utils.py 109 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Sayak Paul's avatar
Sayak Paul committed
15
import inspect
16
import os
Aryan's avatar
Aryan committed
17
import re
18
19
import tempfile
import unittest
UmerHA's avatar
UmerHA committed
20
from itertools import product
21
22

import numpy as np
23
import pytest
24
25
26
27
28
29
30
31
import torch

from diffusers import (
    AutoencoderKL,
    DDIMScheduler,
    LCMScheduler,
    UNet2DConditionModel,
)
32
from diffusers.utils import logging
33
34
from diffusers.utils.import_utils import is_peft_available
from diffusers.utils.testing_utils import (
35
    CaptureLogger,
36
    floats_tensor,
37
    is_torch_version,
38
39
    require_peft_backend,
    require_peft_version_greater,
40
    require_transformers_version_greater,
41
    skip_mps,
42
43
44
45
46
    torch_device,
)


if is_peft_available():
47
    from peft import LoraConfig, inject_adapter_in_model, set_peft_model_state_dict
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
    from peft.tuners.tuners_utils import BaseTunerLayer
    from peft.utils import get_peft_model_state_dict


def state_dicts_almost_equal(sd1, sd2):
    sd1 = dict(sorted(sd1.items()))
    sd2 = dict(sorted(sd2.items()))

    models_are_equal = True
    for ten1, ten2 in zip(sd1.values(), sd2.values()):
        if (ten1 - ten2).abs().max() > 1e-3:
            models_are_equal = False

    return models_are_equal


def check_if_lora_correctly_set(model) -> bool:
    """
    Checks if the LoRA layers are correctly set with peft
    """
    for module in model.modules():
        if isinstance(module, BaseTunerLayer):
            return True
    return False


74
75
76
77
78
79
def initialize_dummy_state_dict(state_dict):
    if not all(v.device.type == "meta" for _, v in state_dict.items()):
        raise ValueError("`state_dict` has non-meta values.")
    return {k: torch.randn(v.shape, device=torch_device, dtype=v.dtype) for k, v in state_dict.items()}


80
81
82
POSSIBLE_ATTENTION_KWARGS_NAMES = ["cross_attention_kwargs", "joint_attention_kwargs", "attention_kwargs"]


83
84
85
86
87
88
89
90
91
92
93
94
def determine_attention_kwargs_name(pipeline_class):
    call_signature_keys = inspect.signature(pipeline_class.__call__).parameters.keys()

    # TODO(diffusers): Discuss a common naming convention across library for 1.0.0 release
    for possible_attention_kwargs in POSSIBLE_ATTENTION_KWARGS_NAMES:
        if possible_attention_kwargs in call_signature_keys:
            attention_kwargs_name = possible_attention_kwargs
            break
    assert attention_kwargs_name is not None
    return attention_kwargs_name


95
96
97
@require_peft_backend
class PeftLoraLoaderMixinTests:
    pipeline_class = None
Aryan's avatar
Aryan committed
98

99
100
    scheduler_cls = None
    scheduler_kwargs = None
Aryan's avatar
Aryan committed
101
    scheduler_classes = [DDIMScheduler, LCMScheduler]
Sayak Paul's avatar
Sayak Paul committed
102

103
    has_two_text_encoders = False
104
    has_three_text_encoders = False
105
106
107
108
109
110
    text_encoder_cls, text_encoder_id, text_encoder_subfolder = None, None, ""
    text_encoder_2_cls, text_encoder_2_id, text_encoder_2_subfolder = None, None, ""
    text_encoder_3_cls, text_encoder_3_id, text_encoder_3_subfolder = None, None, ""
    tokenizer_cls, tokenizer_id, tokenizer_subfolder = None, None, ""
    tokenizer_2_cls, tokenizer_2_id, tokenizer_2_subfolder = None, None, ""
    tokenizer_3_cls, tokenizer_3_id, tokenizer_3_subfolder = None, None, ""
Sayak Paul's avatar
Sayak Paul committed
111

112
    unet_kwargs = None
Sayak Paul's avatar
Sayak Paul committed
113
    transformer_cls = None
114
    transformer_kwargs = None
Aryan's avatar
Aryan committed
115
    vae_cls = AutoencoderKL
116
117
    vae_kwargs = None

Aryan's avatar
Aryan committed
118
    text_encoder_target_modules = ["q_proj", "k_proj", "v_proj", "out_proj"]
119
    denoiser_target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
Aryan's avatar
Aryan committed
120

121
    def get_dummy_components(self, scheduler_cls=None, use_dora=False):
122
123
124
125
126
        if self.unet_kwargs and self.transformer_kwargs:
            raise ValueError("Both `unet_kwargs` and `transformer_kwargs` cannot be specified.")
        if self.has_two_text_encoders and self.has_three_text_encoders:
            raise ValueError("Both `has_two_text_encoders` and `has_three_text_encoders` cannot be True.")

127
        scheduler_cls = self.scheduler_cls if scheduler_cls is None else scheduler_cls
128
129
130
        rank = 4

        torch.manual_seed(0)
131
132
133
        if self.unet_kwargs is not None:
            unet = UNet2DConditionModel(**self.unet_kwargs)
        else:
Sayak Paul's avatar
Sayak Paul committed
134
            transformer = self.transformer_cls(**self.transformer_kwargs)
135
136
137
138

        scheduler = scheduler_cls(**self.scheduler_kwargs)

        torch.manual_seed(0)
Aryan's avatar
Aryan committed
139
        vae = self.vae_cls(**self.vae_kwargs)
140

141
142
143
144
        text_encoder = self.text_encoder_cls.from_pretrained(
            self.text_encoder_id, subfolder=self.text_encoder_subfolder
        )
        tokenizer = self.tokenizer_cls.from_pretrained(self.tokenizer_id, subfolder=self.tokenizer_subfolder)
145

Sayak Paul's avatar
Sayak Paul committed
146
        if self.text_encoder_2_cls is not None:
147
148
149
150
151
152
            text_encoder_2 = self.text_encoder_2_cls.from_pretrained(
                self.text_encoder_2_id, subfolder=self.text_encoder_2_subfolder
            )
            tokenizer_2 = self.tokenizer_2_cls.from_pretrained(
                self.tokenizer_2_id, subfolder=self.tokenizer_2_subfolder
            )
153

Sayak Paul's avatar
Sayak Paul committed
154
        if self.text_encoder_3_cls is not None:
155
156
157
158
159
160
            text_encoder_3 = self.text_encoder_3_cls.from_pretrained(
                self.text_encoder_3_id, subfolder=self.text_encoder_3_subfolder
            )
            tokenizer_3 = self.tokenizer_3_cls.from_pretrained(
                self.tokenizer_3_id, subfolder=self.tokenizer_3_subfolder
            )
161

162
163
164
        text_lora_config = LoraConfig(
            r=rank,
            lora_alpha=rank,
Aryan's avatar
Aryan committed
165
            target_modules=self.text_encoder_target_modules,
166
            init_lora_weights=False,
167
            use_dora=use_dora,
168
169
        )

170
        denoiser_lora_config = LoraConfig(
171
172
            r=rank,
            lora_alpha=rank,
173
            target_modules=self.denoiser_target_modules,
174
175
            init_lora_weights=False,
            use_dora=use_dora,
176
177
        )

Sayak Paul's avatar
Sayak Paul committed
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
        pipeline_components = {
            "scheduler": scheduler,
            "vae": vae,
            "text_encoder": text_encoder,
            "tokenizer": tokenizer,
        }
        # Denoiser
        if self.unet_kwargs is not None:
            pipeline_components.update({"unet": unet})
        elif self.transformer_kwargs is not None:
            pipeline_components.update({"transformer": transformer})

        # Remaining text encoders.
        if self.text_encoder_2_cls is not None:
            pipeline_components.update({"tokenizer_2": tokenizer_2, "text_encoder_2": text_encoder_2})
        if self.text_encoder_3_cls is not None:
            pipeline_components.update({"tokenizer_3": tokenizer_3, "text_encoder_3": text_encoder_3})

        # Remaining stuff
        init_params = inspect.signature(self.pipeline_class.__init__).parameters
        if "safety_checker" in init_params:
            pipeline_components.update({"safety_checker": None})
        if "feature_extractor" in init_params:
            pipeline_components.update({"feature_extractor": None})
        if "image_encoder" in init_params:
            pipeline_components.update({"image_encoder": None})
204

205
        return pipeline_components, text_lora_config, denoiser_lora_config
206

Sayak Paul's avatar
Sayak Paul committed
207
208
209
210
    @property
    def output_shape(self):
        raise NotImplementedError

211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
    def get_dummy_inputs(self, with_generator=True):
        batch_size = 1
        sequence_length = 10
        num_channels = 4
        sizes = (32, 32)

        generator = torch.manual_seed(0)
        noise = floats_tensor((batch_size, num_channels) + sizes)
        input_ids = torch.randint(1, sequence_length, size=(batch_size, sequence_length), generator=generator)

        pipeline_inputs = {
            "prompt": "A painting of a squirrel eating a burger",
            "num_inference_steps": 5,
            "guidance_scale": 6.0,
            "output_type": "np",
        }
        if with_generator:
            pipeline_inputs.update({"generator": generator})

        return noise, input_ids, pipeline_inputs

232
    # Copied from: https://colab.research.google.com/gist/sayakpaul/df2ef6e1ae6d8c10a49d859883b10860/scratchpad.ipynb
233
234
235
236
237
238
239
240
241
    def get_dummy_tokens(self):
        max_seq_length = 77

        inputs = torch.randint(2, 56, size=(1, max_seq_length), generator=torch.manual_seed(0))

        prepared_inputs = {}
        prepared_inputs["input_ids"] = inputs
        return prepared_inputs

242
243
244
245
246
247
248
249
250
251
252
    def _get_lora_state_dicts(self, modules_to_save):
        state_dicts = {}
        for module_name, module in modules_to_save.items():
            if module is not None:
                state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(module)
        return state_dicts

    def _get_modules_to_save(self, pipe, has_denoiser=False):
        modules_to_save = {}
        lora_loadable_modules = self.pipeline_class._lora_loadable_modules

253
254
255
256
257
        if (
            "text_encoder" in lora_loadable_modules
            and hasattr(pipe, "text_encoder")
            and getattr(pipe.text_encoder, "peft_config", None) is not None
        ):
258
259
            modules_to_save["text_encoder"] = pipe.text_encoder

260
261
262
263
264
        if (
            "text_encoder_2" in lora_loadable_modules
            and hasattr(pipe, "text_encoder_2")
            and getattr(pipe.text_encoder_2, "peft_config", None) is not None
        ):
265
266
267
268
269
270
271
272
273
274
275
            modules_to_save["text_encoder_2"] = pipe.text_encoder_2

        if has_denoiser:
            if "unet" in lora_loadable_modules and hasattr(pipe, "unet"):
                modules_to_save["unet"] = pipe.unet

            if "transformer" in lora_loadable_modules and hasattr(pipe, "transformer"):
                modules_to_save["transformer"] = pipe.transformer

        return modules_to_save

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
    def check_if_adapters_added_correctly(
        self, pipe, text_lora_config=None, denoiser_lora_config=None, adapter_name="default"
    ):
        if text_lora_config is not None:
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, adapter_name=adapter_name)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

        if denoiser_lora_config is not None:
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, adapter_name=adapter_name)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
        else:
            denoiser = None

        if text_lora_config is not None and self.has_two_text_encoders or self.has_three_text_encoders:
            if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder_2.add_adapter(text_lora_config, adapter_name=adapter_name)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                )
        return pipe, denoiser

301
302
303
304
    def test_simple_inference(self):
        """
        Tests a simple inference and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
305
        for scheduler_cls in self.scheduler_classes:
306
307
308
309
310
311
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
312
            output_no_lora = pipe(**inputs)[0]
Sayak Paul's avatar
Sayak Paul committed
313
            self.assertTrue(output_no_lora.shape == self.output_shape)
314
315
316
317
318
319

    def test_simple_inference_with_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
320
        for scheduler_cls in self.scheduler_classes:
321
322
323
324
325
326
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
327
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
328
            self.assertTrue(output_no_lora.shape == self.output_shape)
329

330
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
331

Aryan's avatar
Aryan committed
332
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
333
334
335
336
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    @require_peft_version_greater("0.13.1")
    def test_low_cpu_mem_usage_with_injection(self):
        """Tests if we can inject LoRA state dict with low_cpu_mem_usage."""
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                inject_adapter_in_model(text_lora_config, pipe.text_encoder, low_cpu_mem_usage=True)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder."
                )
                self.assertTrue(
                    "meta" in {p.device.type for p in pipe.text_encoder.parameters()},
                    "The LoRA params should be on 'meta' device.",
                )

                te_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder))
                set_peft_model_state_dict(pipe.text_encoder, te_state_dict, low_cpu_mem_usage=True)
                self.assertTrue(
                    "meta" not in {p.device.type for p in pipe.text_encoder.parameters()},
                    "No param should be on 'meta' device.",
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            inject_adapter_in_model(denoiser_lora_config, denoiser, low_cpu_mem_usage=True)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
            self.assertTrue(
                "meta" in {p.device.type for p in denoiser.parameters()}, "The LoRA params should be on 'meta' device."
            )

            denoiser_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(denoiser))
            set_peft_model_state_dict(denoiser, denoiser_state_dict, low_cpu_mem_usage=True)
            self.assertTrue(
                "meta" not in {p.device.type for p in denoiser.parameters()}, "No param should be on 'meta' device."
            )

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    inject_adapter_in_model(text_lora_config, pipe.text_encoder_2, low_cpu_mem_usage=True)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
                    self.assertTrue(
                        "meta" in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "The LoRA params should be on 'meta' device.",
                    )

                    te2_state_dict = initialize_dummy_state_dict(get_peft_model_state_dict(pipe.text_encoder_2))
                    set_peft_model_state_dict(pipe.text_encoder_2, te2_state_dict, low_cpu_mem_usage=True)
                    self.assertTrue(
                        "meta" not in {p.device.type for p in pipe.text_encoder_2.parameters()},
                        "No param should be on 'meta' device.",
                    )

            _, _, inputs = self.get_dummy_inputs()
            output_lora = pipe(**inputs)[0]
            self.assertTrue(output_lora.shape == self.output_shape)

    @require_peft_version_greater("0.13.1")
399
    @require_transformers_version_greater("4.45.2")
400
401
402
403
404
405
406
407
408
409
410
411
412
    def test_low_cpu_mem_usage_with_loading(self):
        """Tests if we can load LoRA state dict with low_cpu_mem_usage."""

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

413
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451

            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=False)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results.",
                )

                # Now, check for `low_cpu_mem_usage.`
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), low_cpu_mem_usage=True)

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                images_lora_from_pretrained_low_cpu = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(
                    np.allclose(
                        images_lora_from_pretrained_low_cpu, images_lora_from_pretrained, atol=1e-3, rtol=1e-3
                    ),
                    "Loading from saved checkpoints with `low_cpu_mem_usage` should give same results.",
                )

452
453
454
455
456
    def test_simple_inference_with_text_lora_and_scale(self):
        """
        Tests a simple inference with lora attached on the text encoder + scale argument
        and makes sure it works as expected
        """
457
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)
Aryan's avatar
Aryan committed
458

Aryan's avatar
Aryan committed
459
        for scheduler_cls in self.scheduler_classes:
460
461
462
463
464
465
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
466
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
467
            self.assertTrue(output_no_lora.shape == self.output_shape)
468

469
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
470

Aryan's avatar
Aryan committed
471
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
472
473
474
475
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
476
477
478
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

479
480
481
482
483
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
484
485
486
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

487
488
489
490
491
492
493
494
495
496
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

    def test_simple_inference_with_text_lora_fused(self):
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
497
        for scheduler_cls in self.scheduler_classes:
498
499
500
501
502
503
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
504
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
505
            self.assertTrue(output_no_lora.shape == self.output_shape)
506

507
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
508
509
510
511
512

            pipe.fuse_lora()
            # Fusing should still keep the LoRA layers
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")

513
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
514
515
516
517
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
518

Aryan's avatar
Aryan committed
519
            ouput_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
520
521
522
523
524
525
526
527
528
            self.assertFalse(
                np.allclose(ouput_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
            )

    def test_simple_inference_with_text_lora_unloaded(self):
        """
        Tests a simple inference with lora attached to text encoder, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
529
        for scheduler_cls in self.scheduler_classes:
530
531
532
533
534
535
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
536
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
537
            self.assertTrue(output_no_lora.shape == self.output_shape)
538

539
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
540
541
542
543
544
545
546

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )

547
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
548
549
550
551
552
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
553

Aryan's avatar
Aryan committed
554
            ouput_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
555
556
557
558
559
560
561
562
563
            self.assertTrue(
                np.allclose(ouput_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
                "Fused lora should change the output",
            )

    def test_simple_inference_with_text_lora_save_load(self):
        """
        Tests a simple usecase where users could use saving utilities for LoRA.
        """
Aryan's avatar
Aryan committed
564
        for scheduler_cls in self.scheduler_classes:
565
566
567
568
569
570
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
571
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
572
            self.assertTrue(output_no_lora.shape == self.output_shape)
573

574
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
575

Aryan's avatar
Aryan committed
576
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
577
578

            with tempfile.TemporaryDirectory() as tmpdirname:
579
580
                modules_to_save = self._get_modules_to_save(pipe)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
581

582
583
584
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
                )
Sayak Paul's avatar
Sayak Paul committed
585

586
587
588
589
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

590
591
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
592

593
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
594
595
596
597
598
599

            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

600
601
602
603
604
605
    def test_simple_inference_with_partial_text_lora(self):
        """
        Tests a simple inference with lora attached on the text encoder
        with different ranks and some adapters removed
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
606
        for scheduler_cls in self.scheduler_classes:
607
            components, _, _ = self.get_dummy_components(scheduler_cls)
608
            # Verify `StableDiffusionLoraLoaderMixin.load_lora_into_text_encoder` handles different ranks per module (PR#8324).
609
610
            text_lora_config = LoraConfig(
                r=4,
611
                rank_pattern={self.text_encoder_target_modules[i]: i + 1 for i in range(3)},
612
                lora_alpha=4,
613
                target_modules=self.text_encoder_target_modules,
614
615
616
617
618
619
620
621
                init_lora_weights=False,
                use_dora=False,
            )
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
622
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
623
            self.assertTrue(output_no_lora.shape == self.output_shape)
624

625
626
627
628
629
630
631
632
633
634
635
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)

            state_dict = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                # Gather the state dict for the PEFT model, excluding `layers.4`, to ensure `load_lora_into_text_encoder`
                # supports missing layers (PR#8324).
                state_dict = {
                    f"text_encoder.{module_name}": param
                    for module_name, param in get_peft_model_state_dict(pipe.text_encoder).items()
                    if "text_model.encoder.layers.4" not in module_name
                }
636

637
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
638
639
640
641
642
643
644
645
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    state_dict.update(
                        {
                            f"text_encoder_2.{module_name}": param
                            for module_name, param in get_peft_model_state_dict(pipe.text_encoder_2).items()
                            if "text_model.encoder.layers.4" not in module_name
                        }
                    )
646

Aryan's avatar
Aryan committed
647
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
648
649
650
651
652
653
654
655
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

            # Unload lora and load it back using the pipe.load_lora_weights machinery
            pipe.unload_lora_weights()
            pipe.load_lora_weights(state_dict)

Aryan's avatar
Aryan committed
656
            output_partial_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
657
658
659
660
661
            self.assertTrue(
                not np.allclose(output_partial_lora, output_lora, atol=1e-3, rtol=1e-3),
                "Removing adapters should change the output",
            )

662
    def test_simple_inference_save_pretrained_with_text_lora(self):
663
664
665
        """
        Tests a simple usecase where users could use saving utilities for LoRA through save_pretrained
        """
Aryan's avatar
Aryan committed
666
        for scheduler_cls in self.scheduler_classes:
667
668
669
670
671
672
            components, text_lora_config, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
673
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
674
            self.assertTrue(output_no_lora.shape == self.output_shape)
675

676
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config=None)
Aryan's avatar
Aryan committed
677
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
678
679
680
681
682
683
684

            with tempfile.TemporaryDirectory() as tmpdirname:
                pipe.save_pretrained(tmpdirname)

                pipe_from_pretrained = self.pipeline_class.from_pretrained(tmpdirname)
                pipe_from_pretrained.to(torch_device)

685
686
687
688
689
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe_from_pretrained.text_encoder),
                    "Lora not correctly set in text encoder",
                )
690

691
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
692
693
694
695
696
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe_from_pretrained.text_encoder_2),
                        "Lora not correctly set in text encoder 2",
                    )
697

Aryan's avatar
Aryan committed
698
            images_lora_save_pretrained = pipe_from_pretrained(**inputs, generator=torch.manual_seed(0))[0]
699
700
701
702
703
704

            self.assertTrue(
                np.allclose(images_lora, images_lora_save_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

705
    def test_simple_inference_with_text_denoiser_lora_save_load(self):
706
707
708
        """
        Tests a simple usecase where users could use saving utilities for LoRA for Unet + text encoder
        """
Aryan's avatar
Aryan committed
709
        for scheduler_cls in self.scheduler_classes:
710
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
711
712
713
714
715
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
716
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
717
            self.assertTrue(output_no_lora.shape == self.output_shape)
718

719
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
720

Aryan's avatar
Aryan committed
721
            images_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
722
723

            with tempfile.TemporaryDirectory() as tmpdirname:
724
725
726
727
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
Aryan's avatar
Aryan committed
728
                )
729

730
731
732
733
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
                pipe.unload_lora_weights()
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.bin"))

734
735
            for module_name, module in modules_to_save.items():
                self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")
736

737
            images_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0))[0]
738
739
740
741
742
            self.assertTrue(
                np.allclose(images_lora, images_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                "Loading from saved checkpoints should give same results.",
            )

743
    def test_simple_inference_with_text_denoiser_lora_and_scale(self):
744
745
746
747
        """
        Tests a simple inference with lora attached on the text encoder + Unet + scale argument
        and makes sure it works as expected
        """
748
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)
Aryan's avatar
Aryan committed
749

Aryan's avatar
Aryan committed
750
        for scheduler_cls in self.scheduler_classes:
751
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
752
753
754
755
756
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
757
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
758
            self.assertTrue(output_no_lora.shape == self.output_shape)
759

760
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
761

Aryan's avatar
Aryan committed
762
            output_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
763
764
765
766
            self.assertTrue(
                not np.allclose(output_lora, output_no_lora, atol=1e-3, rtol=1e-3), "Lora should change the output"
            )

Aryan's avatar
Aryan committed
767
768
769
            attention_kwargs = {attention_kwargs_name: {"scale": 0.5}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

770
771
772
773
774
            self.assertTrue(
                not np.allclose(output_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

Aryan's avatar
Aryan committed
775
776
777
            attention_kwargs = {attention_kwargs_name: {"scale": 0.0}}
            output_lora_0_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

778
779
780
781
782
            self.assertTrue(
                np.allclose(output_no_lora, output_lora_0_scale, atol=1e-3, rtol=1e-3),
                "Lora + 0 scale should lead to same result as no LoRA",
            )

Aryan's avatar
Aryan committed
783
784
785
786
787
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    pipe.text_encoder.text_model.encoder.layers[0].self_attn.q_proj.scaling["default"] == 1.0,
                    "The scaling parameter has not been correctly restored!",
                )
788

789
    def test_simple_inference_with_text_lora_denoiser_fused(self):
790
791
792
793
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet
        """
Aryan's avatar
Aryan committed
794
        for scheduler_cls in self.scheduler_classes:
795
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
796
797
798
799
800
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
801
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
802
            self.assertTrue(output_no_lora.shape == self.output_shape)
803

804
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
805

Aryan's avatar
Aryan committed
806
807
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)

808
            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
809
810
811
812
813
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

Aryan's avatar
Aryan committed
814
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser")
815

816
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
817
818
819
820
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
821

Aryan's avatar
Aryan committed
822
            output_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
823
            self.assertFalse(
Aryan's avatar
Aryan committed
824
                np.allclose(output_fused, output_no_lora, atol=1e-3, rtol=1e-3), "Fused lora should change the output"
825
826
            )

827
    def test_simple_inference_with_text_denoiser_lora_unloaded(self):
828
829
830
831
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
832
        for scheduler_cls in self.scheduler_classes:
833
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
834
835
836
837
838
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
839
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
840
            self.assertTrue(output_no_lora.shape == self.output_shape)
841

842
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
843
844
845
846
847
848

            pipe.unload_lora_weights()
            # unloading should remove the LoRA layers
            self.assertFalse(
                check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly unloaded in text encoder"
            )
Aryan's avatar
Aryan committed
849
            self.assertFalse(check_if_lora_correctly_set(denoiser), "Lora not correctly unloaded in denoiser")
850

851
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
852
853
854
855
856
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertFalse(
                        check_if_lora_correctly_set(pipe.text_encoder_2),
                        "Lora not correctly unloaded in text encoder 2",
                    )
857

Aryan's avatar
Aryan committed
858
            output_unloaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
859
            self.assertTrue(
Aryan's avatar
Aryan committed
860
                np.allclose(output_unloaded, output_no_lora, atol=1e-3, rtol=1e-3),
861
862
863
                "Fused lora should change the output",
            )

Aryan's avatar
Aryan committed
864
865
866
    def test_simple_inference_with_text_denoiser_lora_unfused(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
867
868
869
870
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
871
        for scheduler_cls in self.scheduler_classes:
872
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
873
874
875
876
877
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

878
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
879

Aryan's avatar
Aryan committed
880
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules)
881
            self.assertTrue(pipe.num_fused_loras == 1, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
Aryan's avatar
Aryan committed
882
            output_fused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
883

Aryan's avatar
Aryan committed
884
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
885
            self.assertTrue(pipe.num_fused_loras == 0, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
Aryan's avatar
Aryan committed
886
            output_unfused_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
887
888

            # unloading should remove the LoRA layers
Aryan's avatar
Aryan committed
889
890
891
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

Aryan's avatar
Aryan committed
892
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")
893

894
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
895
896
897
898
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )
899
900
901

            # Fuse and unfuse should lead to the same results
            self.assertTrue(
Aryan's avatar
Aryan committed
902
903
                np.allclose(output_fused_lora, output_unfused_lora, atol=expected_atol, rtol=expected_rtol),
                "Fused lora should not change the output",
904
905
            )

906
    def test_simple_inference_with_text_denoiser_multi_adapter(self):
907
908
909
910
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
911
        for scheduler_cls in self.scheduler_classes:
912
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
913
914
915
916
917
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
918
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
919

Aryan's avatar
Aryan committed
920
921
922
923
924
925
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
926

Aryan's avatar
Aryan committed
927
928
929
930
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
931

932
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
933
934
935
936
937
938
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
939
940

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
941
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
942
943
944
945
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_1, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
946
947

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
948
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
949
950
951
952
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
953
954

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
955
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
956
957
958
959
            self.assertFalse(
                np.allclose(output_no_lora, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter outputs should be different.",
            )
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
978
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
979
980
981
982
983
984

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

985
    def test_wrong_adapter_name_raises_error(self):
986
987
        adapter_name = "adapter-1"

988
989
990
991
992
993
994
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

995
996
997
        pipe, _ = self.check_if_adapters_added_correctly(
            pipe, text_lora_config, denoiser_lora_config, adapter_name=adapter_name
        )
998
999
1000
1001
1002
1003
1004

        with self.assertRaises(ValueError) as err_context:
            pipe.set_adapters("test")

        self.assertTrue("not in the list of present adapters" in str(err_context.exception))

        # test this works.
1005
        pipe.set_adapters(adapter_name)
1006
1007
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1008
    def test_multiple_wrong_adapter_name_raises_error(self):
1009
        adapter_name = "adapter-1"
1010
1011
1012
1013
1014
1015
1016
        scheduler_cls = self.scheduler_classes[0]
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

1017
1018
1019
        pipe, _ = self.check_if_adapters_added_correctly(
            pipe, text_lora_config, denoiser_lora_config, adapter_name=adapter_name
        )
1020
1021
1022
1023
1024

        scale_with_wrong_components = {"foo": 0.0, "bar": 0.0, "tik": 0.0}
        logger = logging.get_logger("diffusers.loaders.lora_base")
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
1025
            pipe.set_adapters(adapter_name, adapter_weights=scale_with_wrong_components)
1026
1027
1028
1029
1030
1031

        wrong_components = sorted(set(scale_with_wrong_components.keys()))
        msg = f"The following components in `adapter_weights` are not part of the pipeline: {wrong_components}. "
        self.assertTrue(msg in str(cap_logger.out))

        # test this works.
1032
        pipe.set_adapters(adapter_name)
1033
1034
        _ = pipe(**inputs, generator=torch.manual_seed(0))[0]

1035
    def test_simple_inference_with_text_denoiser_block_scale(self):
UmerHA's avatar
UmerHA committed
1036
1037
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
Aryan's avatar
Aryan committed
1038
        one adapter and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1039
        """
Aryan's avatar
Aryan committed
1040
        for scheduler_cls in self.scheduler_classes:
1041
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1042
1043
1044
1045
1046
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1047
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1048
1049
1050

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder")
Aryan's avatar
Aryan committed
1051
1052
1053
1054

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1055

1056
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1057
1058
1059
1060
1061
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1062
1063
1064

            weights_1 = {"text_encoder": 2, "unet": {"down": 5}}
            pipe.set_adapters("adapter-1", weights_1)
Aryan's avatar
Aryan committed
1065
            output_weights_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1066
1067
1068

            weights_2 = {"unet": {"up": 5}}
            pipe.set_adapters("adapter-1", weights_2)
Aryan's avatar
Aryan committed
1069
            output_weights_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084

            self.assertFalse(
                np.allclose(output_weights_1, output_weights_2, atol=1e-3, rtol=1e-3),
                "LoRA weights 1 and 2 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_1, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 1 should give different results",
            )
            self.assertFalse(
                np.allclose(output_no_lora, output_weights_2, atol=1e-3, rtol=1e-3),
                "No adapter and LoRA weights 2 should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1085
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1086
1087
1088
1089
1090
1091

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1092
    def test_simple_inference_with_text_denoiser_multi_adapter_block_lora(self):
UmerHA's avatar
UmerHA committed
1093
1094
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
1095
        multiple adapters and set different weights for different blocks (i.e. block lora)
UmerHA's avatar
UmerHA committed
1096
        """
Aryan's avatar
Aryan committed
1097
        for scheduler_cls in self.scheduler_classes:
1098
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
UmerHA's avatar
UmerHA committed
1099
1100
1101
1102
1103
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1104
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1105

Aryan's avatar
Aryan committed
1106
1107
1108
1109
1110
1111
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
UmerHA's avatar
UmerHA committed
1112

Aryan's avatar
Aryan committed
1113
1114
1115
1116
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
UmerHA's avatar
UmerHA committed
1117

1118
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1119
1120
1121
1122
1123
1124
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
UmerHA's avatar
UmerHA committed
1125
1126
1127
1128

            scales_1 = {"text_encoder": 2, "unet": {"down": 5}}
            scales_2 = {"unet": {"down": 5, "mid": 5}}

Aryan's avatar
Aryan committed
1129
1130
            pipe.set_adapters("adapter-1", scales_1)
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1131
1132

            pipe.set_adapters("adapter-2", scales_2)
Aryan's avatar
Aryan committed
1133
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1134
1135

            pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1, scales_2])
Aryan's avatar
Aryan committed
1136
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1155
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
UmerHA's avatar
UmerHA committed
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

            # a mismatching number of adapter_names and adapter_weights should raise an error
            with self.assertRaises(ValueError):
                pipe.set_adapters(["adapter-1", "adapter-2"], [scales_1])

1166
    def test_simple_inference_with_text_denoiser_block_scale_for_all_dict_options(self):
UmerHA's avatar
UmerHA committed
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
        """Tests that any valid combination of lora block scales can be used in pipe.set_adapter"""

        def updown_options(blocks_with_tf, layers_per_block, value):
            """
            Generate every possible combination for how a lora weight dict for the up/down part can be.
            E.g. 2, {"block_1": 2}, {"block_1": [2,2,2]}, {"block_1": 2, "block_2": [2,2,2]}, ...
            """
            num_val = value
            list_val = [value] * layers_per_block

            node_opts = [None, num_val, list_val]
            node_opts_foreach_block = [node_opts] * len(blocks_with_tf)

            updown_opts = [num_val]
            for nodes in product(*node_opts_foreach_block):
                if all(n is None for n in nodes):
                    continue
                opt = {}
                for b, n in zip(blocks_with_tf, nodes):
                    if n is not None:
                        opt["block_" + str(b)] = n
                updown_opts.append(opt)
            return updown_opts

        def all_possible_dict_opts(unet, value):
            """
            Generate every possible combination for how a lora weight dict can be.
            E.g. 2, {"unet: {"down": 2}}, {"unet: {"down": [2,2,2]}}, {"unet: {"mid": 2, "up": [2,2,2]}}, ...
            """

            down_blocks_with_tf = [i for i, d in enumerate(unet.down_blocks) if hasattr(d, "attentions")]
            up_blocks_with_tf = [i for i, u in enumerate(unet.up_blocks) if hasattr(u, "attentions")]

            layers_per_block = unet.config.layers_per_block

            text_encoder_opts = [None, value]
            text_encoder_2_opts = [None, value]
            mid_opts = [None, value]
            down_opts = [None] + updown_options(down_blocks_with_tf, layers_per_block, value)
            up_opts = [None] + updown_options(up_blocks_with_tf, layers_per_block + 1, value)

            opts = []

            for t1, t2, d, m, u in product(text_encoder_opts, text_encoder_2_opts, down_opts, mid_opts, up_opts):
                if all(o is None for o in (t1, t2, d, m, u)):
                    continue
                opt = {}
                if t1 is not None:
                    opt["text_encoder"] = t1
                if t2 is not None:
                    opt["text_encoder_2"] = t2
                if all(o is None for o in (d, m, u)):
                    # no unet scaling
                    continue
                opt["unet"] = {}
                if d is not None:
                    opt["unet"]["down"] = d
                if m is not None:
                    opt["unet"]["mid"] = m
                if u is not None:
                    opt["unet"]["up"] = u
                opts.append(opt)

            return opts

1232
        components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_cls)
UmerHA's avatar
UmerHA committed
1233
1234
1235
1236
1237
1238
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1239
1240
1241

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1242

1243
        if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1244
1245
1246
            lora_loadable_components = self.pipeline_class._lora_loadable_modules
            if "text_encoder_2" in lora_loadable_components:
                pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
UmerHA's avatar
UmerHA committed
1247
1248
1249
1250
1251
1252
1253
1254

        for scale_dict in all_possible_dict_opts(pipe.unet, value=1234):
            # test if lora block scales can be set with this scale_dict
            if not self.has_two_text_encoders and "text_encoder_2" in scale_dict:
                del scale_dict["text_encoder_2"]

            pipe.set_adapters("adapter-1", scale_dict)  # test will fail if this line throws an error

1255
    def test_simple_inference_with_text_denoiser_multi_adapter_delete_adapter(self):
1256
1257
1258
1259
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set/delete them
        """
Aryan's avatar
Aryan committed
1260
        for scheduler_cls in self.scheduler_classes:
1261
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1262
1263
1264
1265
1266
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1267
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1268

Aryan's avatar
Aryan committed
1269
1270
1271
1272
1273
1274
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1275

Aryan's avatar
Aryan committed
1276
1277
1278
1279
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1280

1281
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1282
1283
1284
1285
1286
1287
1288
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1289
1290

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1291
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1292
1293

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1294
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1295
1296

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1297
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.delete_adapters("adapter-1")
Aryan's avatar
Aryan committed
1315
            output_deleted_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1316
1317
1318
1319
1320
1321
1322

            self.assertTrue(
                np.allclose(output_deleted_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            pipe.delete_adapters("adapter-2")
Aryan's avatar
Aryan committed
1323
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1324
1325
1326
1327
1328
1329

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

Aryan's avatar
Aryan committed
1330
1331
1332
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
1333

Aryan's avatar
Aryan committed
1334
1335
1336
1337
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1338
1339
1340
1341

            pipe.set_adapters(["adapter-1", "adapter-2"])
            pipe.delete_adapters(["adapter-1", "adapter-2"])

Aryan's avatar
Aryan committed
1342
            output_deleted_adapters = pipe(**inputs, generator=torch.manual_seed(0))[0]
1343
1344
1345
1346
1347
1348

            self.assertTrue(
                np.allclose(output_no_lora, output_deleted_adapters, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1349
    def test_simple_inference_with_text_denoiser_multi_adapter_weighted(self):
1350
1351
1352
1353
        """
        Tests a simple inference with lora attached to text encoder and unet, attaches
        multiple adapters and set them
        """
Aryan's avatar
Aryan committed
1354
        for scheduler_cls in self.scheduler_classes:
1355
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1356
1357
1358
1359
1360
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1361
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1362

Aryan's avatar
Aryan committed
1363
1364
1365
1366
1367
1368
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1369

Aryan's avatar
Aryan committed
1370
1371
1372
1373
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1374

1375
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1376
1377
1378
1379
1380
1381
1382
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1383
1384

            pipe.set_adapters("adapter-1")
Aryan's avatar
Aryan committed
1385
            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1386
1387

            pipe.set_adapters("adapter-2")
Aryan's avatar
Aryan committed
1388
            output_adapter_2 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1389
1390

            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1391
            output_adapter_mixed = pipe(**inputs, generator=torch.manual_seed(0))[0]
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409

            # Fuse and unfuse should lead to the same results
            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_2, atol=1e-3, rtol=1e-3),
                "Adapter 1 and 2 should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_1, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 1 and mixed adapters should give different results",
            )

            self.assertFalse(
                np.allclose(output_adapter_2, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Adapter 2 and mixed adapters should give different results",
            )

            pipe.set_adapters(["adapter-1", "adapter-2"], [0.5, 0.6])
Aryan's avatar
Aryan committed
1410
            output_adapter_mixed_weighted = pipe(**inputs, generator=torch.manual_seed(0))[0]
1411
1412
1413
1414
1415
1416
1417

            self.assertFalse(
                np.allclose(output_adapter_mixed_weighted, output_adapter_mixed, atol=1e-3, rtol=1e-3),
                "Weighted adapter and mixed adapter should give different results",
            )

            pipe.disable_lora()
Aryan's avatar
Aryan committed
1418
            output_disabled = pipe(**inputs, generator=torch.manual_seed(0))[0]
1419
1420
1421
1422
1423
1424

            self.assertTrue(
                np.allclose(output_no_lora, output_disabled, atol=1e-3, rtol=1e-3),
                "output with no lora and output with lora disabled should give same results",
            )

1425
    @skip_mps
1426
    @pytest.mark.xfail(
1427
        condition=torch.device(torch_device).type == "cpu" and is_torch_version(">=", "2.5"),
1428
        reason="Test currently fails on CPU and PyTorch 2.5.1 but not on PyTorch 2.4.1.",
1429
        strict=False,
1430
    )
1431
    def test_lora_fuse_nan(self):
Aryan's avatar
Aryan committed
1432
        for scheduler_cls in self.scheduler_classes:
1433
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1434
1435
1436
1437
1438
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1439
1440
1441
1442
1443
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1444

Aryan's avatar
Aryan committed
1445
1446
1447
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1448
1449
1450

            # corrupt one LoRA weight with `inf` values
            with torch.no_grad():
1451
1452
1453
1454
1455
                if self.unet_kwargs:
                    pipe.unet.mid_block.attentions[0].transformer_blocks[0].attn1.to_q.lora_A[
                        "adapter-1"
                    ].weight += float("inf")
                else:
1456
                    named_modules = [name for name, _ in pipe.transformer.named_modules()]
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
                    possible_tower_names = [
                        "transformer_blocks",
                        "blocks",
                        "joint_transformer_blocks",
                        "single_transformer_blocks",
                    ]
                    filtered_tower_names = [
                        tower_name for tower_name in possible_tower_names if hasattr(pipe.transformer, tower_name)
                    ]
                    if len(filtered_tower_names) == 0:
                        reason = (
                            f"`pipe.transformer` didn't have any of the following attributes: {possible_tower_names}."
                        )
                        raise ValueError(reason)
                    for tower_name in filtered_tower_names:
                        transformer_tower = getattr(pipe.transformer, tower_name)
                        has_attn1 = any("attn1" in name for name in named_modules)
                        if has_attn1:
                            transformer_tower[0].attn1.to_q.lora_A["adapter-1"].weight += float("inf")
                        else:
                            transformer_tower[0].attn.to_q.lora_A["adapter-1"].weight += float("inf")
1478
1479
1480

            # with `safe_fusing=True` we should see an Error
            with self.assertRaises(ValueError):
Aryan's avatar
Aryan committed
1481
                pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=True)
1482
1483

            # without we should not see an error, but every image will be black
Aryan's avatar
Aryan committed
1484
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, safe_fusing=False)
Sayak Paul's avatar
Sayak Paul committed
1485
            out = pipe(**inputs)[0]
1486
1487
1488
1489
1490
1491
1492
1493

            self.assertTrue(np.isnan(out).all())

    def test_get_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1494
        for scheduler_cls in self.scheduler_classes:
1495
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1496
1497
1498
1499
1500
1501
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
Aryan's avatar
Aryan committed
1502
1503
1504

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
1505
1506
1507
1508
1509

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-1"])

            pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1510
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522

            adapter_names = pipe.get_active_adapters()
            self.assertListEqual(adapter_names, ["adapter-2"])

            pipe.set_adapters(["adapter-1", "adapter-2"])
            self.assertListEqual(pipe.get_active_adapters(), ["adapter-1", "adapter-2"])

    def test_get_list_adapters(self):
        """
        Tests a simple usecase where we attach multiple adapters and check if the results
        are the expected results
        """
Aryan's avatar
Aryan committed
1523
        for scheduler_cls in self.scheduler_classes:
1524
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1525
1526
1527
1528
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)

Aryan's avatar
Aryan committed
1529
1530
1531
1532
1533
1534
            # 1.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                dicts_to_be_checked = {"text_encoder": ["adapter-1"]}

1535
1536
1537
1538
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
                dicts_to_be_checked.update({"unet": ["adapter-1"]})
            else:
Aryan's avatar
Aryan committed
1539
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
1540
                dicts_to_be_checked.update({"transformer": ["adapter-1"]})
1541

Aryan's avatar
Aryan committed
1542
1543
1544
1545
1546
1547
1548
1549
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 2.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1550
1551
1552
1553
            if self.unet_kwargs is not None:
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-2")
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
Aryan's avatar
Aryan committed
1554
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-2")
1555
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
1556

Aryan's avatar
Aryan committed
1557
1558
1559
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)

            # 3.
1560
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1561
1562
1563
1564
1565

            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1566
1567
1568
1569
            if self.unet_kwargs is not None:
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2"]})
            else:
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2"]})
Aryan's avatar
Aryan committed
1570

1571
1572
            self.assertDictEqual(
                pipe.get_list_adapters(),
1573
                dicts_to_be_checked,
1574
1575
            )

Aryan's avatar
Aryan committed
1576
1577
1578
1579
1580
            # 4.
            dicts_to_be_checked = {}
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                dicts_to_be_checked = {"text_encoder": ["adapter-1", "adapter-2"]}

1581
            if self.unet_kwargs is not None:
Aryan's avatar
Aryan committed
1582
                pipe.unet.add_adapter(denoiser_lora_config, "adapter-3")
1583
1584
                dicts_to_be_checked.update({"unet": ["adapter-1", "adapter-2", "adapter-3"]})
            else:
Aryan's avatar
Aryan committed
1585
                pipe.transformer.add_adapter(denoiser_lora_config, "adapter-3")
1586
                dicts_to_be_checked.update({"transformer": ["adapter-1", "adapter-2", "adapter-3"]})
Aryan's avatar
Aryan committed
1587

1588
            self.assertDictEqual(pipe.get_list_adapters(), dicts_to_be_checked)
1589
1590

    @require_peft_version_greater(peft_version="0.6.2")
Aryan's avatar
Aryan committed
1591
1592
1593
    def test_simple_inference_with_text_lora_denoiser_fused_multi(
        self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3
    ):
1594
1595
1596
1597
        """
        Tests a simple inference with lora attached into text encoder + fuses the lora weights into base model
        and makes sure it works as expected - with unet and multi-adapter case
        """
Aryan's avatar
Aryan committed
1598
        for scheduler_cls in self.scheduler_classes:
1599
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1600
1601
1602
1603
1604
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1605
            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1606
            self.assertTrue(output_no_lora.shape == self.output_shape)
1607

Aryan's avatar
Aryan committed
1608
1609
1610
1611
1612
            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )
1613
                pipe.text_encoder.add_adapter(text_lora_config, "adapter-2")
Aryan's avatar
Aryan committed
1614

Aryan's avatar
Aryan committed
1615
1616
1617
            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")
1618
            denoiser.add_adapter(denoiser_lora_config, "adapter-2")
1619

1620
            if self.has_two_text_encoders or self.has_three_text_encoders:
Sayak Paul's avatar
Sayak Paul committed
1621
1622
1623
1624
1625
1626
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )
1627
                    pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-2")
1628
1629
1630

            # set them to multi-adapter inference mode
            pipe.set_adapters(["adapter-1", "adapter-2"])
Aryan's avatar
Aryan committed
1631
            outputs_all_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1632
1633

            pipe.set_adapters(["adapter-1"])
Aryan's avatar
Aryan committed
1634
            outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]
1635

Aryan's avatar
Aryan committed
1636
            pipe.fuse_lora(components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-1"])
1637
            self.assertTrue(pipe.num_fused_loras == 1, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
1638

1639
            # Fusing should still keep the LoRA layers so output should remain the same
Aryan's avatar
Aryan committed
1640
            outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1641
1642

            self.assertTrue(
Aryan's avatar
Aryan committed
1643
                np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
1644
1645
1646
                "Fused lora should not change the output",
            )

Aryan's avatar
Aryan committed
1647
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
            self.assertTrue(pipe.num_fused_loras == 0, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                self.assertTrue(check_if_lora_correctly_set(pipe.text_encoder), "Unfuse should still keep LoRA layers")

            self.assertTrue(check_if_lora_correctly_set(denoiser), "Unfuse should still keep LoRA layers")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                if "text_encoder_2" in self.pipeline_class._lora_loadable_modules:
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Unfuse should still keep LoRA layers"
                    )

Aryan's avatar
Aryan committed
1661
1662
1663
            pipe.fuse_lora(
                components=self.pipeline_class._lora_loadable_modules, adapter_names=["adapter-2", "adapter-1"]
            )
1664
            self.assertTrue(pipe.num_fused_loras == 2, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")
1665
1666

            # Fusing should still keep the LoRA layers
Aryan's avatar
Aryan committed
1667
            output_all_lora_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]
1668
            self.assertTrue(
Aryan's avatar
Aryan committed
1669
                np.allclose(output_all_lora_fused, outputs_all_lora, atol=expected_atol, rtol=expected_rtol),
1670
1671
                "Fused lora should not change the output",
            )
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
            pipe.unfuse_lora(components=self.pipeline_class._lora_loadable_modules)
            self.assertTrue(pipe.num_fused_loras == 0, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")

    def test_lora_scale_kwargs_match_fusion(self, expected_atol: float = 1e-3, expected_rtol: float = 1e-3):
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)

        for lora_scale in [1.0, 0.8]:
            for scheduler_cls in self.scheduler_classes:
                components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                _, _, inputs = self.get_dummy_inputs(with_generator=False)

                output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(output_no_lora.shape == self.output_shape)

                if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                    pipe.text_encoder.add_adapter(text_lora_config, "adapter-1")
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                    )

                denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
                denoiser.add_adapter(denoiser_lora_config, "adapter-1")
                self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

                if self.has_two_text_encoders or self.has_three_text_encoders:
                    lora_loadable_components = self.pipeline_class._lora_loadable_modules
                    if "text_encoder_2" in lora_loadable_components:
                        pipe.text_encoder_2.add_adapter(text_lora_config, "adapter-1")
                        self.assertTrue(
                            check_if_lora_correctly_set(pipe.text_encoder_2),
                            "Lora not correctly set in text encoder 2",
                        )

                pipe.set_adapters(["adapter-1"])
                attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
                outputs_lora_1 = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]

                pipe.fuse_lora(
                    components=self.pipeline_class._lora_loadable_modules,
                    adapter_names=["adapter-1"],
                    lora_scale=lora_scale,
                )
                self.assertTrue(pipe.num_fused_loras == 1, f"{pipe.num_fused_loras=}, {pipe.fused_loras=}")

                outputs_lora_1_fused = pipe(**inputs, generator=torch.manual_seed(0))[0]

                self.assertTrue(
                    np.allclose(outputs_lora_1, outputs_lora_1_fused, atol=expected_atol, rtol=expected_rtol),
                    "Fused lora should not change the output",
                )
                self.assertFalse(
                    np.allclose(output_no_lora, outputs_lora_1, atol=expected_atol, rtol=expected_rtol),
                    "LoRA should change the output",
                )
1729

1730
1731
    @require_peft_version_greater(peft_version="0.9.0")
    def test_simple_inference_with_dora(self):
Aryan's avatar
Aryan committed
1732
        for scheduler_cls in self.scheduler_classes:
1733
1734
1735
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(
                scheduler_cls, use_dora=True
            )
1736
1737
1738
1739
1740
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

Aryan's avatar
Aryan committed
1741
            output_no_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
Sayak Paul's avatar
Sayak Paul committed
1742
            self.assertTrue(output_no_dora_lora.shape == self.output_shape)
1743

1744
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
1745

Aryan's avatar
Aryan committed
1746
            output_dora_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
1747
1748
1749
1750
1751
1752

            self.assertFalse(
                np.allclose(output_dora_lora, output_no_dora_lora, atol=1e-3, rtol=1e-3),
                "DoRA lora should change the output",
            )

1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
    def test_missing_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        # To make things dynamic since we cannot settle with a single key for all the models where we
        # offer PEFT support.
        missing_key = [k for k in state_dict if "lora_A" in k][0]
        del state_dict[missing_key]

1780
        logger = logging.get_logger("diffusers.loaders.peft")
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        # Since the missing key won't contain the adapter name ("default_0").
        # Also strip out the component prefix (such as "unet." from `missing_key`).
        component = list({k.split(".")[0] for k in state_dict})[0]
        self.assertTrue(missing_key.replace(f"{component}.", "") in cap_logger.out.replace("default_0.", ""))

    def test_unexpected_keys_warning(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=False, **lora_state_dicts
            )
            pipe.unload_lora_weights()
            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.bin")))
            state_dict = torch.load(os.path.join(tmpdirname, "pytorch_lora_weights.bin"), weights_only=True)

        unexpected_key = [k for k in state_dict if "lora_A" in k][0] + ".diffusers_cat"
        state_dict[unexpected_key] = torch.tensor(1.0, device=torch_device)

1815
        logger = logging.get_logger("diffusers.loaders.peft")
1816
1817
1818
1819
1820
1821
        logger.setLevel(30)
        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(state_dict)

        self.assertTrue(".diffusers_cat" in cap_logger.out)

1822
    @unittest.skip("This is failing for now - need to investigate")
1823
    def test_simple_inference_with_text_denoiser_lora_unfused_torch_compile(self):
1824
1825
1826
1827
        """
        Tests a simple inference with lora attached to text encoder and unet, then unloads the lora weights
        and makes sure it works as expected
        """
Aryan's avatar
Aryan committed
1828
        for scheduler_cls in self.scheduler_classes:
1829
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
1830
1831
1832
1833
1834
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

1835
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
1836
1837
1838
1839

            pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
            pipe.text_encoder = torch.compile(pipe.text_encoder, mode="reduce-overhead", fullgraph=True)

1840
            if self.has_two_text_encoders or self.has_three_text_encoders:
1841
1842
1843
                pipe.text_encoder_2 = torch.compile(pipe.text_encoder_2, mode="reduce-overhead", fullgraph=True)

            # Just makes sure it works..
Aryan's avatar
Aryan committed
1844
            _ = pipe(**inputs, generator=torch.manual_seed(0))[0]
1845
1846
1847
1848
1849
1850
1851

    def test_modify_padding_mode(self):
        def set_pad_mode(network, mode="circular"):
            for _, module in network.named_modules():
                if isinstance(module, torch.nn.Conv2d):
                    module.padding_mode = mode

Aryan's avatar
Aryan committed
1852
        for scheduler_cls in self.scheduler_classes:
1853
1854
1855
1856
1857
1858
1859
1860
1861
            components, _, _ = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _pad_mode = "circular"
            set_pad_mode(pipe.vae, _pad_mode)
            set_pad_mode(pipe.unet, _pad_mode)

            _, _, inputs = self.get_dummy_inputs()
Aryan's avatar
Aryan committed
1862
            _ = pipe(**inputs)[0]
1863

1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
    def test_logs_info_when_no_lora_keys_found(self):
        scheduler_cls = self.scheduler_classes[0]
        # Skip text encoder check for now as that is handled with `transformers`.
        components, _, _ = self.get_dummy_components(scheduler_cls)
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        original_out = pipe(**inputs, generator=torch.manual_seed(0))[0]

        no_op_state_dict = {"lora_foo": torch.tensor(2.0), "lora_bar": torch.tensor(3.0)}
        logger = logging.get_logger("diffusers.loaders.peft")
1877
        logger.setLevel(logging.WARNING)
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896

        with CaptureLogger(logger) as cap_logger:
            pipe.load_lora_weights(no_op_state_dict)
        out_after_lora_attempt = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser = getattr(pipe, "unet") if self.unet_kwargs is not None else getattr(pipe, "transformer")
        self.assertTrue(cap_logger.out.startswith(f"No LoRA keys associated to {denoiser.__class__.__name__}"))
        self.assertTrue(np.allclose(original_out, out_after_lora_attempt, atol=1e-5, rtol=1e-5))

        # test only for text encoder
        for lora_module in self.pipeline_class._lora_loadable_modules:
            if "text_encoder" in lora_module:
                text_encoder = getattr(pipe, lora_module)
                if lora_module == "text_encoder":
                    prefix = "text_encoder"
                elif lora_module == "text_encoder_2":
                    prefix = "text_encoder_2"

                logger = logging.get_logger("diffusers.loaders.lora_base")
1897
                logger.setLevel(logging.WARNING)
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907

                with CaptureLogger(logger) as cap_logger:
                    self.pipeline_class.load_lora_into_text_encoder(
                        no_op_state_dict, network_alphas=None, text_encoder=text_encoder, prefix=prefix
                    )

                self.assertTrue(
                    cap_logger.out.startswith(f"No LoRA keys associated to {text_encoder.__class__.__name__}")
                )

1908
1909
    def test_set_adapters_match_attention_kwargs(self):
        """Test to check if outputs after `set_adapters()` and attention kwargs match."""
1910
        attention_kwargs_name = determine_attention_kwargs_name(self.pipeline_class)
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921

        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(output_no_lora.shape == self.output_shape)

1922
            pipe, _ = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971

            lora_scale = 0.5
            attention_kwargs = {attention_kwargs_name: {"scale": lora_scale}}
            output_lora_scale = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
            self.assertFalse(
                np.allclose(output_no_lora, output_lora_scale, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )

            pipe.set_adapters("default", lora_scale)
            output_lora_scale_wo_kwargs = pipe(**inputs, generator=torch.manual_seed(0))[0]
            self.assertTrue(
                not np.allclose(output_no_lora, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should change the output",
            )
            self.assertTrue(
                np.allclose(output_lora_scale, output_lora_scale_wo_kwargs, atol=1e-3, rtol=1e-3),
                "Lora + scale should match the output of `set_adapters()`.",
            )

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(
                    save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
                )

                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
                pipe = self.pipeline_class(**components)
                pipe = pipe.to(torch_device)
                pipe.set_progress_bar_config(disable=None)
                pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

                for module_name, module in modules_to_save.items():
                    self.assertTrue(check_if_lora_correctly_set(module), f"Lora not correctly set in {module_name}")

                output_lora_from_pretrained = pipe(**inputs, generator=torch.manual_seed(0), **attention_kwargs)[0]
                self.assertTrue(
                    not np.allclose(output_no_lora, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Lora + scale should change the output",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as attention_kwargs.",
                )
                self.assertTrue(
                    np.allclose(output_lora_scale_wo_kwargs, output_lora_from_pretrained, atol=1e-3, rtol=1e-3),
                    "Loading from saved checkpoints should give same results as set_adapters().",
                )
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985

    @require_peft_version_greater("0.13.2")
    def test_lora_B_bias(self):
        # Currently, this test is only relevant for Flux Control LoRA as we are not
        # aware of any other LoRA checkpoint that has its `lora_B` biases trained.
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # keep track of the bias values of the base layers to perform checks later.
        bias_values = {}
        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, module in denoiser.named_modules():
1986
            if any(k in name for k in self.denoiser_target_modules):
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
                if module.bias is not None:
                    bias_values[name] = module.bias.data.clone()

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        logger = logging.get_logger("diffusers.loaders.lora_pipeline")
        logger.setLevel(logging.INFO)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        denoiser_lora_config.lora_bias = False
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_false_output = pipe(**inputs, generator=torch.manual_seed(0))[0]
        pipe.delete_adapters("adapter-1")

        denoiser_lora_config.lora_bias = True
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
        lora_bias_true_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        self.assertFalse(np.allclose(original_output, lora_bias_false_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(original_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))
        self.assertFalse(np.allclose(lora_bias_false_output, lora_bias_true_output, atol=1e-3, rtol=1e-3))

    def test_correct_lora_configs_with_different_ranks(self):
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)
        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        original_output = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")

        lora_output_same_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        denoiser = pipe.unet if self.unet_kwargs is not None else pipe.transformer
        for name, _ in denoiser.named_modules():
            if "to_k" in name and "attn" in name and "lora" not in name:
                module_name_to_rank_update = name.replace(".base_layer.", ".")
                break

        # change the rank_pattern
        updated_rank = denoiser_lora_config.r * 2
        denoiser_lora_config.rank_pattern = {module_name_to_rank_update: updated_rank}

        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.unet.peft_config["adapter-1"].rank_pattern
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            updated_rank_pattern = pipe.transformer.peft_config["adapter-1"].rank_pattern

        self.assertTrue(updated_rank_pattern == {module_name_to_rank_update: updated_rank})

        lora_output_diff_rank = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_same_rank, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_rank, lora_output_same_rank, atol=1e-3, rtol=1e-3))

        if self.unet_kwargs is not None:
            pipe.unet.delete_adapters("adapter-1")
        else:
            pipe.transformer.delete_adapters("adapter-1")

        # similarly change the alpha_pattern
        updated_alpha = denoiser_lora_config.lora_alpha * 2
        denoiser_lora_config.alpha_pattern = {module_name_to_rank_update: updated_alpha}
        if self.unet_kwargs is not None:
            pipe.unet.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.unet.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )
        else:
            pipe.transformer.add_adapter(denoiser_lora_config, "adapter-1")
            self.assertTrue(
                pipe.transformer.peft_config["adapter-1"].alpha_pattern == {module_name_to_rank_update: updated_alpha}
            )

        lora_output_diff_alpha = pipe(**inputs, generator=torch.manual_seed(0))[0]
        self.assertTrue(not np.allclose(original_output, lora_output_diff_alpha, atol=1e-3, rtol=1e-3))
        self.assertTrue(not np.allclose(lora_output_diff_alpha, lora_output_same_rank, atol=1e-3, rtol=1e-3))
Aryan's avatar
Aryan committed
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106

    def test_layerwise_casting_inference_denoiser(self):
        from diffusers.hooks.layerwise_casting import DEFAULT_SKIP_MODULES_PATTERN, SUPPORTED_PYTORCH_LAYERS

        def check_linear_dtype(module, storage_dtype, compute_dtype):
            patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
            if getattr(module, "_skip_layerwise_casting_patterns", None) is not None:
                patterns_to_check += tuple(module._skip_layerwise_casting_patterns)
            for name, submodule in module.named_modules():
                if not isinstance(submodule, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if "lora" in name or any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(submodule, "weight", None) is not None:
                    self.assertEqual(submodule.weight.dtype, dtype_to_check)
                if getattr(submodule, "bias", None) is not None:
                    self.assertEqual(submodule.bias.dtype, dtype_to_check)

        def initialize_pipeline(storage_dtype=None, compute_dtype=torch.float32):
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)

2107
            pipe, denoiser = self.check_if_adapters_added_correctly(pipe, text_lora_config, denoiser_lora_config)
Aryan's avatar
Aryan committed
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124

            if storage_dtype is not None:
                denoiser.enable_layerwise_casting(storage_dtype=storage_dtype, compute_dtype=compute_dtype)
                check_linear_dtype(denoiser, storage_dtype, compute_dtype)

            return pipe

        _, _, inputs = self.get_dummy_inputs(with_generator=False)

        pipe_fp32 = initialize_pipeline(storage_dtype=None)
        pipe_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_fp32 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.float32)
        pipe_float8_e4m3_fp32(**inputs, generator=torch.manual_seed(0))[0]

        pipe_float8_e4m3_bf16 = initialize_pipeline(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
        pipe_float8_e4m3_bf16(**inputs, generator=torch.manual_seed(0))[0]
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215

    @require_peft_version_greater("0.14.0")
    def test_layerwise_casting_peft_input_autocast_denoiser(self):
        r"""
        A test that checks if layerwise casting works correctly with PEFT layers and forward pass does not fail. This
        is different from `test_layerwise_casting_inference_denoiser` as that disables the application of layerwise
        cast hooks on the PEFT layers (relevant logic in `models.modeling_utils.ModelMixin.enable_layerwise_casting`).
        In this test, we enable the layerwise casting on the PEFT layers as well. If run with PEFT version <= 0.14.0,
        this test will fail with the following error:

        ```
        RuntimeError: expected mat1 and mat2 to have the same dtype, but got: c10::Float8_e4m3fn != float
        ```

        See the docstring of [`hooks.layerwise_casting.PeftInputAutocastDisableHook`] for more details.
        """

        from diffusers.hooks.layerwise_casting import (
            _PEFT_AUTOCAST_DISABLE_HOOK,
            DEFAULT_SKIP_MODULES_PATTERN,
            SUPPORTED_PYTORCH_LAYERS,
            apply_layerwise_casting,
        )

        storage_dtype = torch.float8_e4m3fn
        compute_dtype = torch.float32

        def check_module(denoiser):
            # This will also check if the peft layers are in torch.float8_e4m3fn dtype (unlike test_layerwise_casting_inference_denoiser)
            for name, module in denoiser.named_modules():
                if not isinstance(module, SUPPORTED_PYTORCH_LAYERS):
                    continue
                dtype_to_check = storage_dtype
                if any(re.search(pattern, name) for pattern in patterns_to_check):
                    dtype_to_check = compute_dtype
                if getattr(module, "weight", None) is not None:
                    self.assertEqual(module.weight.dtype, dtype_to_check)
                if getattr(module, "bias", None) is not None:
                    self.assertEqual(module.bias.dtype, dtype_to_check)
                if isinstance(module, BaseTunerLayer):
                    self.assertTrue(getattr(module, "_diffusers_hook", None) is not None)
                    self.assertTrue(module._diffusers_hook.get_hook(_PEFT_AUTOCAST_DISABLE_HOOK) is not None)

        # 1. Test forward with add_adapter
        components, _, denoiser_lora_config = self.get_dummy_components(self.scheduler_classes[0])
        pipe = self.pipeline_class(**components)
        pipe = pipe.to(torch_device, dtype=compute_dtype)
        pipe.set_progress_bar_config(disable=None)

        denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
        denoiser.add_adapter(denoiser_lora_config)
        self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

        patterns_to_check = DEFAULT_SKIP_MODULES_PATTERN
        if getattr(denoiser, "_skip_layerwise_casting_patterns", None) is not None:
            patterns_to_check += tuple(denoiser._skip_layerwise_casting_patterns)

        apply_layerwise_casting(
            denoiser, storage_dtype=storage_dtype, compute_dtype=compute_dtype, skip_modules_pattern=patterns_to_check
        )
        check_module(denoiser)

        _, _, inputs = self.get_dummy_inputs(with_generator=False)
        pipe(**inputs, generator=torch.manual_seed(0))[0]

        # 2. Test forward with load_lora_weights
        with tempfile.TemporaryDirectory() as tmpdirname:
            modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
            lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
            self.pipeline_class.save_lora_weights(
                save_directory=tmpdirname, safe_serialization=True, **lora_state_dicts
            )

            self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))
            components, _, _ = self.get_dummy_components(self.scheduler_classes[0])
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device, dtype=compute_dtype)
            pipe.set_progress_bar_config(disable=None)
            pipe.load_lora_weights(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors"))

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            apply_layerwise_casting(
                denoiser,
                storage_dtype=storage_dtype,
                compute_dtype=compute_dtype,
                skip_modules_pattern=patterns_to_check,
            )
            check_module(denoiser)

            _, _, inputs = self.get_dummy_inputs(with_generator=False)
            pipe(**inputs, generator=torch.manual_seed(0))[0]
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263

    def test_inference_load_delete_load_adapters(self):
        "Tests if `load_lora_weights()` -> `delete_adapters()` -> `load_lora_weights()` works."
        for scheduler_cls in self.scheduler_classes:
            components, text_lora_config, denoiser_lora_config = self.get_dummy_components(scheduler_cls)
            pipe = self.pipeline_class(**components)
            pipe = pipe.to(torch_device)
            pipe.set_progress_bar_config(disable=None)
            _, _, inputs = self.get_dummy_inputs(with_generator=False)

            output_no_lora = pipe(**inputs, generator=torch.manual_seed(0))[0]

            if "text_encoder" in self.pipeline_class._lora_loadable_modules:
                pipe.text_encoder.add_adapter(text_lora_config)
                self.assertTrue(
                    check_if_lora_correctly_set(pipe.text_encoder), "Lora not correctly set in text encoder"
                )

            denoiser = pipe.transformer if self.unet_kwargs is None else pipe.unet
            denoiser.add_adapter(denoiser_lora_config)
            self.assertTrue(check_if_lora_correctly_set(denoiser), "Lora not correctly set in denoiser.")

            if self.has_two_text_encoders or self.has_three_text_encoders:
                lora_loadable_components = self.pipeline_class._lora_loadable_modules
                if "text_encoder_2" in lora_loadable_components:
                    pipe.text_encoder_2.add_adapter(text_lora_config)
                    self.assertTrue(
                        check_if_lora_correctly_set(pipe.text_encoder_2), "Lora not correctly set in text encoder 2"
                    )

            output_adapter_1 = pipe(**inputs, generator=torch.manual_seed(0))[0]

            with tempfile.TemporaryDirectory() as tmpdirname:
                modules_to_save = self._get_modules_to_save(pipe, has_denoiser=True)
                lora_state_dicts = self._get_lora_state_dicts(modules_to_save)
                self.pipeline_class.save_lora_weights(save_directory=tmpdirname, **lora_state_dicts)
                self.assertTrue(os.path.isfile(os.path.join(tmpdirname, "pytorch_lora_weights.safetensors")))

                # First, delete adapter and compare.
                pipe.delete_adapters(pipe.get_active_adapters()[0])
                output_no_adapter = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertFalse(np.allclose(output_adapter_1, output_no_adapter, atol=1e-3, rtol=1e-3))
                self.assertTrue(np.allclose(output_no_lora, output_no_adapter, atol=1e-3, rtol=1e-3))

                # Then load adapter and compare.
                pipe.load_lora_weights(tmpdirname)
                output_lora_loaded = pipe(**inputs, generator=torch.manual_seed(0))[0]
                self.assertTrue(np.allclose(output_adapter_1, output_lora_loaded, atol=1e-3, rtol=1e-3))