utils.py 102 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sayak Paul's avatar
Sayak Paul committed
15
import inspect
16
import os
Aryan's avatar
Aryan committed
17
import re
18
19
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
20
from itertools import product
21
22

import numpy as np
23
import pytest
24
25
26
27
28
29
30
31
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    LCMScheduler,
    UNet2DConditionModel,
)
32
from diffusers.utils import logging
33
34
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
35
    CaptureLogger,
36
    floats_tensor,
37
    is_torch_version,
38
39
    require_peft_backend,
    require_peft_version_greater,
40
    require_transformers_version_greater,
41
    skip_mps,
42
43
44
45
46
    torch_device,
)


if is_peft_available():
47
    from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


74
75
76
77
78
79
def initialize_dummy_state_dict(state_dict):
    if not all(v.device.type == "meta" for _, v in state_dict.items()):
        raise ValueError("`state_dict` has non-meta values.")
    return {k: torch.randn(v.shape, device=torch_device, dtype=v.dtype) for k, v in state_dict.items()}


80
81
82
POSSIBLE_ATTENTION_KWARGS_NAMES = ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]


83
84
85
@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
Aryan's avatar
Aryan committed
86

87
88
    scheduler_cls = None
    scheduler_kwargs = None
Aryan's avatar
Aryan committed
89
    scheduler_classes = [DDIMScheduler, LCMScheduler]
Sayak Paul's avatar
Sayak Paul committed
90

91
    has_two_text_encoders = False
92
    has_three_text_encoders = False
93
94
95
96
97
98
    text_encoder_cls, text_encoder_id, text_encoder_subfolder = None, None, ""
    text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = None, None, ""
    text_encoder_3_cls, text_encoder_3_id, text_encoder_3_subfolder = None, None, ""
    tokenizer_cls, tokenizer_id, tokenizer_subfolder = None, None, ""
    tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = None, None, ""
    tokenizer_3_cls, tokenizer_3_id, tokenizer_3_subfolder = None, None, ""
Sayak Paul's avatar
Sayak Paul committed
99

100
    unet_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
101
    transformer_cls = None
102
    transformer_kwargs = None
Aryan's avatar
Aryan committed
103
    vae_cls = AutoencoderKL
104
105
    vae_kwargs = None

Aryan's avatar
Aryan committed
106
    text_encoder_target_modules = ["q_proj", "k_proj", "v_proj", "out_proj"]
107
    denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
Aryan's avatar
Aryan committed
108

109
    def get_dummy_components(self, scheduler_cls=None, use_dora=False):
110
111
112
113
114
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

115
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
116
117
118
        rank = 4

        torch.manual_seed(0)
119
120
121
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
Sayak Paul's avatar
Sayak Paul committed
122
            transformer = self.transformer_cls(**self.transformer_kwargs)
123
124
125
126

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
Aryan's avatar
Aryan committed
127
        vae = self.vae_cls(**self.vae_kwargs)
128

129
130
131
132
        text_encoder = self.text_encoder_cls.from_pretrained(
            self.text_encoder_id, subfolder=self.text_encoder_subfolder
        )
        tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id, subfolder=self.tokenizer_subfolder)
133

Sayak Paul's avatar
Sayak Paul committed
134
        if self.text_encoder_2_cls is not None:
135
136
137
138
139
140
            text_encoder_2 = self.text_encoder_2_cls.from_pretrained(
                self.text_encoder_2_id, subfolder=self.text_encoder_2_subfolder
            )
            tokenizer_2 = self.tokenizer_2_cls.from_pretrained(
                self.tokenizer_2_id, subfolder=self.tokenizer_2_subfolder
            )
141

Sayak Paul's avatar
Sayak Paul committed
142
        if self.text_encoder_3_cls is not None:
143
144
145
146
147
148
            text_encoder_3 = self.text_encoder_3_cls.from_pretrained(
                self.text_encoder_3_id, subfolder=self.text_encoder_3_subfolder
            )
            tokenizer_3 = self.tokenizer_3_cls.from_pretrained(
                self.tokenizer_3_id, subfolder=self.tokenizer_3_subfolder
            )
149

150
151
152
        text_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
Aryan's avatar
Aryan committed
153
            target_modules=self.text_encoder_target_modules,
154
            init_lora_weights=False,
155
            use_dora=use_dora,
156
157
        )

158
        denoiser_lora_config = LoraConfig(
159
160
            r=rank,
            lora_alpha=rank,
161
            target_modules=self.denoiser_target_modules,
162
163
            init_lora_weights=False,
            use_dora=use_dora,
164
165
        )

Sayak Paul's avatar
Sayak Paul committed
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
        pipeline_components = {
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        # Denoiser
        if self.unet_kwargs is not None:
            pipeline_components.update({"unet": unet})
        elif self.transformer_kwargs is not None:
            pipeline_components.update({"transformer": transformer})

        # Remaining text encoders.
        if self.text_encoder_2_cls is not None:
            pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
        if self.text_encoder_3_cls is not None:
            pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})

        # Remaining stuff
        init_params = inspect.signature(self.pipeline_class.__init__).parameters
        if "safety_checker" in init_params:
            pipeline_components.update({"safety_checker": None})
        if "feature_extractor" in init_params:
            pipeline_components.update({"feature_extractor": None})
        if "image_encoder" in init_params:
            pipeline_components.update({"image_encoder": None})
192

193
        return pipeline_components, text_lora_config, denoiser_lora_config
194

Sayak Paul's avatar
Sayak Paul committed
195
196
197
198
    @property
    def output_shape(self):
        raise NotImplementedError

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

220
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
221
222
223
224
225
226
227
228
229
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

230
231
232
233
234
235
236
237
238
239
240
    def _get_lora_state_dicts(self, modules_to_save):
        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(module)
        return state_dicts

    def _get_modules_to_save(self, pipe, has_denoiser=False):
        modules_to_save = {}
        lora_loadable_modules = self.pipeline_class._lora_loadable_modules

241
242
243
244
245
        if (
            "text_encoder" in lora_loadable_modules
            and hasattr(pipe, "text_encoder")
            and getattr(pipe.text_encoder, "peft_config", None) is not None
        ):
246
247
            modules_to_save["text_encoder"] = pipe.text_encoder

248
249
250
251
252
        if (
            "text_encoder_2" in lora_loadable_modules
            and hasattr(pipe, "text_encoder_2")
            and getattr(pipe.text_encoder_2, "peft_config", None) is not None
        ):
253
254
255
256
257
258
259
260
261
262
263
            modules_to_save["text_encoder_2"] = pipe.text_encoder_2

        if has_denoiser:
            if "unet" in lora_loadable_modules and hasattr(pipe, "unet"):
                modules_to_save["unet"] = pipe.unet

            if "transformer" in lora_loadable_modules and hasattr(pipe, "transformer"):
                modules_to_save["transformer"] = pipe.transformer

        return modules_to_save

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
    def check_if_adapters_added_correctly(
        self, pipe, text_lora_config=None, denoiser_lora_config=None, adapter_name="default"
    ):
        if text_lora_config is not None:
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, adapter_name=adapter_name)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

        if denoiser_lora_config is not None:
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, adapter_name=adapter_name)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
        else:
            denoiser = None

        if text_lora_config is not None and self.has_two_text_encoders or self.has_three_text_encoders:
            if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder_2.add_adapter(text_lora_config, adapter_name=adapter_name)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
        return pipe, denoiser

289
290
291
292
    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
293
        for scheduler_cls in self.scheduler_classes:
294
295
296
297
298
299
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
300
            output_no_lora = pipe(**inputs)[0]
Sayak Paul's avatar
Sayak Paul committed
301
            self.assertTrue(output_no_lora.shape == self.output_shape)
302
303
304
305
306
307

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
308
        for scheduler_cls in self.scheduler_classes:
309
310
311
312
313
314
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
315
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
316
            self.assertTrue(output_no_lora.shape == self.output_shape)
317

318
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
319

Aryan's avatar
Aryan committed
320
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
321
322
323
324
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
    @require_peft_version_greater("0.13.1")
    def test_low_cpu_mem_usage_with_injection(self):
        """Tests if we can inject LoRA state dict with low_cpu_mem_usage."""
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                inject_adapter_in_model(text_lora_config, pipe.text_encoder, low_cpu_mem_usage=True)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder."
                )
                self.assertTrue(
                    "meta" in {p.device.type for p in pipe.text_encoder.parameters()},
                    "The LoRA params should be on 'meta' device.",
                )

                te_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder))
                set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
                self.assertTrue(
                    "meta" not in {p.device.type for p in pipe.text_encoder.parameters()},
                    "No param should be on 'meta' device.",
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            inject_adapter_in_model(denoiser_lora_config, denoiser, low_cpu_mem_usage=True)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
            self.assertTrue(
                "meta" in {p.device.type for p in denoiser.parameters()}, "The LoRA params should be on 'meta' device."
            )

            denoiser_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(denoiser))
            set_peft_model_state_dict(denoiser, denoiser_state_dict, low_cpu_mem_usage=True)
            self.assertTrue(
                "meta" not in {p.device.type for p in denoiser.parameters()}, "No param should be on 'meta' device."
            )

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    inject_adapter_in_model(text_lora_config, pipe.text_encoder_2, low_cpu_mem_usage=True)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    self.assertTrue(
                        "meta" in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "The LoRA params should be on 'meta' device.",
                    )

                    te2_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder_2))
                    set_peft_model_state_dict(pipe.text_encoder_2, te2_state_dict, low_cpu_mem_usage=True)
                    self.assertTrue(
                        "meta" not in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "No param should be on 'meta' device.",
                    )

            _, _, inputs = self.get_dummy_inputs()
            output_lora = pipe(**inputs)[0]
            self.assertTrue(output_lora.shape == self.output_shape)

    @require_peft_version_greater("0.13.1")
387
    @require_transformers_version_greater("4.45.2")
388
389
390
391
392
393
394
395
396
397
398
399
400
    def test_low_cpu_mem_usage_with_loading(self):
        """Tests if we can load LoRA state dict with low_cpu_mem_usage."""

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

401
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=False)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results.",
                )

                # Now, check for `low_cpu_mem_usage.`
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=True)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained_low_cpu = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(
                        images_lora_from_pretrained_low_cpu, images_lora_from_pretrained, atol=1e-3, rtol=1e-3
                    ),
                    "Loading from saved checkpoints with `low_cpu_mem_usage` should give same results.",
                )

440
441
442
443
444
    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
445
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
Aryan's avatar
Aryan committed
446
447

        # TODO(diffusers): Discuss a common naming convention across library for 1.0.0 release
448
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
Aryan's avatar
Aryan committed
449
450
451
452
453
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

Aryan's avatar
Aryan committed
454
        for scheduler_cls in self.scheduler_classes:
455
456
457
458
459
460
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
461
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
462
            self.assertTrue(output_no_lora.shape == self.output_shape)
463

464
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
465

Aryan's avatar
Aryan committed
466
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
467
468
469
470
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
471
472
473
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

474
475
476
477
478
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
479
480
481
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

482
483
484
485
486
487
488
489
490
491
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
492
        for scheduler_cls in self.scheduler_classes:
493
494
495
496
497
498
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
499
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
500
            self.assertTrue(output_no_lora.shape == self.output_shape)
501

502
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
503
504
505
506
507

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

508
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
509
510
511
512
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
513

Aryan's avatar
Aryan committed
514
            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
515
516
517
518
519
520
521
522
523
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
524
        for scheduler_cls in self.scheduler_classes:
525
526
527
528
529
530
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
531
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
532
            self.assertTrue(output_no_lora.shape == self.output_shape)
533

534
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
535
536
537
538
539
540
541

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

542
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
543
544
545
546
547
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
548

Aryan's avatar
Aryan committed
549
            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
550
551
552
553
554
555
556
557
558
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Aryan's avatar
Aryan committed
559
        for scheduler_cls in self.scheduler_classes:
560
561
562
563
564
565
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
566
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
567
            self.assertTrue(output_no_lora.shape == self.output_shape)
568

569
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
570

Aryan's avatar
Aryan committed
571
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
572
573

            with tempfile.TemporaryDirectory() as tmpdirname:
574
575
                modules_to_save = self._get_modules_to_save(pipe)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
576

577
578
579
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )
Sayak Paul's avatar
Sayak Paul committed
580

581
582
583
584
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

585
586
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
587

588
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
589
590
591
592
593
594

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

595
596
597
598
599
600
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
601
        for scheduler_cls in self.scheduler_classes:
602
            components, _, _ = self.get_dummy_components(scheduler_cls)
603
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
604
605
            text_lora_config = LoraConfig(
                r=4,
606
                rank_pattern={self.text_encoder_target_modules[i]: i + 1 for i in range(3)},
607
                lora_alpha=4,
608
                target_modules=self.text_encoder_target_modules,
609
610
611
612
613
614
615
616
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
617
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
618
            self.assertTrue(output_no_lora.shape == self.output_shape)
619

620
621
622
623
624
625
626
627
628
629
630
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)

            state_dict = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
                # supports missing layers (PR#8324).
                state_dict = {
                    f"text_encoder.{module_name}": param
                    for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                    if "text_model.encoder.layers.4" not in module_name
                }
631

632
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
633
634
635
636
637
638
639
640
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    state_dict.update(
                        {
                            f"text_encoder_2.{module_name}": param
                            for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                            if "text_model.encoder.layers.4" not in module_name
                        }
                    )
641

Aryan's avatar
Aryan committed
642
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
643
644
645
646
647
648
649
650
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

Aryan's avatar
Aryan committed
651
            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
652
653
654
655
656
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

657
    def test_simple_inference_save_pretrained_with_text_lora(self):
658
659
660
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Aryan's avatar
Aryan committed
661
        for scheduler_cls in self.scheduler_classes:
662
663
664
665
666
667
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
668
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
669
            self.assertTrue(output_no_lora.shape == self.output_shape)
670

671
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
Aryan's avatar
Aryan committed
672
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
673
674
675
676
677
678
679

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

680
681
682
683
684
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                    "Lora not correctly set in text encoder",
                )
685

686
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
687
688
689
690
691
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                        "Lora not correctly set in text encoder 2",
                    )
692

Aryan's avatar
Aryan committed
693
            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
694
695
696
697
698
699

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

700
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
701
702
703
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Aryan's avatar
Aryan committed
704
        for scheduler_cls in self.scheduler_classes:
705
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
706
707
708
709
710
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
711
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
712
            self.assertTrue(output_no_lora.shape == self.output_shape)
713

714
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
715

Aryan's avatar
Aryan committed
716
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
717
718

            with tempfile.TemporaryDirectory() as tmpdirname:
719
720
721
722
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
Aryan's avatar
Aryan committed
723
                )
724

725
726
727
728
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

729
730
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
731

732
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
733
734
735
736
737
            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

738
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
739
740
741
742
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
743
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
744
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
Aryan's avatar
Aryan committed
745
746
747
748
749
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

Aryan's avatar
Aryan committed
750
        for scheduler_cls in self.scheduler_classes:
751
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
752
753
754
755
756
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
757
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
758
            self.assertTrue(output_no_lora.shape == self.output_shape)
759

760
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
761

Aryan's avatar
Aryan committed
762
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
763
764
765
766
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
767
768
769
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

770
771
772
773
774
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
775
776
777
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

778
779
780
781
782
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

Aryan's avatar
Aryan committed
783
784
785
786
787
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                    "The scaling parameter has not been correctly restored!",
                )
788

789
    def test_simple_inference_with_text_lora_denoiser_fused(self):
790
791
792
793
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Aryan's avatar
Aryan committed
794
        for scheduler_cls in self.scheduler_classes:
795
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
796
797
798
799
800
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
801
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
802
            self.assertTrue(output_no_lora.shape == self.output_shape)
803

804
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
805

Aryan's avatar
Aryan committed
806
807
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)

808
            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
809
810
811
812
813
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
814
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser")
815

816
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
817
818
819
820
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
821

Aryan's avatar
Aryan committed
822
            output_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
823
            self.assertFalse(
Aryan's avatar
Aryan committed
824
                np.allclose(output_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
825
826
            )

827
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
828
829
830
831
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
832
        for scheduler_cls in self.scheduler_classes:
833
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
834
835
836
837
838
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
839
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
840
            self.assertTrue(output_no_lora.shape == self.output_shape)
841

842
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
843
844
845
846
847
848

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
Aryan's avatar
Aryan committed
849
            self.assertFalse(check_if_lora_correctly_set(denoiser), "Lora not correctly unloaded in denoiser")
850

851
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
852
853
854
855
856
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
857

Aryan's avatar
Aryan committed
858
            output_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
859
            self.assertTrue(
Aryan's avatar
Aryan committed
860
                np.allclose(output_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
861
862
863
                "Fused lora should change the output",
            )

Aryan's avatar
Aryan committed
864
865
866
    def test_simple_inference_with_text_denoiser_lora_unfused(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
867
868
869
870
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
871
        for scheduler_cls in self.scheduler_classes:
872
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
873
874
875
876
877
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

878
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
879

Aryan's avatar
Aryan committed
880
881
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
882

Aryan's avatar
Aryan committed
883
884
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
885
886

            # unloading should remove the LoRA layers
Aryan's avatar
Aryan committed
887
888
889
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

Aryan's avatar
Aryan committed
890
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")
891

892
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
893
894
895
896
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )
897
898
899

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
Aryan's avatar
Aryan committed
900
901
                np.allclose(output_fused_lora, output_unfused_lora, atol=expected_atol, rtol=expected_rtol),
                "Fused lora should not change the output",
902
903
            )

904
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
905
906
907
908
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
909
        for scheduler_cls in self.scheduler_classes:
910
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
911
912
913
914
915
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
916
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
917

Aryan's avatar
Aryan committed
918
919
920
921
922
923
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
924

Aryan's avatar
Aryan committed
925
926
927
928
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
929

930
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
931
932
933
934
935
936
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
937
938

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
939
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
940
941
942
943
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_1, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
944
945

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
946
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
947
948
949
950
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
951
952

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
953
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
954
955
956
957
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
976
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
977
978
979
980
981
982

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

983
    def test_wrong_adapter_name_raises_error(self):
984
985
        adapter_name = "adapter-1"

986
987
988
989
990
991
992
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

993
994
995
        pipe, _ = self.check_if_adapters_added_correctly(
            pipe, text_lora_config, denoiser_lora_config, adapter_name=adapter_name
        )
996
997
998
999
1000
1001
1002

        with self.assertRaises(ValueError) as err_context:
            pipe.set_adapters("test")

        self.assertTrue("not in the list of present adapters" in str(err_context.exception))

        # test this works.
1003
        pipe.set_adapters(adapter_name)
1004
1005
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1006
    def test_multiple_wrong_adapter_name_raises_error(self):
1007
        adapter_name = "adapter-1"
1008
1009
1010
1011
1012
1013
1014
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

1015
1016
1017
        pipe, _ = self.check_if_adapters_added_correctly(
            pipe, text_lora_config, denoiser_lora_config, adapter_name=adapter_name
        )
1018
1019
1020
1021
1022

        scale_with_wrong_components = {"foo": 0.0, "bar": 0.0, "tik": 0.0}
        logger = logging.get_logger("diffusers.loaders.lora_base")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
1023
            pipe.set_adapters(adapter_name, adapter_weights=scale_with_wrong_components)
1024
1025
1026
1027
1028
1029

        wrong_components = sorted(set(scale_with_wrong_components.keys()))
        msg = f"The following components in `adapter_weights` are not part of the pipeline: {wrong_components}. "
        self.assertTrue(msg in str(cap_logger.out))

        # test this works.
1030
        pipe.set_adapters(adapter_name)
1031
1032
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1033
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
1034
1035
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
Aryan's avatar
Aryan committed
1036
        one adapter and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1037
        """
Aryan's avatar
Aryan committed
1038
        for scheduler_cls in self.scheduler_classes:
1039
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1040
1041
1042
1043
1044
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1045
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1046
1047
1048

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1049
1050
1051
1052

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1053

1054
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1055
1056
1057
1058
1059
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1060
1061
1062

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
Aryan's avatar
Aryan committed
1063
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1064
1065
1066

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
Aryan's avatar
Aryan committed
1067
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1083
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1084
1085
1086
1087
1088
1089

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1090
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1091
1092
1093
1094
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set differnt weights for different blocks (i.e. block lora)
        """
Aryan's avatar
Aryan committed
1095
        for scheduler_cls in self.scheduler_classes:
1096
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1097
1098
1099
1100
1101
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1102
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1103

Aryan's avatar
Aryan committed
1104
1105
1106
1107
1108
1109
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
UmerHA's avatar
UmerHA committed
1110

Aryan's avatar
Aryan committed
1111
1112
1113
1114
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1115

1116
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1117
1118
1119
1120
1121
1122
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1123
1124
1125
1126

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}

Aryan's avatar
Aryan committed
1127
1128
            pipe.set_adapters("adapter-1", scales_1)
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1129
1130

            pipe.set_adapters("adapter-2", scales_2)
Aryan's avatar
Aryan committed
1131
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1132
1133

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])
Aryan's avatar
Aryan committed
1134
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1153
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1164
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1230
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1231
1232
1233
1234
1235
1236
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1237
1238
1239

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1240

1241
        if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1242
1243
1244
            lora_loadable_components = self.pipeline_class._lora_loadable_modules
            if "text_encoder_2" in lora_loadable_components:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1245
1246
1247
1248
1249
1250
1251
1252

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1253
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1254
1255
1256
1257
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
Aryan's avatar
Aryan committed
1258
        for scheduler_cls in self.scheduler_classes:
1259
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1260
1261
1262
1263
1264
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1265
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1266

Aryan's avatar
Aryan committed
1267
1268
1269
1270
1271
1272
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1273

Aryan's avatar
Aryan committed
1274
1275
1276
1277
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1278

1279
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1280
1281
1282
1283
1284
1285
1286
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1287
1288

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1289
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1290
1291

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1292
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1293
1294

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1295
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
Aryan's avatar
Aryan committed
1313
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1314
1315
1316
1317
1318
1319
1320

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
Aryan's avatar
Aryan committed
1321
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1322
1323
1324
1325
1326
1327

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

Aryan's avatar
Aryan committed
1328
1329
1330
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1331

Aryan's avatar
Aryan committed
1332
1333
1334
1335
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1336
1337
1338
1339

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

Aryan's avatar
Aryan committed
1340
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1341
1342
1343
1344
1345
1346

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1347
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1348
1349
1350
1351
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1352
        for scheduler_cls in self.scheduler_classes:
1353
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1354
1355
1356
1357
1358
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1359
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1360

Aryan's avatar
Aryan committed
1361
1362
1363
1364
1365
1366
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1367

Aryan's avatar
Aryan committed
1368
1369
1370
1371
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1372

1373
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1374
1375
1376
1377
1378
1379
1380
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1381
1382

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1383
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1384
1385

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1386
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1387
1388

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1389
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
Aryan's avatar
Aryan committed
1408
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0))[0]
1409
1410
1411
1412
1413
1414
1415

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1416
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1417
1418
1419
1420
1421
1422

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1423
    @skip_mps
1424
    @pytest.mark.xfail(
1425
        condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
1426
        reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
1427
        strict=False,
1428
    )
1429
    def test_lora_fuse_nan(self):
Aryan's avatar
Aryan committed
1430
        for scheduler_cls in self.scheduler_classes:
1431
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1432
1433
1434
1435
1436
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1437
1438
1439
1440
1441
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1442

Aryan's avatar
Aryan committed
1443
1444
1445
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1446
1447
1448

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1449
1450
1451
1452
1453
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
1454
                    named_modules = [name for name, _ in pipe.transformer.named_modules()]
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
                    possible_tower_names = [
                        "transformer_blocks",
                        "blocks",
                        "joint_transformer_blocks",
                        "single_transformer_blocks",
                    ]
                    filtered_tower_names = [
                        tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
                    ]
                    if len(filtered_tower_names) == 0:
                        reason = (
                            f"`pipe.transformer` didn't have any of the following attributes: {possible_tower_names}."
                        )
                        raise ValueError(reason)
                    for tower_name in filtered_tower_names:
                        transformer_tower = getattr(pipe.transformer, tower_name)
                        has_attn1 = any("attn1" in name for name in named_modules)
                        if has_attn1:
                            transformer_tower[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
                        else:
                            transformer_tower[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1476
1477
1478

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
Aryan's avatar
Aryan committed
1479
                pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
1480
1481

            # without we should not see an error, but every image will be black
Aryan's avatar
Aryan committed
1482
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
Sayak Paul's avatar
Sayak Paul committed
1483
            out = pipe(**inputs)[0]
1484
1485
1486
1487
1488
1489
1490
1491

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1492
        for scheduler_cls in self.scheduler_classes:
1493
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1494
1495
1496
1497
1498
1499
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1500
1501
1502

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1503
1504
1505
1506
1507

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1508
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1521
        for scheduler_cls in self.scheduler_classes:
1522
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1523
1524
1525
1526
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

Aryan's avatar
Aryan committed
1527
1528
1529
1530
1531
1532
            # 1.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                dicts_to_be_checked = {"text_encoder": ["adapter-1"]}

1533
1534
1535
1536
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
Aryan's avatar
Aryan committed
1537
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1538
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
1539

Aryan's avatar
Aryan committed
1540
1541
1542
1543
1544
1545
1546
1547
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 2.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1548
1549
1550
1551
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
Aryan's avatar
Aryan committed
1552
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1553
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1554

Aryan's avatar
Aryan committed
1555
1556
1557
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 3.
1558
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1559
1560
1561
1562
1563

            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1564
1565
1566
1567
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
Aryan's avatar
Aryan committed
1568

1569
1570
            self.assertDictEqual(
                pipe.get_list_adapters(),
1571
                dicts_to_be_checked,
1572
1573
            )

Aryan's avatar
Aryan committed
1574
1575
1576
1577
1578
            # 4.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1579
            if self.unet_kwargs is not None:
Aryan's avatar
Aryan committed
1580
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
1581
1582
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
Aryan's avatar
Aryan committed
1583
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")
1584
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
Aryan's avatar
Aryan committed
1585

1586
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1587
1588

    @require_peft_version_greater(peft_version="0.6.2")
Aryan's avatar
Aryan committed
1589
1590
1591
    def test_simple_inference_with_text_lora_denoiser_fused_multi(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
1592
1593
1594
1595
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
Aryan's avatar
Aryan committed
1596
        for scheduler_cls in self.scheduler_classes:
1597
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1598
1599
1600
1601
1602
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1603
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1604
            self.assertTrue(output_no_lora.shape == self.output_shape)
1605

Aryan's avatar
Aryan committed
1606
1607
1608
1609
1610
1611
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
1612
1613
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1614
1615

            # Attach a second adapter
Aryan's avatar
Aryan committed
1616
1617
1618
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")

Aryan's avatar
Aryan committed
1619
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1620

Aryan's avatar
Aryan committed
1621
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1622

1623
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1624
1625
1626
1627
1628
1629
1630
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1631
1632
1633

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1634
            outputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1635
1636

            pipe.set_adapters(["adapter-1"])
Aryan's avatar
Aryan committed
1637
            outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1638

Aryan's avatar
Aryan committed
1639
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-1"])
1640
1641

            # Fusing should still keep the LoRA layers so outpout should remain the same
Aryan's avatar
Aryan committed
1642
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1643
1644

            self.assertTrue(
Aryan's avatar
Aryan committed
1645
                np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
1646
1647
1648
                "Fused lora should not change the output",
            )

Aryan's avatar
Aryan committed
1649
1650
1651
1652
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            pipe.fuse_lora(
                components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-2", "adapter-1"]
            )
1653
1654

            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
1655
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1656
            self.assertTrue(
Aryan's avatar
Aryan committed
1657
                np.allclose(output_all_lora_fused, outputs_all_lora, atol=expected_atol, rtol=expected_rtol),
1658
1659
1660
                "Fused lora should not change the output",
            )

1661
1662
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
Aryan's avatar
Aryan committed
1663
        for scheduler_cls in self.scheduler_classes:
1664
1665
1666
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1667
1668
1669
1670
1671
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1672
            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1673
            self.assertTrue(output_no_dora_lora.shape == self.output_shape)
1674

1675
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
1676

Aryan's avatar
Aryan committed
1677
            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1678
1679
1680
1681
1682
1683

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
    def test_missing_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        # To make things dynamic since we cannot settle with a single key for all the models where we
        # offer PEFT support.
        missing_key = [k for k in state_dict if "lora_A" in k][0]
        del state_dict[missing_key]

1711
        logger = logging.get_logger("diffusers.loaders.peft")
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        # Since the missing key won't contain the adapter name ("default_0").
        # Also strip out the component prefix (such as "unet." from `missing_key`).
        component = list({k.split(".")[0] for k in state_dict})[0]
        self.assertTrue(missing_key.replace(f"{component}.", "") in cap_logger.out.replace("default_0.", ""))

    def test_unexpected_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        unexpected_key = [k for k in state_dict if "lora_A" in k][0] + ".diffusers_cat"
        state_dict[unexpected_key] = torch.tensor(1.0, device=torch_device)

1746
        logger = logging.get_logger("diffusers.loaders.peft")
1747
1748
1749
1750
1751
1752
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        self.assertTrue(".diffusers_cat" in cap_logger.out)

1753
    @unittest.skip("This is failing for now - need to investigate")
1754
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1755
1756
1757
1758
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
1759
        for scheduler_cls in self.scheduler_classes:
1760
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1761
1762
1763
1764
1765
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

1766
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
1767
1768
1769
1770

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1771
            if self.has_two_text_encoders or self.has_three_text_encoders:
1772
1773
1774
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
Aryan's avatar
Aryan committed
1775
            _ = pipe(**inputs, generator=torch.manual_seed(0))[0]
1776
1777
1778
1779
1780
1781
1782

    def test_modify_padding_mode(self):
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

Aryan's avatar
Aryan committed
1783
        for scheduler_cls in self.scheduler_classes:
1784
1785
1786
1787
1788
1789
1790
1791
1792
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
1793
            _ = pipe(**inputs)[0]
1794

1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
    def test_logs_info_when_no_lora_keys_found(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, _ = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        original_out = pipe(**inputs, generator=torch.manual_seed(0))[0]

        no_op_state_dict = {"lora_foo": torch.tensor(2.0), "lora_bar": torch.tensor(3.0)}
        logger = logging.get_logger("diffusers.loaders.peft")
1808
        logger.setLevel(logging.WARNING)
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827

        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(no_op_state_dict)
        out_after_lora_attempt = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser = getattr(pipe, "unet") if self.unet_kwargs is not None else getattr(pipe, "transformer")
        self.assertTrue(cap_logger.out.startswith(f"No LoRA keys associated to {denoiser.__class__.__name__}"))
        self.assertTrue(np.allclose(original_out, out_after_lora_attempt, atol=1e-5, rtol=1e-5))

        # test only for text encoder
        for lora_module in self.pipeline_class._lora_loadable_modules:
            if "text_encoder" in lora_module:
                text_encoder = getattr(pipe, lora_module)
                if lora_module == "text_encoder":
                    prefix = "text_encoder"
                elif lora_module == "text_encoder_2":
                    prefix = "text_encoder_2"

                logger = logging.get_logger("diffusers.loaders.lora_base")
1828
                logger.setLevel(logging.WARNING)
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838

                with CaptureLogger(logger) as cap_logger:
                    self.pipeline_class.load_lora_into_text_encoder(
                        no_op_state_dict, network_alphas=None, text_encoder=text_encoder, prefix=prefix
                    )

                self.assertTrue(
                    cap_logger.out.startswith(f"No LoRA keys associated to {text_encoder.__class__.__name__}")
                )

1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
    def test_set_adapters_match_attention_kwargs(self):
        """Test to check if outputs after `set_adapters()` and attention kwargs match."""
        call_signature_keys = inspect.signature(self.pipeline_class.__call__).parameters.keys()
        for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
            if possible_attention_kwargs in call_signature_keys:
                attention_kwargs_name = possible_attention_kwargs
                break
        assert attention_kwargs_name is not None

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

1858
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

            lora_scale = 0.5
            attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
            self.assertFalse(
                np.allclose(output_no_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            pipe.set_adapters("default", lora_scale)
            output_lora_scale_wo_kwargs = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(
                not np.allclose(output_no_lora, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
            self.assertTrue(
                np.allclose(output_lora_scale, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should match the output of `set_adapters()`.",
            )

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                output_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
                self.assertTrue(
                    not np.allclose(output_no_lora, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Lora + scale should change the output",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as attention_kwargs.",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale_wo_kwargs, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as set_adapters().",
                )
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921

    @require_peft_version_greater("0.13.2")
    def test_lora_B_bias(self):
        # Currently, this test is only relevant for Flux Control LoRA as we are not
        # aware of any other LoRA checkpoint that has its `lora_B` biases trained.
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # keep track of the bias values of the base layers to perform checks later.
        bias_values = {}
        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, module in denoiser.named_modules():
1922
            if any(k in name for k in self.denoiser_target_modules):
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
                if module.bias is not None:
                    bias_values[name] = module.bias.data.clone()

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        logger = logging.get_logger("diffusers.loaders.lora_pipeline")
        logger.setLevel(logging.INFO)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser_lora_config.lora_bias = False
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_false_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
        pipe.delete_adapters("adapter-1")

        denoiser_lora_config.lora_bias = True
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_true_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        self.assertFalse(np.allclose(original_output, lora_bias_false_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(original_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(lora_bias_false_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))

    def test_correct_lora_configs_with_different_ranks(self):
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")

        lora_output_same_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, _ in denoiser.named_modules():
            if "to_k" in name and "attn" in name and "lora" not in name:
                module_name_to_rank_update = name.replace(".base_layer.", ".")
                break

        # change the rank_pattern
        updated_rank = denoiser_lora_config.r * 2
        denoiser_lora_config.rank_pattern = {module_name_to_rank_update: updated_rank}

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.unet.peft_config["adapter-1"].rank_pattern
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.transformer.peft_config["adapter-1"].rank_pattern

        self.assertTrue(updated_rank_pattern == {module_name_to_rank_update: updated_rank})

        lora_output_diff_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_same_rank, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_rank, lora_output_same_rank, atol=1e-3, rtol=1e-3))

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        # similarly change the alpha_pattern
        updated_alpha = denoiser_lora_config.lora_alpha * 2
        denoiser_lora_config.alpha_pattern = {module_name_to_rank_update: updated_alpha}
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.unet.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.transformer.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )

        lora_output_diff_alpha = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))
Aryan's avatar
Aryan committed
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042

    def test_layerwise_casting_inference_denoiser(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if "lora" in name or any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def initialize_pipeline(storage_dtype=None, compute_dtype=torch.float32):
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)

2043
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
Aryan's avatar
Aryan committed
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060

            if storage_dtype is not None:
                denoiser.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
                check_linear_dtype(denoiser, storage_dtype, compute_dtype)

            return pipe

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe_fp32 = initialize_pipeline(storage_dtype=None)
        pipe_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_fp32 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.float32)
        pipe_float8_e4m3_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_bf16 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
        pipe_float8_e4m3_bf16(**inputs, generator=torch.manual_seed(0))[0]
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151

    @require_peft_version_greater("0.14.0")
    def test_layerwise_casting_peft_input_autocast_denoiser(self):
        r"""
        A test that checks if layerwise casting works correctly with PEFT layers and forward pass does not fail. This
        is different from `test_layerwise_casting_inference_denoiser` as that disables the application of layerwise
        cast hooks on the PEFT layers (relevant logic in `models.modeling_utils.ModelMixin.enable_layerwise_casting`).
        In this test, we enable the layerwise casting on the PEFT layers as well. If run with PEFT version <= 0.14.0,
        this test will fail with the following error:

        ```
        RuntimeError: expected mat1 and mat2 to have the same dtype, but got: c10::Float8_e4m3fn != float
        ```

        See the docstring of [`hooks.layerwise_casting.PeftInputAutocastDisableHook`] for more details.
        """

        from diffusers.hooks.layerwise_casting import (
            _PEFT_AUTOCAST_DISABLE_HOOK,
            DEFAULT_SKIP_MODULES_PATTERN,
            SUPPORTED_PYTORCH_LAYERS,
            apply_layerwise_casting,
        )

        storage_dtype = torch.float8_e4m3fn
        compute_dtype = torch.float32

        def check_module(denoiser):
            # This will also check if the peft layers are in torch.float8_e4m3fn dtype (unlike test_layerwise_casting_inference_denoiser)
            for name, module in denoiser.named_modules():
                if not isinstance(module, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(module, "weight", None) is not None:
                    self.assertEqual(module.weight.dtype, dtype_to_check)
                if getattr(module, "bias", None) is not None:
                    self.assertEqual(module.bias.dtype, dtype_to_check)
                if isinstance(module, BaseTunerLayer):
                    self.assertTrue(getattr(module, "_diffusers_hook", None) is not None)
                    self.assertTrue(module._diffusers_hook.get_hook(_PEFT_AUTOCAST_DISABLE_HOOK) is not None)

        # 1. Test forward with add_adapter
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device, dtype=compute_dtype)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
        if getattr(denoiser, "_skip_layerwise_casting_patterns", None) is not None:
            patterns_to_check += tuple(denoiser._skip_layerwise_casting_patterns)

        apply_layerwise_casting(
            denoiser, storage_dtype=storage_dtype, compute_dtype=compute_dtype, skip_modules_pattern=patterns_to_check
        )
        check_module(denoiser)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        pipe(**inputs, generator=torch.manual_seed(0))[0]

        # 2. Test forward with load_lora_weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
            )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            components, _, _ = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)
            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            apply_layerwise_casting(
                denoiser,
                storage_dtype=storage_dtype,
                compute_dtype=compute_dtype,
                skip_modules_pattern=patterns_to_check,
            )
            check_module(denoiser)

            _, _, inputs = self.get_dummy_inputs(with_generator=False)
            pipe(**inputs, generator=torch.manual_seed(0))[0]