image_processor.py 44.2 KB
Newer Older
1
# Copyright 2024 The HuggingFace Team. All rights reserved.
YiYi Xu's avatar
YiYi Xu committed
2
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

15
import math
YiYi Xu's avatar
YiYi Xu committed
16
import warnings
17
from typing import List, Optional, Tuple, Union
YiYi Xu's avatar
YiYi Xu committed
18
19

import numpy as np
Anh71me's avatar
Anh71me committed
20
import PIL.Image
YiYi Xu's avatar
YiYi Xu committed
21
import torch
22
import torch.nn.functional as F
23
from PIL import Image, ImageFilter, ImageOps
YiYi Xu's avatar
YiYi Xu committed
24
25

from .configuration_utils import ConfigMixin, register_to_config
26
from .utils import CONFIG_NAME, PIL_INTERPOLATION, deprecate
YiYi Xu's avatar
YiYi Xu committed
27
28


29
30
31
PipelineImageInput = Union[
    PIL.Image.Image,
    np.ndarray,
32
    torch.Tensor,
33
34
    List[PIL.Image.Image],
    List[np.ndarray],
35
    List[torch.Tensor],
36
37
]

38
PipelineDepthInput = PipelineImageInput
39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
def is_valid_image(image):
    return isinstance(image, PIL.Image.Image) or isinstance(image, (np.ndarray, torch.Tensor)) and image.ndim in (2, 3)


def is_valid_image_imagelist(images):
    # check if the image input is one of the supported formats for image and image list:
    # it can be either one of below 3
    # (1) a 4d pytorch tensor or numpy array,
    # (2) a valid image: PIL.Image.Image, 2-d np.ndarray or torch.Tensor (grayscale image), 3-d np.ndarray or torch.Tensor
    # (3) a list of valid image
    if isinstance(images, (np.ndarray, torch.Tensor)) and images.ndim == 4:
        return True
    elif is_valid_image(images):
        return True
    elif isinstance(images, list):
        return all(is_valid_image(image) for image in images)
    return False


YiYi Xu's avatar
YiYi Xu committed
60
61
class VaeImageProcessor(ConfigMixin):
    """
Steven Liu's avatar
Steven Liu committed
62
    Image processor for VAE.
YiYi Xu's avatar
YiYi Xu committed
63
64
65

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
66
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
Steven Liu's avatar
Steven Liu committed
67
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
YiYi Xu's avatar
YiYi Xu committed
68
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
69
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
YiYi Xu's avatar
YiYi Xu committed
70
71
72
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
73
            Whether to normalize the image to [-1,1].
74
        do_binarize (`bool`, *optional*, defaults to `False`):
75
            Whether to binarize the image to 0/1.
76
77
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
78
79
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
YiYi Xu's avatar
YiYi Xu committed
80
81
82
83
84
85
86
87
88
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
Dhruv Nair's avatar
Dhruv Nair committed
89
        vae_latent_channels: int = 4,
YiYi Xu's avatar
YiYi Xu committed
90
91
        resample: str = "lanczos",
        do_normalize: bool = True,
92
        do_binarize: bool = False,
93
        do_convert_rgb: bool = False,
94
        do_convert_grayscale: bool = False,
YiYi Xu's avatar
YiYi Xu committed
95
96
    ):
        super().__init__()
97
98
99
100
101
102
        if do_convert_rgb and do_convert_grayscale:
            raise ValueError(
                "`do_convert_rgb` and `do_convert_grayscale` can not both be set to `True`,"
                " if you intended to convert the image into RGB format, please set `do_convert_grayscale = False`.",
                " if you intended to convert the image into grayscale format, please set `do_convert_rgb = False`",
            )
YiYi Xu's avatar
YiYi Xu committed
103
104

    @staticmethod
105
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
YiYi Xu's avatar
YiYi Xu committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
        """
        Convert a numpy image or a batch of images to a PIL image.
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image) for image in images]

        return pil_images

    @staticmethod
121
122
    def pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
Steven Liu's avatar
Steven Liu committed
123
        Convert a PIL image or a list of PIL images to NumPy arrays.
124
125
126
127
128
129
130
131
132
        """
        if not isinstance(images, list):
            images = [images]
        images = [np.array(image).astype(np.float32) / 255.0 for image in images]
        images = np.stack(images, axis=0)

        return images

    @staticmethod
133
    def numpy_to_pt(images: np.ndarray) -> torch.Tensor:
YiYi Xu's avatar
YiYi Xu committed
134
        """
Steven Liu's avatar
Steven Liu committed
135
        Convert a NumPy image to a PyTorch tensor.
YiYi Xu's avatar
YiYi Xu committed
136
137
138
139
140
141
142
143
        """
        if images.ndim == 3:
            images = images[..., None]

        images = torch.from_numpy(images.transpose(0, 3, 1, 2))
        return images

    @staticmethod
144
    def pt_to_numpy(images: torch.Tensor) -> np.ndarray:
YiYi Xu's avatar
YiYi Xu committed
145
        """
Steven Liu's avatar
Steven Liu committed
146
        Convert a PyTorch tensor to a NumPy image.
YiYi Xu's avatar
YiYi Xu committed
147
148
149
150
151
        """
        images = images.cpu().permute(0, 2, 3, 1).float().numpy()
        return images

    @staticmethod
152
    def normalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
YiYi Xu's avatar
YiYi Xu committed
153
        """
Steven Liu's avatar
Steven Liu committed
154
        Normalize an image array to [-1,1].
YiYi Xu's avatar
YiYi Xu committed
155
156
157
        """
        return 2.0 * images - 1.0

158
    @staticmethod
159
    def denormalize(images: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
160
        """
Steven Liu's avatar
Steven Liu committed
161
        Denormalize an image array to [0,1].
162
163
164
        """
        return (images / 2 + 0.5).clamp(0, 1)

165
166
167
    @staticmethod
    def convert_to_rgb(image: PIL.Image.Image) -> PIL.Image.Image:
        """
168
        Converts a PIL image to RGB format.
169
170
        """
        image = image.convert("RGB")
171

172
173
        return image

174
175
176
177
178
179
180
181
182
    @staticmethod
    def convert_to_grayscale(image: PIL.Image.Image) -> PIL.Image.Image:
        """
        Converts a PIL image to grayscale format.
        """
        image = image.convert("L")

        return image

183
184
185
    @staticmethod
    def blur(image: PIL.Image.Image, blur_factor: int = 4) -> PIL.Image.Image:
        """
186
        Applies Gaussian blur to an image.
187
188
189
190
191
192
193
194
        """
        image = image.filter(ImageFilter.GaussianBlur(blur_factor))

        return image

    @staticmethod
    def get_crop_region(mask_image: PIL.Image.Image, width: int, height: int, pad=0):
        """
195
196
197
        Finds a rectangular region that contains all masked ares in an image, and expands region to match the aspect
        ratio of the original image; for example, if user drew mask in a 128x32 region, and the dimensions for
        processing are 512x512, the region will be expanded to 128x128.
198
199
200
201
202
203
204
205

        Args:
            mask_image (PIL.Image.Image): Mask image.
            width (int): Width of the image to be processed.
            height (int): Height of the image to be processed.
            pad (int, optional): Padding to be added to the crop region. Defaults to 0.

        Returns:
206
207
            tuple: (x1, y1, x2, y2) represent a rectangular region that contains all masked ares in an image and
            matches the original aspect ratio.
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
        """

        mask_image = mask_image.convert("L")
        mask = np.array(mask_image)

        # 1. find a rectangular region that contains all masked ares in an image
        h, w = mask.shape
        crop_left = 0
        for i in range(w):
            if not (mask[:, i] == 0).all():
                break
            crop_left += 1

        crop_right = 0
        for i in reversed(range(w)):
            if not (mask[:, i] == 0).all():
                break
            crop_right += 1

        crop_top = 0
        for i in range(h):
            if not (mask[i] == 0).all():
                break
            crop_top += 1

        crop_bottom = 0
        for i in reversed(range(h)):
            if not (mask[i] == 0).all():
                break
            crop_bottom += 1

        # 2. add padding to the crop region
        x1, y1, x2, y2 = (
            int(max(crop_left - pad, 0)),
            int(max(crop_top - pad, 0)),
            int(min(w - crop_right + pad, w)),
            int(min(h - crop_bottom + pad, h)),
        )

        # 3. expands crop region to match the aspect ratio of the image to be processed
        ratio_crop_region = (x2 - x1) / (y2 - y1)
        ratio_processing = width / height

        if ratio_crop_region > ratio_processing:
            desired_height = (x2 - x1) / ratio_processing
            desired_height_diff = int(desired_height - (y2 - y1))
            y1 -= desired_height_diff // 2
            y2 += desired_height_diff - desired_height_diff // 2
            if y2 >= mask_image.height:
                diff = y2 - mask_image.height
                y2 -= diff
                y1 -= diff
            if y1 < 0:
                y2 -= y1
                y1 -= y1
            if y2 >= mask_image.height:
                y2 = mask_image.height
        else:
            desired_width = (y2 - y1) * ratio_processing
            desired_width_diff = int(desired_width - (x2 - x1))
            x1 -= desired_width_diff // 2
            x2 += desired_width_diff - desired_width_diff // 2
            if x2 >= mask_image.width:
                diff = x2 - mask_image.width
                x2 -= diff
                x1 -= diff
            if x1 < 0:
                x2 -= x1
                x1 -= x1
            if x2 >= mask_image.width:
                x2 = mask_image.width

        return x1, y1, x2, y2

    def _resize_and_fill(
283
        self,
284
285
286
287
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
YiYi Xu's avatar
YiYi Xu committed
288
        """
289
290
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
        the image within the dimensions, filling empty with data from image.
291
292

        Args:
293
294
295
            image: The image to resize.
            width: The width to resize the image to.
            height: The height to resize the image to.
YiYi Xu's avatar
YiYi Xu committed
296
        """
297

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
        ratio = width / height
        src_ratio = image.width / image.height

        src_w = width if ratio < src_ratio else image.width * height // image.height
        src_h = height if ratio >= src_ratio else image.height * width // image.width

        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))

        if ratio < src_ratio:
            fill_height = height // 2 - src_h // 2
            if fill_height > 0:
                res.paste(resized.resize((width, fill_height), box=(0, 0, width, 0)), box=(0, 0))
                res.paste(
                    resized.resize((width, fill_height), box=(0, resized.height, width, resized.height)),
                    box=(0, fill_height + src_h),
                )
        elif ratio > src_ratio:
            fill_width = width // 2 - src_w // 2
            if fill_width > 0:
                res.paste(resized.resize((fill_width, height), box=(0, 0, 0, height)), box=(0, 0))
                res.paste(
                    resized.resize((fill_width, height), box=(resized.width, 0, resized.width, height)),
                    box=(fill_width + src_w, 0),
                )

        return res

    def _resize_and_crop(
        self,
        image: PIL.Image.Image,
        width: int,
        height: int,
    ) -> PIL.Image.Image:
        """
334
335
        Resize the image to fit within the specified width and height, maintaining the aspect ratio, and then center
        the image within the dimensions, cropping the excess.
336

337
338
339
340
341
342
343
        Args:
            image: The image to resize.
            width: The width to resize the image to.
            height: The height to resize the image to.
        """
        ratio = width / height
        src_ratio = image.width / image.height
344

345
346
        src_w = width if ratio > src_ratio else image.width * height // image.height
        src_h = height if ratio <= src_ratio else image.height * width // image.width
347

348
349
350
351
        resized = image.resize((src_w, src_h), resample=PIL_INTERPOLATION["lanczos"])
        res = Image.new("RGB", (width, height))
        res.paste(resized, box=(width // 2 - src_w // 2, height // 2 - src_h // 2))
        return res
352
353
354

    def resize(
        self,
355
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
356
357
        height: int,
        width: int,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
358
        resize_mode: str = "default",  # "default", "fill", "crop"
359
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
360
        """
361
        Resize image.
362
363
364
365

        Args:
            image (`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor.
366
            height (`int`):
367
                The height to resize to.
368
            width (`int`):
369
                The width to resize to.
370
371
            resize_mode (`str`, *optional*, defaults to `default`):
                The resize mode to use, can be one of `default` or `fill`. If `default`, will resize the image to fit
372
373
374
375
376
377
                within the specified width and height, and it may not maintaining the original aspect ratio. If `fill`,
                will resize the image to fit within the specified width and height, maintaining the aspect ratio, and
                then center the image within the dimensions, filling empty with data from image. If `crop`, will resize
                the image to fit within the specified width and height, maintaining the aspect ratio, and then center
                the image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
378
379
380
381

        Returns:
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
                The resized image.
382
        """
383
384
        if resize_mode != "default" and not isinstance(image, PIL.Image.Image):
            raise ValueError(f"Only PIL image input is supported for resize_mode {resize_mode}")
385
        if isinstance(image, PIL.Image.Image):
386
387
388
389
390
391
392
393
394
            if resize_mode == "default":
                image = image.resize((width, height), resample=PIL_INTERPOLATION[self.config.resample])
            elif resize_mode == "fill":
                image = self._resize_and_fill(image, width, height)
            elif resize_mode == "crop":
                image = self._resize_and_crop(image, width, height)
            else:
                raise ValueError(f"resize_mode {resize_mode} is not supported")

395
396
397
398
399
400
401
402
403
404
405
406
        elif isinstance(image, torch.Tensor):
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
        elif isinstance(image, np.ndarray):
            image = self.numpy_to_pt(image)
            image = torch.nn.functional.interpolate(
                image,
                size=(height, width),
            )
            image = self.pt_to_numpy(image)
407
        return image
YiYi Xu's avatar
YiYi Xu committed
408

409
410
    def binarize(self, image: PIL.Image.Image) -> PIL.Image.Image:
        """
411
412
413
414
415
416
417
418
419
        Create a mask.

        Args:
            image (`PIL.Image.Image`):
                The image input, should be a PIL image.

        Returns:
            `PIL.Image.Image`:
                The binarized image. Values less than 0.5 are set to 0, values greater than 0.5 are set to 1.
420
421
422
        """
        image[image < 0.5] = 0
        image[image >= 0.5] = 1
423

424
425
        return image

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
    def get_default_height_width(
        self,
        image: Union[PIL.Image.Image, np.ndarray, torch.Tensor],
        height: Optional[int] = None,
        width: Optional[int] = None,
    ) -> Tuple[int, int]:
        """
        This function return the height and width that are downscaled to the next integer multiple of
        `vae_scale_factor`.

        Args:
            image(`PIL.Image.Image`, `np.ndarray` or `torch.Tensor`):
                The image input, can be a PIL image, numpy array or pytorch tensor. if it is a numpy array, should have
                shape `[batch, height, width]` or `[batch, height, width, channel]` if it is a pytorch tensor, should
                have shape `[batch, channel, height, width]`.
            height (`int`, *optional*, defaults to `None`):
                The height in preprocessed image. If `None`, will use the height of `image` input.
            width (`int`, *optional*`, defaults to `None`):
                The width in preprocessed. If `None`, will use the width of the `image` input.
        """

        if height is None:
            if isinstance(image, PIL.Image.Image):
                height = image.height
            elif isinstance(image, torch.Tensor):
                height = image.shape[2]
            else:
                height = image.shape[1]

        if width is None:
            if isinstance(image, PIL.Image.Image):
                width = image.width
            elif isinstance(image, torch.Tensor):
                width = image.shape[3]
            else:
                width = image.shape[2]

        width, height = (
            x - x % self.config.vae_scale_factor for x in (width, height)
        )  # resize to integer multiple of vae_scale_factor

        return height, width

YiYi Xu's avatar
YiYi Xu committed
469
470
    def preprocess(
        self,
471
        image: PipelineImageInput,
472
473
        height: Optional[int] = None,
        width: Optional[int] = None,
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
474
        resize_mode: str = "default",  # "default", "fill", "crop"
475
        crops_coords: Optional[Tuple[int, int, int, int]] = None,
YiYi Xu's avatar
YiYi Xu committed
476
477
    ) -> torch.Tensor:
        """
478
479
480
481
        Preprocess the image input.

        Args:
            image (`pipeline_image_input`):
482
483
                The image input, accepted formats are PIL images, NumPy arrays, PyTorch tensors; Also accept list of
                supported formats.
484
            height (`int`, *optional*, defaults to `None`):
485
486
                The height in preprocessed image. If `None`, will use the `get_default_height_width()` to get default
                height.
487
            width (`int`, *optional*`, defaults to `None`):
488
                The width in preprocessed. If `None`, will use get_default_height_width()` to get the default width.
489
            resize_mode (`str`, *optional*, defaults to `default`):
490
491
492
493
494
495
496
                The resize mode, can be one of `default` or `fill`. If `default`, will resize the image to fit within
                the specified width and height, and it may not maintaining the original aspect ratio. If `fill`, will
                resize the image to fit within the specified width and height, maintaining the aspect ratio, and then
                center the image within the dimensions, filling empty with data from image. If `crop`, will resize the
                image to fit within the specified width and height, maintaining the aspect ratio, and then center the
                image within the dimensions, cropping the excess. Note that resize_mode `fill` and `crop` are only
                supported for PIL image input.
497
498
            crops_coords (`List[Tuple[int, int, int, int]]`, *optional*, defaults to `None`):
                The crop coordinates for each image in the batch. If `None`, will not crop the image.
YiYi Xu's avatar
YiYi Xu committed
499
500
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)
501
502
503
504
505
506

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(image, (torch.Tensor, np.ndarray)) and image.ndim == 3:
            if isinstance(image, torch.Tensor):
                # if image is a pytorch tensor could have 2 possible shapes:
                #    1. batch x height x width: we should insert the channel dimension at position 1
M. Tolga Cangöz's avatar
M. Tolga Cangöz committed
507
                #    2. channel x height x width: we should insert batch dimension at position 0,
508
509
510
511
512
513
514
515
516
517
518
519
                #       however, since both channel and batch dimension has same size 1, it is same to insert at position 1
                #    for simplicity, we insert a dimension of size 1 at position 1 for both cases
                image = image.unsqueeze(1)
            else:
                # if it is a numpy array, it could have 2 possible shapes:
                #   1. batch x height x width: insert channel dimension on last position
                #   2. height x width x channel: insert batch dimension on first position
                if image.shape[-1] == 1:
                    image = np.expand_dims(image, axis=0)
                else:
                    image = np.expand_dims(image, axis=-1)

520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
        if isinstance(image, list) and isinstance(image[0], np.ndarray) and image[0].ndim == 4:
            warnings.warn(
                "Passing `image` as a list of 4d np.ndarray is deprecated."
                "Please concatenate the list along the batch dimension and pass it as a single 4d np.ndarray",
                FutureWarning,
            )
            image = np.concatenate(image, axis=0)
        if isinstance(image, list) and isinstance(image[0], torch.Tensor) and image[0].ndim == 4:
            warnings.warn(
                "Passing `image` as a list of 4d torch.Tensor is deprecated."
                "Please concatenate the list along the batch dimension and pass it as a single 4d torch.Tensor",
                FutureWarning,
            )
            image = torch.cat(image, axis=0)

        if not is_valid_image_imagelist(image):
YiYi Xu's avatar
YiYi Xu committed
536
            raise ValueError(
537
                f"Input is in incorrect format. Currently, we only support {', '.join(str(x) for x in supported_formats)}"
YiYi Xu's avatar
YiYi Xu committed
538
            )
539
540
        if not isinstance(image, list):
            image = [image]
YiYi Xu's avatar
YiYi Xu committed
541
542

        if isinstance(image[0], PIL.Image.Image):
543
544
545
546
547
            if crops_coords is not None:
                image = [i.crop(crops_coords) for i in image]
            if self.config.do_resize:
                height, width = self.get_default_height_width(image[0], height, width)
                image = [self.resize(i, height, width, resize_mode=resize_mode) for i in image]
548
549
            if self.config.do_convert_rgb:
                image = [self.convert_to_rgb(i) for i in image]
550
551
            elif self.config.do_convert_grayscale:
                image = [self.convert_to_grayscale(i) for i in image]
552
            image = self.pil_to_numpy(image)  # to np
YiYi Xu's avatar
YiYi Xu committed
553
554
555
556
            image = self.numpy_to_pt(image)  # to pt

        elif isinstance(image[0], np.ndarray):
            image = np.concatenate(image, axis=0) if image[0].ndim == 4 else np.stack(image, axis=0)
557

YiYi Xu's avatar
YiYi Xu committed
558
            image = self.numpy_to_pt(image)
559
560

            height, width = self.get_default_height_width(image, height, width)
561
562
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
563
564
565

        elif isinstance(image[0], torch.Tensor):
            image = torch.cat(image, axis=0) if image[0].ndim == 4 else torch.stack(image, axis=0)
566

567
568
569
570
            if self.config.do_convert_grayscale and image.ndim == 3:
                image = image.unsqueeze(1)

            channel = image.shape[1]
571
572
573
574
            # don't need any preprocess if the image is latents
            if channel == 4:
                return image

575
            height, width = self.get_default_height_width(image, height, width)
576
577
            if self.config.do_resize:
                image = self.resize(image, height, width)
YiYi Xu's avatar
YiYi Xu committed
578
579

        # expected range [0,1], normalize to [-1,1]
580
        do_normalize = self.config.do_normalize
581
        if do_normalize and image.min() < 0:
YiYi Xu's avatar
YiYi Xu committed
582
583
584
585
586
587
588
589
590
591
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            image = self.normalize(image)

592
593
594
        if self.config.do_binarize:
            image = self.binarize(image)

YiYi Xu's avatar
YiYi Xu committed
595
596
597
598
        return image

    def postprocess(
        self,
599
        image: torch.Tensor,
YiYi Xu's avatar
YiYi Xu committed
600
        output_type: str = "pil",
601
        do_denormalize: Optional[List[bool]] = None,
602
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
603
604
605
606
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
607
            image (`torch.Tensor`):
608
609
610
611
612
613
614
615
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
616
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
617
618
                The postprocessed image.
        """
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if output_type == "latent":
            return image

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        if output_type == "pt":
YiYi Xu's avatar
YiYi Xu committed
642
643
644
645
646
647
            return image

        image = self.pt_to_numpy(image)

        if output_type == "np":
            return image
648
649

        if output_type == "pil":
YiYi Xu's avatar
YiYi Xu committed
650
            return self.numpy_to_pil(image)
estelleafl's avatar
estelleafl committed
651

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
    def apply_overlay(
        self,
        mask: PIL.Image.Image,
        init_image: PIL.Image.Image,
        image: PIL.Image.Image,
        crop_coords: Optional[Tuple[int, int, int, int]] = None,
    ) -> PIL.Image.Image:
        """
        overlay the inpaint output to the original image
        """

        width, height = image.width, image.height

        init_image = self.resize(init_image, width=width, height=height)
        mask = self.resize(mask, width=width, height=height)

        init_image_masked = PIL.Image.new("RGBa", (width, height))
        init_image_masked.paste(init_image.convert("RGBA").convert("RGBa"), mask=ImageOps.invert(mask.convert("L")))
        init_image_masked = init_image_masked.convert("RGBA")

        if crop_coords is not None:
673
674
675
            x, y, x2, y2 = crop_coords
            w = x2 - x
            h = y2 - y
676
677
678
679
680
681
682
683
684
685
686
            base_image = PIL.Image.new("RGBA", (width, height))
            image = self.resize(image, height=h, width=w, resize_mode="crop")
            base_image.paste(image, (x, y))
            image = base_image.convert("RGB")

        image = image.convert("RGBA")
        image.alpha_composite(init_image_masked)
        image = image.convert("RGB")

        return image

estelleafl's avatar
estelleafl committed
687
688
689

class VaeImageProcessorLDM3D(VaeImageProcessor):
    """
Steven Liu's avatar
Steven Liu committed
690
    Image processor for VAE LDM3D.
estelleafl's avatar
estelleafl committed
691
692
693
694
695

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
Steven Liu's avatar
Steven Liu committed
696
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
estelleafl's avatar
estelleafl committed
697
698
699
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
Steven Liu's avatar
Steven Liu committed
700
            Whether to normalize the image to [-1,1].
estelleafl's avatar
estelleafl committed
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
    ):
        super().__init__()

    @staticmethod
716
    def numpy_to_pil(images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
717
        """
Steven Liu's avatar
Steven Liu committed
718
        Convert a NumPy image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
719
720
721
722
723
724
725
726
727
728
729
730
        """
        if images.ndim == 3:
            images = images[None, ...]
        images = (images * 255).round().astype("uint8")
        if images.shape[-1] == 1:
            # special case for grayscale (single channel) images
            pil_images = [Image.fromarray(image.squeeze(), mode="L") for image in images]
        else:
            pil_images = [Image.fromarray(image[:, :, :3]) for image in images]

        return pil_images

731
732
733
734
735
736
737
738
739
740
741
742
    @staticmethod
    def depth_pil_to_numpy(images: Union[List[PIL.Image.Image], PIL.Image.Image]) -> np.ndarray:
        """
        Convert a PIL image or a list of PIL images to NumPy arrays.
        """
        if not isinstance(images, list):
            images = [images]

        images = [np.array(image).astype(np.float32) / (2**16 - 1) for image in images]
        images = np.stack(images, axis=0)
        return images

estelleafl's avatar
estelleafl committed
743
    @staticmethod
744
    def rgblike_to_depthmap(image: Union[np.ndarray, torch.Tensor]) -> Union[np.ndarray, torch.Tensor]:
estelleafl's avatar
estelleafl committed
745
746
747
748
749
750
751
752
753
        """
        Args:
            image: RGB-like depth image

        Returns: depth map

        """
        return image[:, :, 1] * 2**8 + image[:, :, 2]

754
    def numpy_to_depth(self, images: np.ndarray) -> List[PIL.Image.Image]:
estelleafl's avatar
estelleafl committed
755
        """
Steven Liu's avatar
Steven Liu committed
756
        Convert a NumPy depth image or a batch of images to a PIL image.
estelleafl's avatar
estelleafl committed
757
758
759
        """
        if images.ndim == 3:
            images = images[None, ...]
760
761
762
763
764
765
766
767
768
        images_depth = images[:, :, :, 3:]
        if images.shape[-1] == 6:
            images_depth = (images_depth * 255).round().astype("uint8")
            pil_images = [
                Image.fromarray(self.rgblike_to_depthmap(image_depth), mode="I;16") for image_depth in images_depth
            ]
        elif images.shape[-1] == 4:
            images_depth = (images_depth * 65535.0).astype(np.uint16)
            pil_images = [Image.fromarray(image_depth, mode="I;16") for image_depth in images_depth]
estelleafl's avatar
estelleafl committed
769
        else:
770
            raise Exception("Not supported")
estelleafl's avatar
estelleafl committed
771
772
773
774
775

        return pil_images

    def postprocess(
        self,
776
        image: torch.Tensor,
estelleafl's avatar
estelleafl committed
777
778
        output_type: str = "pil",
        do_denormalize: Optional[List[bool]] = None,
779
    ) -> Union[PIL.Image.Image, np.ndarray, torch.Tensor]:
780
781
782
783
        """
        Postprocess the image output from tensor to `output_type`.

        Args:
784
            image (`torch.Tensor`):
785
786
787
788
789
790
791
792
                The image input, should be a pytorch tensor with shape `B x C x H x W`.
            output_type (`str`, *optional*, defaults to `pil`):
                The output type of the image, can be one of `pil`, `np`, `pt`, `latent`.
            do_denormalize (`List[bool]`, *optional*, defaults to `None`):
                Whether to denormalize the image to [0,1]. If `None`, will use the value of `do_normalize` in the
                `VaeImageProcessor` config.

        Returns:
793
            `PIL.Image.Image`, `np.ndarray` or `torch.Tensor`:
794
795
                The postprocessed image.
        """
estelleafl's avatar
estelleafl committed
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
        if not isinstance(image, torch.Tensor):
            raise ValueError(
                f"Input for postprocessing is in incorrect format: {type(image)}. We only support pytorch tensor"
            )
        if output_type not in ["latent", "pt", "np", "pil"]:
            deprecation_message = (
                f"the output_type {output_type} is outdated and has been set to `np`. Please make sure to set it to one of these instead: "
                "`pil`, `np`, `pt`, `latent`"
            )
            deprecate("Unsupported output_type", "1.0.0", deprecation_message, standard_warn=False)
            output_type = "np"

        if do_denormalize is None:
            do_denormalize = [self.config.do_normalize] * image.shape[0]

        image = torch.stack(
            [self.denormalize(image[i]) if do_denormalize[i] else image[i] for i in range(image.shape[0])]
        )

        image = self.pt_to_numpy(image)

        if output_type == "np":
818
819
820
821
822
            if image.shape[-1] == 6:
                image_depth = np.stack([self.rgblike_to_depthmap(im[:, :, 3:]) for im in image], axis=0)
            else:
                image_depth = image[:, :, :, 3:]
            return image[:, :, :, :3], image_depth
estelleafl's avatar
estelleafl committed
823
824
825
826
827

        if output_type == "pil":
            return self.numpy_to_pil(image), self.numpy_to_depth(image)
        else:
            raise Exception(f"This type {output_type} is not supported")
828
829
830

    def preprocess(
        self,
831
832
        rgb: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
        depth: Union[torch.Tensor, PIL.Image.Image, np.ndarray],
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
        height: Optional[int] = None,
        width: Optional[int] = None,
        target_res: Optional[int] = None,
    ) -> torch.Tensor:
        """
        Preprocess the image input. Accepted formats are PIL images, NumPy arrays or PyTorch tensors.
        """
        supported_formats = (PIL.Image.Image, np.ndarray, torch.Tensor)

        # Expand the missing dimension for 3-dimensional pytorch tensor or numpy array that represents grayscale image
        if self.config.do_convert_grayscale and isinstance(rgb, (torch.Tensor, np.ndarray)) and rgb.ndim == 3:
            raise Exception("This is not yet supported")

        if isinstance(rgb, supported_formats):
            rgb = [rgb]
            depth = [depth]
        elif not (isinstance(rgb, list) and all(isinstance(i, supported_formats) for i in rgb)):
            raise ValueError(
                f"Input is in incorrect format: {[type(i) for i in rgb]}. Currently, we only support {', '.join(supported_formats)}"
            )

        if isinstance(rgb[0], PIL.Image.Image):
            if self.config.do_convert_rgb:
                raise Exception("This is not yet supported")
                # rgb = [self.convert_to_rgb(i) for i in rgb]
                # depth = [self.convert_to_depth(i) for i in depth]  #TODO define convert_to_depth
            if self.config.do_resize or target_res:
                height, width = self.get_default_height_width(rgb[0], height, width) if not target_res else target_res
                rgb = [self.resize(i, height, width) for i in rgb]
                depth = [self.resize(i, height, width) for i in depth]
            rgb = self.pil_to_numpy(rgb)  # to np
            rgb = self.numpy_to_pt(rgb)  # to pt

            depth = self.depth_pil_to_numpy(depth)  # to np
            depth = self.numpy_to_pt(depth)  # to pt

        elif isinstance(rgb[0], np.ndarray):
            rgb = np.concatenate(rgb, axis=0) if rgb[0].ndim == 4 else np.stack(rgb, axis=0)
            rgb = self.numpy_to_pt(rgb)
            height, width = self.get_default_height_width(rgb, height, width)
            if self.config.do_resize:
                rgb = self.resize(rgb, height, width)

            depth = np.concatenate(depth, axis=0) if rgb[0].ndim == 4 else np.stack(depth, axis=0)
            depth = self.numpy_to_pt(depth)
            height, width = self.get_default_height_width(depth, height, width)
            if self.config.do_resize:
                depth = self.resize(depth, height, width)

        elif isinstance(rgb[0], torch.Tensor):
            raise Exception("This is not yet supported")
            # rgb = torch.cat(rgb, axis=0) if rgb[0].ndim == 4 else torch.stack(rgb, axis=0)

            # if self.config.do_convert_grayscale and rgb.ndim == 3:
            #     rgb = rgb.unsqueeze(1)

            # channel = rgb.shape[1]

            # height, width = self.get_default_height_width(rgb, height, width)
            # if self.config.do_resize:
            #     rgb = self.resize(rgb, height, width)

            # depth = torch.cat(depth, axis=0) if depth[0].ndim == 4 else torch.stack(depth, axis=0)

            # if self.config.do_convert_grayscale and depth.ndim == 3:
            #     depth = depth.unsqueeze(1)

            # channel = depth.shape[1]
            # # don't need any preprocess if the image is latents
            # if depth == 4:
            #     return rgb, depth

            # height, width = self.get_default_height_width(depth, height, width)
            # if self.config.do_resize:
            #     depth = self.resize(depth, height, width)
        # expected range [0,1], normalize to [-1,1]
        do_normalize = self.config.do_normalize
        if rgb.min() < 0 and do_normalize:
            warnings.warn(
                "Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
                f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{rgb.min()},{rgb.max()}]",
                FutureWarning,
            )
            do_normalize = False

        if do_normalize:
            rgb = self.normalize(rgb)
            depth = self.normalize(depth)

        if self.config.do_binarize:
            rgb = self.binarize(rgb)
            depth = self.binarize(depth)

        return rgb, depth
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970


class IPAdapterMaskProcessor(VaeImageProcessor):
    """
    Image processor for IP Adapter image masks.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `False`):
            Whether to normalize the image to [-1,1].
        do_binarize (`bool`, *optional*, defaults to `True`):
            Whether to binarize the image to 0/1.
        do_convert_grayscale (`bool`, *optional*, defaults to be `True`):
            Whether to convert the images to grayscale format.

    """

    config_name = CONFIG_NAME

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = False,
        do_binarize: bool = True,
        do_convert_grayscale: bool = True,
    ):
        super().__init__(
            do_resize=do_resize,
            vae_scale_factor=vae_scale_factor,
            resample=resample,
            do_normalize=do_normalize,
            do_binarize=do_binarize,
            do_convert_grayscale=do_convert_grayscale,
        )

    @staticmethod
971
    def downsample(mask: torch.Tensor, batch_size: int, num_queries: int, value_embed_dim: int):
972
        """
973
974
        Downsamples the provided mask tensor to match the expected dimensions for scaled dot-product attention. If the
        aspect ratio of the mask does not match the aspect ratio of the output image, a warning is issued.
975
976

        Args:
977
            mask (`torch.Tensor`):
978
979
980
981
982
983
984
985
986
                The input mask tensor generated with `IPAdapterMaskProcessor.preprocess()`.
            batch_size (`int`):
                The batch size.
            num_queries (`int`):
                The number of queries.
            value_embed_dim (`int`):
                The dimensionality of the value embeddings.

        Returns:
987
            `torch.Tensor`:
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
                The downsampled mask tensor.

        """
        o_h = mask.shape[1]
        o_w = mask.shape[2]
        ratio = o_w / o_h
        mask_h = int(math.sqrt(num_queries / ratio))
        mask_h = int(mask_h) + int((num_queries % int(mask_h)) != 0)
        mask_w = num_queries // mask_h

        mask_downsample = F.interpolate(mask.unsqueeze(0), size=(mask_h, mask_w), mode="bicubic").squeeze(0)

        # Repeat batch_size times
        if mask_downsample.shape[0] < batch_size:
            mask_downsample = mask_downsample.repeat(batch_size, 1, 1)

        mask_downsample = mask_downsample.view(mask_downsample.shape[0], -1)

        downsampled_area = mask_h * mask_w
        # If the output image and the mask do not have the same aspect ratio, tensor shapes will not match
        # Pad tensor if downsampled_mask.shape[1] is smaller than num_queries
        if downsampled_area < num_queries:
            warnings.warn(
                "The aspect ratio of the mask does not match the aspect ratio of the output image. "
                "Please update your masks or adjust the output size for optimal performance.",
                UserWarning,
            )
            mask_downsample = F.pad(mask_downsample, (0, num_queries - mask_downsample.shape[1]), value=0.0)
        # Discard last embeddings if downsampled_mask.shape[1] is bigger than num_queries
        if downsampled_area > num_queries:
            warnings.warn(
                "The aspect ratio of the mask does not match the aspect ratio of the output image. "
                "Please update your masks or adjust the output size for optimal performance.",
                UserWarning,
            )
            mask_downsample = mask_downsample[:, :num_queries]

        # Repeat last dimension to match SDPA output shape
        mask_downsample = mask_downsample.view(mask_downsample.shape[0], mask_downsample.shape[1], 1).repeat(
            1, 1, value_embed_dim
        )

        return mask_downsample
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104


class PixArtImageProcessor(VaeImageProcessor):
    """
    Image processor for PixArt image resize and crop.

    Args:
        do_resize (`bool`, *optional*, defaults to `True`):
            Whether to downscale the image's (height, width) dimensions to multiples of `vae_scale_factor`. Can accept
            `height` and `width` arguments from [`image_processor.VaeImageProcessor.preprocess`] method.
        vae_scale_factor (`int`, *optional*, defaults to `8`):
            VAE scale factor. If `do_resize` is `True`, the image is automatically resized to multiples of this factor.
        resample (`str`, *optional*, defaults to `lanczos`):
            Resampling filter to use when resizing the image.
        do_normalize (`bool`, *optional*, defaults to `True`):
            Whether to normalize the image to [-1,1].
        do_binarize (`bool`, *optional*, defaults to `False`):
            Whether to binarize the image to 0/1.
        do_convert_rgb (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to RGB format.
        do_convert_grayscale (`bool`, *optional*, defaults to be `False`):
            Whether to convert the images to grayscale format.
    """

    @register_to_config
    def __init__(
        self,
        do_resize: bool = True,
        vae_scale_factor: int = 8,
        resample: str = "lanczos",
        do_normalize: bool = True,
        do_binarize: bool = False,
        do_convert_grayscale: bool = False,
    ):
        super().__init__(
            do_resize=do_resize,
            vae_scale_factor=vae_scale_factor,
            resample=resample,
            do_normalize=do_normalize,
            do_binarize=do_binarize,
            do_convert_grayscale=do_convert_grayscale,
        )

    @staticmethod
    def classify_height_width_bin(height: int, width: int, ratios: dict) -> Tuple[int, int]:
        """Returns binned height and width."""
        ar = float(height / width)
        closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - ar))
        default_hw = ratios[closest_ratio]
        return int(default_hw[0]), int(default_hw[1])

    @staticmethod
    def resize_and_crop_tensor(samples: torch.Tensor, new_width: int, new_height: int) -> torch.Tensor:
        orig_height, orig_width = samples.shape[2], samples.shape[3]

        # Check if resizing is needed
        if orig_height != new_height or orig_width != new_width:
            ratio = max(new_height / orig_height, new_width / orig_width)
            resized_width = int(orig_width * ratio)
            resized_height = int(orig_height * ratio)

            # Resize
            samples = F.interpolate(
                samples, size=(resized_height, resized_width), mode="bilinear", align_corners=False
            )

            # Center Crop
            start_x = (resized_width - new_width) // 2
            end_x = start_x + new_width
            start_y = (resized_height - new_height) // 2
            end_y = start_y + new_height
            samples = samples[:, :, start_y:end_y, start_x:end_x]

        return samples