worker.py 6.3 KB
Newer Older
Woosuk Kwon's avatar
Woosuk Kwon committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from typing import Dict, List, Tuple

import torch

from cacheflow.models import get_model
from cacheflow.models import InputMetadata
from cacheflow.worker.cache_engine import CacheEngine


class Worker:

    def __init__(
        self,
        worker_id: int,
        gpu_id: int,
        model_name: str,
        block_size: int,
        num_gpu_blocks: int,
        num_cpu_blocks: int,
    ) -> None:
        self.worker_id = worker_id
        self.gpu_id = gpu_id
        self.block_size = block_size

        self.device = torch.device('cuda', index=gpu_id)

        # Initialize the model.
        # FIXME(woosuk): This is a hack.
        self.model = get_model(model_name).to(device=gpu_id)
        self.num_layers = self.model.config.num_hidden_layers
        self.num_heads = self.model.config.num_attention_heads
        self.head_size = self.model.config.hidden_size // self.num_heads
        self.dtype = self.model.dtype

        self.cache_engine = CacheEngine(
            worker_id=worker_id,
            gpu_id=gpu_id,
            num_layers=self.num_layers,
            num_heads=self.num_heads,
            head_size=self.head_size,
            block_size=block_size,
            num_gpu_blocks=num_gpu_blocks,
            num_cpu_blocks=num_cpu_blocks,
            dtype=self.dtype,
        )
        self.cache_events = self.cache_engine.events
        self.gpu_cache = self.cache_engine.gpu_cache

    def prepare_inputs(
        self,
        prompt_tokens: Dict[int, List[int]],    # Seq id -> List of input token ids.
        generation_tokens: Dict[int, int],      # Seq id -> Input token id.
        context_lens: Dict[int, int],           # Seq id -> Number of tokens participating in attention.
        block_tables: Dict[int, List[int]],     # Seq id -> List of physical block numbers.
    ) -> Tuple[torch.LongTensor, torch.LongTensor, InputMetadata]:
        # TODO(woosuk): Support interactive generation.
        # Add the prompt tokens.
        prompt_lens: List[int] = []
        input_tokens: List[int] = []
        input_positions: List[int] = []
        slot_mapping: List[int] = []

        prompt_seq_ids = sorted(prompt_tokens.keys())
        for seq_id in prompt_seq_ids:
            prompt_len = len(prompt_tokens[seq_id])
            prompt_lens.append(prompt_len)

            input_tokens.extend(prompt_tokens[seq_id])
            input_positions.extend(range(len(prompt_tokens[seq_id])))

            block_table = block_tables[seq_id]
            for i in range(prompt_len):
                block_number = block_table[i // self.block_size]
                block_offset = i % self.block_size
                slot = block_number * self.block_size + block_offset
                slot_mapping.append(slot)

        # Add the generation tokens.
        max_context_len = 0
        max_num_blocks_per_seq = 0
        generation_block_tables: List[List[int]] = []

        generation_seq_ids = sorted(generation_tokens.keys())
        for seq_id in generation_seq_ids:
            input_tokens.append(generation_tokens[seq_id])
            input_positions.append(context_lens[seq_id] - 1)
            generation_block_tables.append(block_tables[seq_id])

            max_context_len = max(max_context_len, context_lens[seq_id])
            max_num_blocks_per_seq = max(
                max_num_blocks_per_seq, len(block_tables[seq_id]))

        # Optimization: Pad the input length to be a multiple of 8.
        # This is required for utilizing the Tensor Cores in NVIDIA GPUs.
        input_tokens = _pad_to_alignment(input_tokens, multiple_of=8)
        input_positions = _pad_to_alignment(input_positions, multiple_of=8)

        # Convert to tensors.
        tokens_tensor = torch.tensor(
            input_tokens, dtype=torch.long, device=self.device)
        positions_tensor = torch.tensor(
            input_positions, dtype=torch.long, device=self.device)
        slot_mapping_tensor = torch.tensor(
            slot_mapping, dtype=torch.int, device=self.device)
        context_lens_tensor = torch.tensor(
            [context_lens[seq_id] for seq_id in generation_seq_ids],
            dtype=torch.int, device=self.device)
        block_tables_tensor = torch.tensor(
            [_pad_to_max(block_table) for block_table in generation_block_tables],
            dtype=int, device=self.device)

        input_metadata = InputMetadata(
            prompt_lens=prompt_lens,
            slot_mapping=slot_mapping_tensor,
            context_lens=context_lens_tensor,
            max_context_len=max_context_len,
            block_tables=block_tables_tensor,
        )
        return tokens_tensor, positions_tensor, input_metadata


    @torch.inference_mode()
    def execute_stage(
        self,
        prompt_tokens: Dict[int, List[int]],    # Seq id -> List of input token ids.
        generation_tokens: Dict[int, int],      # Seq id -> Input token id.
        context_lens: Dict[int, int],           # Seq id -> Number of tokens participating in attention.
        block_tables: Dict[int, List[int]],     # Seq id -> List of physical block numbers.
        blocks_to_swap_in: Dict[int, int],
        blocks_to_swap_out: Dict[int, int],
        blocks_to_copy: Dict[int, int],
    ) -> torch.Tensor:
        # Issue cache operations.
        command_issued = False
        if blocks_to_swap_in:
            self.cache_engine.swap_in(blocks_to_swap_in)
            command_issued = True
        if blocks_to_swap_out:
            self.cache_engine.swap_out(blocks_to_swap_out)
            command_issued = True
        if blocks_to_copy:
            self.cache_engine.copy(blocks_to_copy)
            command_issued = True

        if command_issued:
            cache_events = self.cache_events
        else:
            cache_events = None

        # Prepare input tensors.
        input_tokens, input_positions, input_metadata = self.prepare_inputs(
            prompt_tokens, generation_tokens, context_lens, block_tables)

        # Execute the model.
        output = self.model(
            input_ids=input_tokens,
            positions=input_positions,
            input_metadata=input_metadata,
            cache_events=cache_events,
        )
        return output


def _pad_to_alignment(x: List[int], multiple_of: int) -> List[int]:
    return x + [0] * ((-len(x)) % multiple_of)


def _pad_to_max(x: List[int], max_len: int) -> List[int]:
    return x + [0] * (max_len - len(x))