worker.py 9.86 KB
Newer Older
1
from typing import Dict, List, Tuple, Optional
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
4

import torch

5
6
7
8
9
from cacheflow.model_executor import get_model, InputMetadata, set_random_seed
from cacheflow.model_executor.parallel_utils.parallel_state import (
    initialize_model_parallel,
    initialize_all_reduce_launcher,
    get_tensor_model_parallel_world_size)
10
from cacheflow.sampling_params import SamplingParams
11
from cacheflow.sequence import SequenceGroupMetadata
12
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
13
14
from cacheflow.worker.cache_engine import CacheEngine

15

Woosuk Kwon's avatar
Woosuk Kwon committed
16
17
18
19
20
21
22
23
class Worker:

    def __init__(
        self,
        model_name: str,
        block_size: int,
        num_gpu_blocks: int,
        num_cpu_blocks: int,
Woosuk Kwon's avatar
Woosuk Kwon committed
24
        dtype: str,
25
        seed: int,
Zhuohan Li's avatar
Zhuohan Li committed
26
27
28
        distributed_init_method: str,
        rank: int,
        world_size: int,
29
        cache_dir: Optional[str],
30
        use_dummy_weights: bool,
31
        use_np_cache: bool,
32
        max_num_batched_tokens: int,
Zhuohan Li's avatar
Zhuohan Li committed
33
34
        tensor_parallel_size: int = 1,
        pipeline_parallel_size: int = 1,
Woosuk Kwon's avatar
Woosuk Kwon committed
35
    ) -> None:
Zhuohan Li's avatar
Zhuohan Li committed
36
37
38
39
40
41
        self.init_distributed_environment(distributed_init_method,
                                          rank,
                                          world_size,
                                          tensor_parallel_size,
                                          pipeline_parallel_size)
        self.worker_id = rank
Woosuk Kwon's avatar
Woosuk Kwon committed
42
        self.block_size = block_size
Zhuohan Li's avatar
Zhuohan Li committed
43
        set_random_seed(seed)
Woosuk Kwon's avatar
Woosuk Kwon committed
44
45

        # Initialize the model.
46
        self.model, self.dtype = get_model(
47
48
            model_name, dtype=dtype, cache_dir=cache_dir,
            use_dummy_weights=use_dummy_weights, use_np_cache=use_np_cache)
Zhuohan Li's avatar
Zhuohan Li committed
49
50
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
51
52
        initialize_all_reduce_launcher(
            max_num_batched_tokens, self.model.config.hidden_size, self.dtype)
Woosuk Kwon's avatar
Woosuk Kwon committed
53
        self.num_layers = self.model.config.num_hidden_layers
Zhuohan Li's avatar
Zhuohan Li committed
54
55
56
        assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
        self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
57

Zhuohan Li's avatar
Zhuohan Li committed
58
        # We reset the seed after initializing the model to ensure that
59
        # the random state is not affected by the model initialization.
Zhuohan Li's avatar
Zhuohan Li committed
60
        set_random_seed(seed)
61

Woosuk Kwon's avatar
Woosuk Kwon committed
62
        self.cache_engine = CacheEngine(
Zhuohan Li's avatar
Zhuohan Li committed
63
            worker_id=self.worker_id,
Woosuk Kwon's avatar
Woosuk Kwon committed
64
65
66
67
68
69
70
71
72
73
74
            num_layers=self.num_layers,
            num_heads=self.num_heads,
            head_size=self.head_size,
            block_size=block_size,
            num_gpu_blocks=num_gpu_blocks,
            num_cpu_blocks=num_cpu_blocks,
            dtype=self.dtype,
        )
        self.cache_events = self.cache_engine.events
        self.gpu_cache = self.cache_engine.gpu_cache

Zhuohan Li's avatar
Zhuohan Li committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93

    def init_distributed_environment(self,
                                     distributed_init_method: str,
                                     rank: int,
                                     world_size: int,
                                     tensor_parallel_size: int = 1,
                                     pipeline_parallel_size: int = 1) -> None:
        """Initialize the distributed environment."""
        torch.distributed.init_process_group(
            backend='nccl',
            init_method=distributed_init_method,
            world_size=world_size,
            rank=rank,
        )
        # A small all_reduce for warmup.
        torch.distributed.all_reduce(torch.zeros(1).cuda())
        initialize_model_parallel(tensor_parallel_size,
                                  pipeline_parallel_size)

Woosuk Kwon's avatar
Woosuk Kwon committed
94
95
    def prepare_inputs(
        self,
96
        seq_group_metadata_list: List[SequenceGroupMetadata],
Woosuk Kwon's avatar
Woosuk Kwon committed
97
    ) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
98
99
        seq_groups: List[Tuple[List[int], SamplingParams]] = []
        seq_logprobs: Dict[int, float] = {}
Woosuk Kwon's avatar
Woosuk Kwon committed
100
101
102
103
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []

104
105
        # Add prompt tokens.
        prompt_lens: List[int] = []
106
107
        for seq_group_metadata in seq_group_metadata_list:
            if not seq_group_metadata.is_prompt:
108
109
                continue

110
111
            seq_ids = list(seq_group_metadata.input_tokens.keys())
            sampling_params = seq_group_metadata.sampling_params
112
            seq_groups.append((seq_ids, sampling_params))
113
            seq_logprobs.update(seq_group_metadata.seq_logprobs)
114
115
116
117

            # Use any sequence in the group.
            seq_id = seq_ids[0]

118
            prompt_tokens = seq_group_metadata.input_tokens[seq_id]
119
            prompt_len = len(prompt_tokens)
Woosuk Kwon's avatar
Woosuk Kwon committed
120
121
            prompt_lens.append(prompt_len)

122
123
124
125
            input_tokens.extend(prompt_tokens)
            # NOTE(woosuk): Here we assume that the first token in the prompt
            # is always the first token in the sequence.
            input_positions.extend(range(len(prompt_tokens)))
Woosuk Kwon's avatar
Woosuk Kwon committed
126

127
            # Compute the slot mapping.
128
            block_table = seq_group_metadata.block_tables[seq_id]
Woosuk Kwon's avatar
Woosuk Kwon committed
129
130
131
132
133
134
            for i in range(prompt_len):
                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)

135
        # Add generation tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
136
137
        max_context_len = 0
        max_num_blocks_per_seq = 0
138
        context_lens: List[int] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
139
        generation_block_tables: List[List[int]] = []
140
141
        for seq_group_metadata in seq_group_metadata_list:
            if seq_group_metadata.is_prompt:
142
143
                continue

144
145
            seq_ids = list(seq_group_metadata.input_tokens.keys())
            sampling_params = seq_group_metadata.sampling_params
146
            seq_groups.append((seq_ids, sampling_params))
147
            seq_logprobs.update(seq_group_metadata.seq_logprobs)
148
149

            for seq_id in seq_ids:
150
151
                assert len(seq_group_metadata.input_tokens[seq_id]) == 1
                generation_token = seq_group_metadata.input_tokens[seq_id][0]
152
153
                input_tokens.append(generation_token)

154
                position = seq_group_metadata.context_len - 1
155
156
                input_positions.append(position)

157
                block_table = seq_group_metadata.block_tables[seq_id]
158
159
160
                generation_block_tables.append(block_table)

                max_context_len = max(
161
                    max_context_len, seq_group_metadata.context_len)
162
163
                max_num_blocks_per_seq = max(
                    max_num_blocks_per_seq, len(block_table))
164
                context_lens.append(seq_group_metadata.context_len)
165
166
167
168
169

                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)
Woosuk Kwon's avatar
Woosuk Kwon committed
170
171
172
173
174
175
176
177

        # Optimization: Pad the input length to be a multiple of 8.
        # This is required for utilizing the Tensor Cores in NVIDIA GPUs.
        input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
        input_positions = _pad_to_alignment(input_positions, multiple_of=8)

        # Convert to tensors.
        tokens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
178
            input_tokens, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
179
        positions_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
180
            input_positions, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
181
        slot_mapping_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
182
            slot_mapping, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
183
        context_lens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
184
            context_lens, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
185
186
187
        padded_block_tables = [
            _pad_to_max(block_table, max_num_blocks_per_seq)
            for block_table in generation_block_tables]
Woosuk Kwon's avatar
Woosuk Kwon committed
188
        block_tables_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
189
            padded_block_tables, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
190
191

        input_metadata = InputMetadata(
192
193
            seq_groups=seq_groups,
            seq_logprobs=seq_logprobs,
Woosuk Kwon's avatar
Woosuk Kwon committed
194
195
196
197
198
199
200
201
202
203
204
            prompt_lens=prompt_lens,
            slot_mapping=slot_mapping_tensor,
            context_lens=context_lens_tensor,
            max_context_len=max_context_len,
            block_tables=block_tables_tensor,
        )
        return tokens_tensor, positions_tensor, input_metadata

    @torch.inference_mode()
    def execute_stage(
        self,
205
        seq_group_metadata_list: List[SequenceGroupMetadata],
Woosuk Kwon's avatar
Woosuk Kwon committed
206
207
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
208
209
        blocks_to_copy: Dict[int, List[int]],
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
210
        # Issue cache operations.
211
        issued_cache_op = False
Woosuk Kwon's avatar
Woosuk Kwon committed
212
213
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
214
            issued_cache_op = True
Woosuk Kwon's avatar
Woosuk Kwon committed
215
216
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
217
            issued_cache_op = True
Woosuk Kwon's avatar
Woosuk Kwon committed
218
219
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)
220
            issued_cache_op = True
Woosuk Kwon's avatar
Woosuk Kwon committed
221

222
        if issued_cache_op:
Woosuk Kwon's avatar
Woosuk Kwon committed
223
224
225
226
            cache_events = self.cache_events
        else:
            cache_events = None

Woosuk Kwon's avatar
Woosuk Kwon committed
227
        # If there is no input, we don't need to execute the model.
228
        if not seq_group_metadata_list:
Woosuk Kwon's avatar
Woosuk Kwon committed
229
230
231
232
233
            if cache_events is not None:
                for event in cache_events:
                    event.wait()
            return {}

Woosuk Kwon's avatar
Woosuk Kwon committed
234
235
        # Prepare input tensors.
        input_tokens, input_positions, input_metadata = self.prepare_inputs(
236
            seq_group_metadata_list)
Woosuk Kwon's avatar
Woosuk Kwon committed
237
238
239
240
241

        # Execute the model.
        output = self.model(
            input_ids=input_tokens,
            positions=input_positions,
Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
242
            kv_caches=self.gpu_cache,
Woosuk Kwon's avatar
Woosuk Kwon committed
243
244
245
246
247
248
249
250
251
252
253
254
            input_metadata=input_metadata,
            cache_events=cache_events,
        )
        return output


def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
    return x + [0] * ((-len(x)) % multiple_of)


def _pad_to_max(x: List[int], max_len: int) -> List[int]:
    return x + [0] * (max_len - len(x))