text_encoders = False
77
    has_three_text_encoders = False
Sayak Paul's avatar
Sayak Paul committed
78
79
80
81
82
83
84
    text_encoder_cls, text_encoder_id = None, None
    text_encoder_2_cls, text_encoder_2_id = None, None
    text_encoder_3_cls, text_encoder_3_id = None, None
    tokenizer_cls, tokenizer_id = None, None
    tokenizer_2_cls, tokenizer_2_id = None, None
    tokenizer_3_cls, tokenizer_3_id = None, None

85
    unet_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
86
    transformer_cls = None
87
    transformer_kwargs = None
88
89
    vae_kwargs = None

90
    def get_dummy_components(self, scheduler_cls=None, use_dora=False):
91
92
93
94
95
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

96
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
97
98
99
        rank = 4

        torch.manual_seed(0)
100
101
102
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
Sayak Paul's avatar
Sayak Paul committed
103
            transformer = self.transformer_cls(**self.transformer_kwargs)
104
105
106
107
108
109

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
        vae = AutoencoderKL(**self.vae_kwargs)

Sayak Paul's avatar
Sayak Paul committed
110
111
        text_encoder = self.text_encoder_cls.from_pretrained(self.text_encoder_id)
        tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id)
112

Sayak Paul's avatar
Sayak Paul committed
113
114
115
        if self.text_encoder_2_cls is not None:
            text_encoder_2 = self.text_encoder_2_cls.from_pretrained(self.text_encoder_2_id)
            tokenizer_2 = self.tokenizer_2_cls.from_pretrained(self.tokenizer_2_id)
116

Sayak Paul's avatar
Sayak Paul committed
117
118
119
        if self.text_encoder_3_cls is not None:
            text_encoder_3 = self.text_encoder_3_cls.from_pretrained(self.text_encoder_3_id)
            tokenizer_3 = self.tokenizer_3_cls.from_pretrained(self.tokenizer_3_id)
120

121
122
123
124
125
        text_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
            target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
            init_lora_weights=False,
126
            use_dora=use_dora,
127
128
        )

129
        denoiser_lora_config = LoraConfig(
130
131
132
133
134
            r=rank,
            lora_alpha=rank,
            target_modules=["to_q", "to_k", "to_v", "to_out.0"],
            init_lora_weights=False,
            use_dora=use_dora,
135
136
        )

Sayak Paul's avatar
Sayak Paul committed
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
        pipeline_components = {
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        # Denoiser
        if self.unet_kwargs is not None:
            pipeline_components.update({"unet": unet})
        elif self.transformer_kwargs is not None:
            pipeline_components.update({"transformer": transformer})

        # Remaining text encoders.
        if self.text_encoder_2_cls is not None:
            pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
        if self.text_encoder_3_cls is not None:
            pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})

        # Remaining stuff
        init_params = inspect.signature(self.pipeline_class.__init__).parameters
        if "safety_checker" in init_params:
            pipeline_components.update({"safety_checker": None})
        if "feature_extractor" in init_params:
            pipeline_components.update({"feature_extractor": None})
        if "image_encoder" in init_params:
            pipeline_components.update({"image_encoder": None})
163

164
        return pipeline_components, text_lora_config, denoiser_lora_config
165

Sayak Paul's avatar
Sayak Paul committed
166
167
168
169
    @property
    def output_shape(self):
        raise NotImplementedError

170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

191
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
192
193
194
195
196
197
198
199
200
201
202
203
204
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
205
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
206
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
207
208
        )
        for scheduler_cls in scheduler_classes:
209
210
211
212
213
214
215
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
            output_no_lora = pipe(**inputs).images
Sayak Paul's avatar
Sayak Paul committed
216
            self.assertTrue(output_no_lora.shape == self.output_shape)
217
218
219
220
221
222

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
223
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
224
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
225
226
        )
        for scheduler_cls in scheduler_classes:
227
228
229
230
231
232
233
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
234
            self.assertTrue(output_no_lora.shape == self.output_shape)
235
236
237
238

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

239
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
240
241
242
243
244
245
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
246
247
248
249
250
251
252
253
254
255
256

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
257
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
258
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
259
260
        )
        for scheduler_cls in scheduler_classes:
261
262
263
264
265
266
267
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
268
            self.assertTrue(output_no_lora.shape == self.output_shape)
269
270
271
272

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

273
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
274
275
276
277
278
279
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
280
281
282
283
284
285

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

286
287
288
289
290
291
292
293
            if self.unet_kwargs is not None:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
                ).images
            else:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.5}
                ).images
294
295
296
297
298
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

299
300
301
302
303
304
305
306
            if self.unet_kwargs is not None:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
                ).images
            else:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.0}
                ).images
307
308
309
310
311
312
313
314
315
316
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
317
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
318
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
319
320
        )
        for scheduler_cls in scheduler_classes:
321
322
323
324
325
326
327
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
328
            self.assertTrue(output_no_lora.shape == self.output_shape)
329
330
331
332

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

333
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
334
335
336
337
338
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
339
340
341
342
343

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

344
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
345
346
347
348
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
349
350
351
352
353
354
355
356
357
358
359

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
360
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
361
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
362
363
        )
        for scheduler_cls in scheduler_classes:
364
365
366
367
368
369
370
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
371
            self.assertTrue(output_no_lora.shape == self.output_shape)
372
373
374
375

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

376
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
377
378
379
380
381
382
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
383
384
385
386
387
388
389

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

390
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
391
392
393
394
395
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
396
397
398
399
400
401
402
403
404
405
406

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
407
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
408
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
409
410
        )
        for scheduler_cls in scheduler_classes:
411
412
413
414
415
416
417
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
418
            self.assertTrue(output_no_lora.shape == self.output_shape)
419
420
421
422

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

423
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
424
425
426
427
428
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
429
430
431
432
433

            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
434
                if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
435
436
                    if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                        text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
437

Sayak Paul's avatar
Sayak Paul committed
438
439
440
441
442
443
                        self.pipeline_class.save_lora_weights(
                            save_directory=tmpdirname,
                            text_encoder_lora_layers=text_encoder_state_dict,
                            text_encoder_2_lora_layers=text_encoder_2_state_dict,
                            safe_serialization=False,
                        )
444
445
446
447
448
449
450
                else:
                    self.pipeline_class.save_lora_weights(
                        save_directory=tmpdirname,
                        text_encoder_lora_layers=text_encoder_state_dict,
                        safe_serialization=False,
                    )

Sayak Paul's avatar
Sayak Paul committed
451
452
453
454
455
456
457
458
                if self.has_two_text_encoders:
                    if "text_encoder_2" not in self.pipeline_class._lora_loadable_modules:
                        self.pipeline_class.save_lora_weights(
                            save_directory=tmpdirname,
                            text_encoder_lora_layers=text_encoder_state_dict,
                            safe_serialization=False,
                        )

459
460
461
462
463
464
465
466
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

467
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
468
469
470
471
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
472
473
474
475
476
477

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

478
479
480
481
482
483
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
484
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
485
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
486
487
        )
        for scheduler_cls in scheduler_classes:
488
            components, _, _ = self.get_dummy_components(scheduler_cls)
489
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
490
491
492
493
494
495
496
497
498
499
500
501
502
503
            text_lora_config = LoraConfig(
                r=4,
                rank_pattern={"q_proj": 1, "k_proj": 2, "v_proj": 3},
                lora_alpha=4,
                target_modules=["q_proj", "k_proj", "v_proj", "out_proj"],
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
504
            self.assertTrue(output_no_lora.shape == self.output_shape)
505
506
507
508
509
510
511
512
513
514
515

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
            # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
            # supports missing layers (PR#8324).
            state_dict = {
                f"text_encoder.{module_name}": param
                for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                if "text_model.encoder.layers.4" not in module_name
            }

516
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
517
518
519
520
521
522
523
524
525
526
527
528
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    state_dict.update(
                        {
                            f"text_encoder_2.{module_name}": param
                            for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                            if "text_model.encoder.layers.4" not in module_name
                        }
                    )
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

545
546
547
548
    def test_simple_inference_save_pretrained(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
549
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
550
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
551
552
        )
        for scheduler_cls in scheduler_classes:
553
554
555
556
557
558
559
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
560
            self.assertTrue(output_no_lora.shape == self.output_shape)
561
562
563
564

            pipe.text_encoder.add_adapter(text_lora_config)
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

565
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
566
567
568
569
570
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
571
572
573
574
575
576
577
578
579
580
581
582
583
584

            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

            self.assertTrue(
                check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                "Lora not correctly set in text encoder",
            )

585
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
586
587
588
589
590
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                        "Lora not correctly set in text encoder 2",
                    )
591
592
593
594
595
596
597
598

            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

599
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
600
601
602
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
603
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
604
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
605
606
        )
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
607
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
608
609
610
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
611
612
613
614
615
616
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
617
            self.assertTrue(output_no_lora.shape == self.output_shape)
618
619

            pipe.text_encoder.add_adapter(text_lora_config)
620
621
622
623
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
624
625

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
626
627
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in Unet")
628

629
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
630
631
632
633
634
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
635
636
637
638
639

            images_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            with tempfile.TemporaryDirectory() as tmpdirname:
                text_encoder_state_dict = get_peft_model_state_dict(pipe.text_encoder)
640
641
642
643
644
645

                if self.unet_kwargs is not None:
                    denoiser_state_dict = get_peft_model_state_dict(pipe.unet)
                else:
                    denoiser_state_dict = get_peft_model_state_dict(pipe.transformer)

Sayak Paul's avatar
Sayak Paul committed
646
647
648
649
650
                saving_kwargs = {
                    "save_directory": tmpdirname,
                    "text_encoder_lora_layers": text_encoder_state_dict,
                    "safe_serialization": False,
                }
651

Sayak Paul's avatar
Sayak Paul committed
652
653
                if self.unet_kwargs is not None:
                    saving_kwargs.update({"unet_lora_layers": denoiser_state_dict})
654
                else:
Sayak Paul's avatar
Sayak Paul committed
655
656
657
658
659
660
661
662
                    saving_kwargs.update({"transformer_lora_layers": denoiser_state_dict})

                if self.has_two_text_encoders or self.has_three_text_encoders:
                    if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                        text_encoder_2_state_dict = get_peft_model_state_dict(pipe.text_encoder_2)
                        saving_kwargs.update({"text_encoder_2_lora_layers": text_encoder_2_state_dict})

                self.pipeline_class.save_lora_weights(**saving_kwargs)
663
664
665
666
667
668
669
670

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()

                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
671
672
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
673

674
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
675
676
677
678
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
679
680
681
682
683
684

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

685
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
686
687
688
689
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
690
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
691
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
692
693
694
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
695
696
697
698
699
700
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
701
            self.assertTrue(output_no_lora.shape == self.output_shape)
702
703

            pipe.text_encoder.add_adapter(text_lora_config)
704
705
706
707
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
708
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
709
710
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
711

712
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
713
714
715
716
717
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
718
719
720
721
722
723

            output_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

724
725
726
727
728
729
730
731
            if self.unet_kwargs is not None:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.5}
                ).images
            else:
                output_lora_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.5}
                ).images
732
733
734
735
736
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

737
738
739
740
741
742
743
744
            if self.unet_kwargs is not None:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), cross_attention_kwargs={"scale": 0.0}
                ).images
            else:
                output_lora_0_scale = pipe(
                    **inputs, generator=torch.manual_seed(0), joint_attention_kwargs={"scale": 0.0}
                ).images
745
746
747
748
749
750
751
752
753
754
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

            self.assertTrue(
                pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                "The scaling parameter has not been correctly restored!",
            )

755
    def test_simple_inference_with_text_lora_denoiser_fused(self):
756
757
758
759
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
760
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
761
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
762
763
764
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
765
766
767
768
769
770
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
771
            self.assertTrue(output_no_lora.shape == self.output_shape)
772
773

            pipe.text_encoder.add_adapter(text_lora_config)
774
775
776
777
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
778
779

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
780
781
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
782

783
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
784
785
786
787
788
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
789
790
791
792

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
793
794
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
795

796
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
797
798
799
800
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
801
802
803
804
805
806

            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

807
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
808
809
810
811
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
812
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
813
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
814
815
816
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
817
818
819
820
821
822
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
823
            self.assertTrue(output_no_lora.shape == self.output_shape)
824
825

            pipe.text_encoder.add_adapter(text_lora_config)
826
827
828
829
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
830
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
831
832
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
833

834
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
835
836
837
838
839
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
840
841
842
843
844
845

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
846
847
848
849
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertFalse(
                check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly unloaded in denoiser"
            )
850

851
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
852
853
854
855
856
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
857
858
859
860
861
862
863

            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

864
    def test_simple_inference_with_text_denoiser_lora_unfused(self):
865
866
867
868
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
869
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
870
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
871
872
873
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
874
875
876
877
878
879
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config)
880
881
882
883
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
884
885

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
886
887
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
888

889
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
890
891
892
893
894
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
895
896
897
898
899
900
901
902
903
904

            pipe.fuse_lora()

            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.unfuse_lora()

            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
            # unloading should remove the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")
905
906
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Unfuse should still keep LoRA layers")
907

908
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
909
910
911
912
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )
913
914
915
916
917
918
919

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
                np.allclose(output_fused_lora, output_unfused_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

920
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
921
922
923
924
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
925
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
926
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
927
928
929
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
930
931
932
933
934
935
936
937
938
939
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

940
941
942
943
944
945
946
947
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
948
949

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
950
951
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
952

953
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
954
955
956
957
958
959
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()

            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

997
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
998
999
1000
1001
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        one adapter and set differnt weights for different blocks (i.e. block lora)
        """
1002
1003
1004
1005
        if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
            return

        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1006
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1007
1008
1009
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1010
1011
1012
1013
1014
1015
1016
1017
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1018
1019
1020
1021
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1022
1023

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1024
1025
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
UmerHA's avatar
UmerHA committed
1026

1027
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1028
1029
1030
1031
1032
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1063
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1064
1065
1066
1067
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set differnt weights for different blocks (i.e. block lora)
        """
1068
1069
1070
1071
        if self.pipeline_class.__name__ == "StableDiffusion3Pipeline":
            return

        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1072
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1073
1074
1075
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1086
1087
1088
1089
1090
1091
1092
1093
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
UmerHA's avatar
UmerHA committed
1094
1095

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1096
1097
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
UmerHA's avatar
UmerHA committed
1098

1099
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1100
1101
1102
1103
1104
1105
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}
            pipe.set_adapters("adapter-1", scales_1)

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2", scales_2)
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()

            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1149
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1150
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""
Sayak Paul's avatar
Sayak Paul committed
1151
        if self.pipeline_class.__name__ in ["StableDiffusion3Pipeline", "FluxPipeline"]:
1152
            return
UmerHA's avatar
UmerHA committed
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1217
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1218
1219
1220
1221
1222
1223
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1224
1225
1226
1227
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1228

1229
        if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1230
1231
1232
            lora_loadable_components = self.pipeline_class._lora_loadable_modules
            if "text_encoder_2" in lora_loadable_components:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1233
1234
1235
1236
1237
1238
1239
1240

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1241
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1242
1243
1244
1245
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
1246
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1247
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1248
1249
1250
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1261
1262
1263
1264
1265
1266
1267
1268
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1269
1270

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1271
1272
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1273

1274
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1275
1276
1277
1278
1279
1280
1281
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1328
1329
1330
1331
1332
1333
1334
1335
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1347
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1348
1349
1350
1351
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
1352
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1353
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1354
1355
1356
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

1367
1368
1369
1370
1371
1372
1373
1374
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1375
1376

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1377
1378
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1379

1380
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1381
1382
1383
1384
1385
1386
1387
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432

            pipe.set_adapters("adapter-1")

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters("adapter-2")
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1", "adapter-2"])

            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0)).images

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()

            output_disabled = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1433
    @skip_mps
1434
    def test_lora_fuse_nan(self):
1435
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1436
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1437
1438
1439
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1440
1441
1442
1443
1444
1445
1446
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")

1447
1448
1449
1450
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1451
1452

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1453
1454
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1455
1456
1457

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1458
1459
1460
1461
1462
1463
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
                    pipe.transformer.transformer_blocks[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
                pipe.fuse_lora(safe_fusing=True)

            # without we should not see an error, but every image will be black
            pipe.fuse_lora(safe_fusing=False)

            out = pipe("test", num_inference_steps=2, output_type="np").images

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
1481
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1482
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1483
1484
1485
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1486
1487
1488
1489
1490
1491
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1492
1493
1494
1495
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1496
1497
1498
1499
1500

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1501
1502
1503
1504
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
1517
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1518
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1519
1520
1521
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1522
1523
1524
1525
1526
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1527
1528
1529
1530
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1531
1532

            adapter_names = pipe.get_list_adapters()
1533
1534
1535
1536
1537
1538
            dicts_to_be_checked = {"text_encoder": ["adapter-1"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
            self.assertDictEqual(adapter_names, dicts_to_be_checked)
1539
1540

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1541
1542
1543
1544
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1545
1546

            adapter_names = pipe.get_list_adapters()
1547
1548
1549
1550
1551
1552
            dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
            self.assertDictEqual(adapter_names, dicts_to_be_checked)
1553
1554

            pipe.set_adapters(["adapter-1", "adapter-2"])
1555
1556
1557
1558
1559
            dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1560
1561
            self.assertDictEqual(
                pipe.get_list_adapters(),
1562
                dicts_to_be_checked,
1563
1564
            )

1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")

            dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1576
1577

    @require_peft_version_greater(peft_version="0.6.2")
1578
    def test_simple_inference_with_text_lora_denoiser_fused_multi(self):
1579
1580
1581
1582
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
1583
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1584
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1585
1586
1587
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1588
1589
1590
1591
1592
1593
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
1594
            self.assertTrue(output_no_lora.shape == self.output_shape)
1595
1596

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
1597
1598
1599
1600
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1601
1602
1603

            # Attach a second adapter
            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1604
1605
1606
1607
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
            else:
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1608
1609

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1610
1611
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1612

1613
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1614
1615
1616
1617
1618
1619
1620
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
            ouputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.set_adapters(["adapter-1"])
            ouputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0)).images

            pipe.fuse_lora(adapter_names=["adapter-1"])

            # Fusing should still keep the LoRA layers so outpout should remain the same
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertTrue(
                np.allclose(ouputs_lora_1, outputs_lora_1_fused, atol=1e-3, rtol=1e-3),
                "Fused lora should not change the output",
            )

            pipe.unfuse_lora()
            pipe.fuse_lora(adapter_names=["adapter-2", "adapter-1"])

            # Fusing should still keep the LoRA layers
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0)).images
            self.assertTrue(
                np.allclose(output_all_lora_fused, ouputs_all_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should not change the output",
            )

1649
1650
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
1651
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1652
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1653
1654
1655
1656
1657
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1658
1659
1660
1661
1662
1663
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images
Sayak Paul's avatar
Sayak Paul committed
1664
            self.assertTrue(output_no_dora_lora.shape == self.output_shape)
1665
1666

            pipe.text_encoder.add_adapter(text_lora_config)
1667
1668
1669
1670
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
1671
1672

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1673
1674
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1675

1676
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1677
1678
1679
1680
1681
1682
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1683
1684
1685
1686
1687
1688
1689
1690

            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0)).images

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1691
    @unittest.skip("This is failing for now - need to investigate")
1692
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1693
1694
1695
1696
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
1697
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1698
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1699
1700
1701
        )
        for scheduler_cls in scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1702
1703
1704
1705
1706
1707
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config)
1708
1709
1710
1711
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config)
            else:
                pipe.transformer.add_adapter(denoiser_lora_config)
1712
1713

            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
1714
1715
            denoiser_to_checked = pipe.unet if self.unet_kwargs is not None else pipe.transformer
            self.assertTrue(check_if_lora_correctly_set(denoiser_to_checked), "Lora not correctly set in denoiser")
1716

1717
            if self.has_two_text_encoders or self.has_three_text_encoders:
1718
1719
1720
1721
1722
1723
1724
1725
                pipe.text_encoder_2.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1726
            if self.has_two_text_encoders or self.has_three_text_encoders:
1727
1728
1729
1730
1731
1732
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
            _ = pipe(**inputs, generator=torch.manual_seed(0)).images

    def test_modify_padding_mode(self):
Sayak Paul's avatar
Sayak Paul committed
1733
        if self.pipeline_class.__name__ in ["StableDiffusion3Pipeline", "FluxPipeline"]:
1734
1735
            return

1736
1737
1738
1739
1740
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

1741
        scheduler_classes = (
Sayak Paul's avatar
Sayak Paul committed
1742
            [FlowMatchEulerDiscreteScheduler] if self.uses_flow_matching else [DDIMScheduler, LCMScheduler]
1743
1744
        )
        for scheduler_cls in scheduler_classes:
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
            _ = pipe(**inputs).images