worker.py 10.1 KB
Newer Older
1
from typing import Dict, List, Tuple
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
4
5
6

import torch

from cacheflow.models import get_model
from cacheflow.models import InputMetadata
7
8
9
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceGroupInputs
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
10
from cacheflow.worker.cache_engine import CacheEngine
Zhuohan Li's avatar
Zhuohan Li committed
11
from cacheflow.parallel_utils.parallel_state import (
12
13
14
    initialize_model_parallel,
    initialize_all_reduce_launcher,
    get_tensor_model_parallel_world_size)
Zhuohan Li's avatar
Zhuohan Li committed
15
from cacheflow.utils import set_random_seed
Woosuk Kwon's avatar
Woosuk Kwon committed
16
17
18
19
20
21
22
23
24
25


class Worker:

    def __init__(
        self,
        model_name: str,
        block_size: int,
        num_gpu_blocks: int,
        num_cpu_blocks: int,
Woosuk Kwon's avatar
Woosuk Kwon committed
26
        dtype: str,
27
        seed: int,
Zhuohan Li's avatar
Zhuohan Li committed
28
29
30
31
        distributed_init_method: str,
        rank: int,
        world_size: int,
        model_path: str,
32
        use_dummy_weights: bool,
33
        max_num_batched_tokens: int,
Zhuohan Li's avatar
Zhuohan Li committed
34
35
        tensor_parallel_size: int = 1,
        pipeline_parallel_size: int = 1,
Woosuk Kwon's avatar
Woosuk Kwon committed
36
    ) -> None:
Zhuohan Li's avatar
Zhuohan Li committed
37
38
39
40
41
42
        self.init_distributed_environment(distributed_init_method,
                                          rank,
                                          world_size,
                                          tensor_parallel_size,
                                          pipeline_parallel_size)
        self.worker_id = rank
Woosuk Kwon's avatar
Woosuk Kwon committed
43
        self.block_size = block_size
Zhuohan Li's avatar
Zhuohan Li committed
44
        set_random_seed(seed)
Woosuk Kwon's avatar
Woosuk Kwon committed
45
46

        # Initialize the model.
47
48
        self.model, self.dtype = get_model(
            model_name, dtype=dtype, path=model_path, use_dummy_weights=use_dummy_weights)
Zhuohan Li's avatar
Zhuohan Li committed
49
50
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
51
52
        initialize_all_reduce_launcher(
            max_num_batched_tokens, self.model.config.hidden_size, self.dtype)
Woosuk Kwon's avatar
Woosuk Kwon committed
53
        self.num_layers = self.model.config.num_hidden_layers
Zhuohan Li's avatar
Zhuohan Li committed
54
55
56
        assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
        self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
57

Zhuohan Li's avatar
Zhuohan Li committed
58
        # We reset the seed after initializing the model to ensure that
59
        # the random state is not affected by the model initialization.
Zhuohan Li's avatar
Zhuohan Li committed
60
        set_random_seed(seed)
61

Woosuk Kwon's avatar
Woosuk Kwon committed
62
        self.cache_engine = CacheEngine(
Zhuohan Li's avatar
Zhuohan Li committed
63
            worker_id=self.worker_id,
Woosuk Kwon's avatar
Woosuk Kwon committed
64
65
66
67
68
69
70
71
72
73
74
            num_layers=self.num_layers,
            num_heads=self.num_heads,
            head_size=self.head_size,
            block_size=block_size,
            num_gpu_blocks=num_gpu_blocks,
            num_cpu_blocks=num_cpu_blocks,
            dtype=self.dtype,
        )
        self.cache_events = self.cache_engine.events
        self.gpu_cache = self.cache_engine.gpu_cache

Zhuohan Li's avatar
Zhuohan Li committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

    def init_distributed_environment(self,
                                     distributed_init_method: str,
                                     rank: int,
                                     world_size: int,
                                     tensor_parallel_size: int = 1,
                                     pipeline_parallel_size: int = 1) -> None:
        """Initialize the distributed environment."""
        torch.distributed.init_process_group(
            backend='nccl',
            init_method=distributed_init_method,
            world_size=world_size,
            rank=rank,
        )
        # A small all_reduce for warmup.
        torch.distributed.all_reduce(torch.zeros(1).cuda())
        initialize_model_parallel(tensor_parallel_size,
                                  pipeline_parallel_size)


Woosuk Kwon's avatar
Woosuk Kwon committed
95
96
    def prepare_inputs(
        self,
97
        input_seq_groups: List[SequenceGroupInputs],
Woosuk Kwon's avatar
Woosuk Kwon committed
98
    ) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
99
100
101
        seq_groups: List[Tuple[List[int], SamplingParams]] = []
        seq_logprobs: Dict[int, float] = {}
        sampling_params: Dict[int, SamplingParams] = {}
Woosuk Kwon's avatar
Woosuk Kwon committed
102
103
104
105
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
        # Add prompt tokens.
        prompt_lens: List[int] = []
        for input_seq_group in input_seq_groups:
            if not input_seq_group.is_prompt:
                continue

            seq_ids = list(input_seq_group.input_tokens.keys())
            sampling_params = input_seq_group.sampling_params
            seq_groups.append((seq_ids, sampling_params))
            seq_logprobs.update(input_seq_group.seq_logprobs)

            # Use any sequence in the group.
            seq_id = seq_ids[0]

            prompt_tokens = input_seq_group.input_tokens[seq_id]
            prompt_len = len(prompt_tokens)
Woosuk Kwon's avatar
Woosuk Kwon committed
122
123
            prompt_lens.append(prompt_len)

124
125
126
127
            input_tokens.extend(prompt_tokens)
            # NOTE(woosuk): Here we assume that the first token in the prompt
            # is always the first token in the sequence.
            input_positions.extend(range(len(prompt_tokens)))
Woosuk Kwon's avatar
Woosuk Kwon committed
128

129
130
            # Compute the slot mapping.
            block_table = input_seq_group.block_tables[seq_id]
Woosuk Kwon's avatar
Woosuk Kwon committed
131
132
133
134
135
136
            for i in range(prompt_len):
                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)

Woosuk Kwon's avatar
Woosuk Kwon committed
137
138
139
140
141
        cumulative_prompt_lens: List[int] = [0]
        for prompt_len in prompt_lens:
            cumulative_prompt_lens.append(
                cumulative_prompt_lens[-1] + prompt_len)

142
        # Add generation tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
143
144
        max_context_len = 0
        max_num_blocks_per_seq = 0
145
        context_lens: List[int] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
146
        generation_block_tables: List[List[int]] = []
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
        for input_seq_group in input_seq_groups:
            if input_seq_group.is_prompt:
                continue

            seq_ids = list(input_seq_group.input_tokens.keys())
            sampling_params = input_seq_group.sampling_params
            seq_groups.append((seq_ids, sampling_params))
            seq_logprobs.update(input_seq_group.seq_logprobs)

            for seq_id in seq_ids:
                assert len(input_seq_group.input_tokens[seq_id]) == 1
                generation_token = input_seq_group.input_tokens[seq_id][0]
                input_tokens.append(generation_token)

                position = input_seq_group.context_len - 1
                input_positions.append(position)

                block_table = input_seq_group.block_tables[seq_id]
                generation_block_tables.append(block_table)

                max_context_len = max(
                    max_context_len, input_seq_group.context_len)
                max_num_blocks_per_seq = max(
                    max_num_blocks_per_seq, len(block_table))
                context_lens.append(input_seq_group.context_len)

                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)
Woosuk Kwon's avatar
Woosuk Kwon committed
177
178
179
180
181
182
183
184

        # Optimization: Pad the input length to be a multiple of 8.
        # This is required for utilizing the Tensor Cores in NVIDIA GPUs.
        input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
        input_positions = _pad_to_alignment(input_positions, multiple_of=8)

        # Convert to tensors.
        tokens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
185
            input_tokens, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
186
        positions_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
187
            input_positions, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
188
        slot_mapping_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
189
            slot_mapping, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
190
        context_lens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
191
            context_lens, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
192
193
194
        padded_block_tables = [
            _pad_to_max(block_table, max_num_blocks_per_seq)
            for block_table in generation_block_tables]
Woosuk Kwon's avatar
Woosuk Kwon committed
195
        block_tables_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
196
            padded_block_tables, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
197
198
        cumulative_prompt_lens_tensor = torch.tensor(
            cumulative_prompt_lens, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
199
200

        input_metadata = InputMetadata(
201
202
            seq_groups=seq_groups,
            seq_logprobs=seq_logprobs,
Woosuk Kwon's avatar
Woosuk Kwon committed
203
            prompt_lens=prompt_lens,
Woosuk Kwon's avatar
Woosuk Kwon committed
204
            cumulative_prompt_lens=cumulative_prompt_lens_tensor,
Woosuk Kwon's avatar
Woosuk Kwon committed
205
206
207
208
209
210
211
212
213
214
            slot_mapping=slot_mapping_tensor,
            context_lens=context_lens_tensor,
            max_context_len=max_context_len,
            block_tables=block_tables_tensor,
        )
        return tokens_tensor, positions_tensor, input_metadata

    @torch.inference_mode()
    def execute_stage(
        self,
215
        input_seq_groups: List[SequenceGroupInputs],
Woosuk Kwon's avatar
Woosuk Kwon committed
216
217
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
218
219
        blocks_to_copy: Dict[int, List[int]],
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
        # Issue cache operations.
        command_issued = False
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
            command_issued = True
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
            command_issued = True
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)
            command_issued = True

        if command_issued:
            cache_events = self.cache_events
        else:
            cache_events = None

Woosuk Kwon's avatar
Woosuk Kwon committed
237
238
239
240
241
242
243
        # If there is no input, we don't need to execute the model.
        if not input_seq_groups:
            if cache_events is not None:
                for event in cache_events:
                    event.wait()
            return {}

Woosuk Kwon's avatar
Woosuk Kwon committed
244
245
        # Prepare input tensors.
        input_tokens, input_positions, input_metadata = self.prepare_inputs(
246
            input_seq_groups)
Woosuk Kwon's avatar
Woosuk Kwon committed
247
248
249
250
251

        # Execute the model.
        output = self.model(
            input_ids=input_tokens,
            positions=input_positions,
Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
252
            kv_caches=self.gpu_cache,
Woosuk Kwon's avatar
Woosuk Kwon committed
253
254
255
256
257
258
259
260
261
262
263
264
            input_metadata=input_metadata,
            cache_events=cache_events,
        )
        return output


def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
    return x + [0] * ((-len(x)) % multiple_of)


def _pad_to_max(x: List[int], max_len: int) -> List[int]:
    return x + [0] * (max_len - len(x))