worker.py 9.84 KB
Newer Older
1
from typing import Dict, List, Tuple, Optional
Woosuk Kwon's avatar
Woosuk Kwon committed
2
3
4
5
6

import torch

from cacheflow.models import get_model
from cacheflow.models import InputMetadata
7
8
9
from cacheflow.sampling_params import SamplingParams
from cacheflow.sequence import SequenceGroupInputs
from cacheflow.sequence import SequenceOutputs
Woosuk Kwon's avatar
Woosuk Kwon committed
10
from cacheflow.worker.cache_engine import CacheEngine
Zhuohan Li's avatar
Zhuohan Li committed
11
from cacheflow.parallel_utils.parallel_state import (
12
13
14
    initialize_model_parallel,
    initialize_all_reduce_launcher,
    get_tensor_model_parallel_world_size)
Zhuohan Li's avatar
Zhuohan Li committed
15
from cacheflow.utils import set_random_seed
Woosuk Kwon's avatar
Woosuk Kwon committed
16
17
18
19
20
21
22
23
24
25


class Worker:

    def __init__(
        self,
        model_name: str,
        block_size: int,
        num_gpu_blocks: int,
        num_cpu_blocks: int,
Woosuk Kwon's avatar
Woosuk Kwon committed
26
        dtype: str,
27
        seed: int,
Zhuohan Li's avatar
Zhuohan Li committed
28
29
30
        distributed_init_method: str,
        rank: int,
        world_size: int,
31
        cache_dir: Optional[str],
32
        use_dummy_weights: bool,
33
        use_np_cache: bool,
34
        max_num_batched_tokens: int,
Zhuohan Li's avatar
Zhuohan Li committed
35
36
        tensor_parallel_size: int = 1,
        pipeline_parallel_size: int = 1,
Woosuk Kwon's avatar
Woosuk Kwon committed
37
    ) -> None:
Zhuohan Li's avatar
Zhuohan Li committed
38
39
40
41
42
43
        self.init_distributed_environment(distributed_init_method,
                                          rank,
                                          world_size,
                                          tensor_parallel_size,
                                          pipeline_parallel_size)
        self.worker_id = rank
Woosuk Kwon's avatar
Woosuk Kwon committed
44
        self.block_size = block_size
Zhuohan Li's avatar
Zhuohan Li committed
45
        set_random_seed(seed)
Woosuk Kwon's avatar
Woosuk Kwon committed
46
47

        # Initialize the model.
48
        self.model, self.dtype = get_model(
49
50
            model_name, dtype=dtype, cache_dir=cache_dir,
            use_dummy_weights=use_dummy_weights, use_np_cache=use_np_cache)
Zhuohan Li's avatar
Zhuohan Li committed
51
52
        tensor_model_parallel_world_size = (
            get_tensor_model_parallel_world_size())
53
54
        initialize_all_reduce_launcher(
            max_num_batched_tokens, self.model.config.hidden_size, self.dtype)
Woosuk Kwon's avatar
Woosuk Kwon committed
55
        self.num_layers = self.model.config.num_hidden_layers
Zhuohan Li's avatar
Zhuohan Li committed
56
57
58
        assert self.model.config.num_attention_heads % tensor_model_parallel_world_size == 0
        self.num_heads = self.model.config.num_attention_heads // tensor_model_parallel_world_size
        self.head_size = self.model.config.hidden_size // (self.num_heads * tensor_model_parallel_world_size)
Woosuk Kwon's avatar
Woosuk Kwon committed
59

Zhuohan Li's avatar
Zhuohan Li committed
60
        # We reset the seed after initializing the model to ensure that
61
        # the random state is not affected by the model initialization.
Zhuohan Li's avatar
Zhuohan Li committed
62
        set_random_seed(seed)
63

Woosuk Kwon's avatar
Woosuk Kwon committed
64
        self.cache_engine = CacheEngine(
Zhuohan Li's avatar
Zhuohan Li committed
65
            worker_id=self.worker_id,
Woosuk Kwon's avatar
Woosuk Kwon committed
66
67
68
69
70
71
72
73
74
75
76
            num_layers=self.num_layers,
            num_heads=self.num_heads,
            head_size=self.head_size,
            block_size=block_size,
            num_gpu_blocks=num_gpu_blocks,
            num_cpu_blocks=num_cpu_blocks,
            dtype=self.dtype,
        )
        self.cache_events = self.cache_engine.events
        self.gpu_cache = self.cache_engine.gpu_cache

Zhuohan Li's avatar
Zhuohan Li committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

    def init_distributed_environment(self,
                                     distributed_init_method: str,
                                     rank: int,
                                     world_size: int,
                                     tensor_parallel_size: int = 1,
                                     pipeline_parallel_size: int = 1) -> None:
        """Initialize the distributed environment."""
        torch.distributed.init_process_group(
            backend='nccl',
            init_method=distributed_init_method,
            world_size=world_size,
            rank=rank,
        )
        # A small all_reduce for warmup.
        torch.distributed.all_reduce(torch.zeros(1).cuda())
        initialize_model_parallel(tensor_parallel_size,
                                  pipeline_parallel_size)


Woosuk Kwon's avatar
Woosuk Kwon committed
97
98
    def prepare_inputs(
        self,
99
        input_seq_groups: List[SequenceGroupInputs],
Woosuk Kwon's avatar
Woosuk Kwon committed
100
    ) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
101
102
103
        seq_groups: List[Tuple[List[int], SamplingParams]] = []
        seq_logprobs: Dict[int, float] = {}
        sampling_params: Dict[int, SamplingParams] = {}
Woosuk Kwon's avatar
Woosuk Kwon committed
104
105
106
107
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        # Add prompt tokens.
        prompt_lens: List[int] = []
        for input_seq_group in input_seq_groups:
            if not input_seq_group.is_prompt:
                continue

            seq_ids = list(input_seq_group.input_tokens.keys())
            sampling_params = input_seq_group.sampling_params
            seq_groups.append((seq_ids, sampling_params))
            seq_logprobs.update(input_seq_group.seq_logprobs)

            # Use any sequence in the group.
            seq_id = seq_ids[0]

            prompt_tokens = input_seq_group.input_tokens[seq_id]
            prompt_len = len(prompt_tokens)
Woosuk Kwon's avatar
Woosuk Kwon committed
124
125
            prompt_lens.append(prompt_len)

126
127
128
129
            input_tokens.extend(prompt_tokens)
            # NOTE(woosuk): Here we assume that the first token in the prompt
            # is always the first token in the sequence.
            input_positions.extend(range(len(prompt_tokens)))
Woosuk Kwon's avatar
Woosuk Kwon committed
130

131
132
            # Compute the slot mapping.
            block_table = input_seq_group.block_tables[seq_id]
Woosuk Kwon's avatar
Woosuk Kwon committed
133
134
135
136
137
138
            for i in range(prompt_len):
                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)

139
        # Add generation tokens.
Woosuk Kwon's avatar
Woosuk Kwon committed
140
141
        max_context_len = 0
        max_num_blocks_per_seq = 0
142
        context_lens: List[int] = []
Woosuk Kwon's avatar
Woosuk Kwon committed
143
        generation_block_tables: List[List[int]] = []
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
        for input_seq_group in input_seq_groups:
            if input_seq_group.is_prompt:
                continue

            seq_ids = list(input_seq_group.input_tokens.keys())
            sampling_params = input_seq_group.sampling_params
            seq_groups.append((seq_ids, sampling_params))
            seq_logprobs.update(input_seq_group.seq_logprobs)

            for seq_id in seq_ids:
                assert len(input_seq_group.input_tokens[seq_id]) == 1
                generation_token = input_seq_group.input_tokens[seq_id][0]
                input_tokens.append(generation_token)

                position = input_seq_group.context_len - 1
                input_positions.append(position)

                block_table = input_seq_group.block_tables[seq_id]
                generation_block_tables.append(block_table)

                max_context_len = max(
                    max_context_len, input_seq_group.context_len)
                max_num_blocks_per_seq = max(
                    max_num_blocks_per_seq, len(block_table))
                context_lens.append(input_seq_group.context_len)

                block_number = block_table[position // self.block_size]
                block_offset = position % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)
Woosuk Kwon's avatar
Woosuk Kwon committed
174
175
176
177
178
179
180
181

        # Optimization: Pad the input length to be a multiple of 8.
        # This is required for utilizing the Tensor Cores in NVIDIA GPUs.
        input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
        input_positions = _pad_to_alignment(input_positions, multiple_of=8)

        # Convert to tensors.
        tokens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
182
            input_tokens, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
183
        positions_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
184
            input_positions, dtype=torch.long, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
185
        slot_mapping_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
186
            slot_mapping, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
187
        context_lens_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
188
            context_lens, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
189
190
191
        padded_block_tables = [
            _pad_to_max(block_table, max_num_blocks_per_seq)
            for block_table in generation_block_tables]
Woosuk Kwon's avatar
Woosuk Kwon committed
192
        block_tables_tensor = torch.tensor(
Zhuohan Li's avatar
Zhuohan Li committed
193
            padded_block_tables, dtype=torch.int, device='cuda')
Woosuk Kwon's avatar
Woosuk Kwon committed
194
195

        input_metadata = InputMetadata(
196
197
            seq_groups=seq_groups,
            seq_logprobs=seq_logprobs,
Woosuk Kwon's avatar
Woosuk Kwon committed
198
199
200
201
202
203
204
205
206
207
208
            prompt_lens=prompt_lens,
            slot_mapping=slot_mapping_tensor,
            context_lens=context_lens_tensor,
            max_context_len=max_context_len,
            block_tables=block_tables_tensor,
        )
        return tokens_tensor, positions_tensor, input_metadata

    @torch.inference_mode()
    def execute_stage(
        self,
209
        input_seq_groups: List[SequenceGroupInputs],
Woosuk Kwon's avatar
Woosuk Kwon committed
210
211
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
212
213
        blocks_to_copy: Dict[int, List[int]],
    ) -> Dict[int, SequenceOutputs]:
Woosuk Kwon's avatar
Woosuk Kwon committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
        # Issue cache operations.
        command_issued = False
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
            command_issued = True
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
            command_issued = True
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)
            command_issued = True

        if command_issued:
            cache_events = self.cache_events
        else:
            cache_events = None

Woosuk Kwon's avatar
Woosuk Kwon committed
231
232
233
234
235
236
237
        # If there is no input, we don't need to execute the model.
        if not input_seq_groups:
            if cache_events is not None:
                for event in cache_events:
                    event.wait()
            return {}

Woosuk Kwon's avatar
Woosuk Kwon committed
238
239
        # Prepare input tensors.
        input_tokens, input_positions, input_metadata = self.prepare_inputs(
240
            input_seq_groups)
Woosuk Kwon's avatar
Woosuk Kwon committed
241
242
243
244
245

        # Execute the model.
        output = self.model(
            input_ids=input_tokens,
            positions=input_positions,
Woosuk Kwon's avatar
Minor  
Woosuk Kwon committed
246
            kv_caches=self.gpu_cache,
Woosuk Kwon's avatar
Woosuk Kwon committed
247
248
249
250
251
252
253
254
255
256
257
258
            input_metadata=input_metadata,
            cache_events=cache_events,
        )
        return output


def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
    return x + [0] * ((-len(x)) % multiple_of)


def _pad_to_max(x: List[int], max_len: int) -> List[int]:
    return x + [0] * (max_len - len(x))