README.md 4.38 KB
Newer Older
dcuai's avatar
dcuai committed
1
# UNet
liucong's avatar
liucong committed
2

liucong's avatar
liucong committed
3
4
5
6
7
## 论文

U-Net: Convolutional Networks for Biomedical Image Segmentation

- https://arxiv.org/abs/1505.04597
liucong's avatar
liucong committed
8
9
10

## 模型结构

liucong's avatar
liucong committed
11
UNet是一种用于图像分割的卷积神经网络(CNN)架构,该模型整体为U型结构。
liucong's avatar
liucong committed
12

liucong's avatar
liucong committed
13
<img src="./Doc/Images/Unet_01.png" style="zoom:80%;" align=middle>
liucong's avatar
liucong committed
14

liucong's avatar
liucong committed
15
## 算法原理
liucong's avatar
liucong committed
16
U-Net 的核心原理如下:
liucong's avatar
liucong committed
17

liucong's avatar
liucong committed
18
19
20
1. **编码器(Contracting Path)**:U-Net 的编码器由卷积层和池化层组成,用于捕捉图像的特征信息并逐渐减小分辨率。这一部分的任务是将输入图像缩小到一个低分辨率的特征图,同时保留有关图像内容的关键特征。
2. **中间层(Bottleneck)**:在编码器和解码器之间,U-Net 包括一个中间层,通常由卷积层组成,用于进一步提取特征信息。
3. **解码器(Expansive Path)**:U-Net 的解码器包括上采样层和卷积层,用于将特征图恢复到原始输入图像的分辨率。解码器的任务是将高级特征与低级特征相结合,以便生成分割结果。这一部分的结构与编码器相对称。
liucong's avatar
liucong committed
21

liucong's avatar
liucong committed
22
23
<img src="./Doc/Images/Unet_04.png" style="zoom:80%;" align=middle>

liucong's avatar
liucong committed
24
25
## 环境配置

liucong's avatar
liucong committed
26
### Docker(方法一)
liucong's avatar
liucong committed
27
28
29
30

拉取镜像:

```
liucong's avatar
liucong committed
31
docker pull image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.3.0-ubuntu20.04-dtk24.04.1-py3.10
32
33
```

liucong's avatar
liucong committed
34
35
36
创建并启动容器:

```
liucong's avatar
liucong committed
37
docker run --shm-size 16g --network=host --name=unet_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/unet_migraphx:/home/unet_migraphx -v /opt/hyhal:/opt/hyhal:ro -it <Your Image ID> /bin/bash
liucong's avatar
liucong committed
38
39
40
41
42

# 激活dtk
source /opt/dtk/env.sh
```

liucong's avatar
liucong committed
43
44
45
46
47
48
### Dockerfile(方法二)

```
cd ./docker
docker build --no-cache -t unet_migraphx:2.0 .

liucong's avatar
liucong committed
49
docker run --shm-size 16g --network=host --name=unet_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/unet_migraphx:/home/unet_migraphx -v /opt/hyhal:/opt/hyhal:ro -it <Your Image ID> /bin/bash
liucong's avatar
liucong committed
50
51
52

# 激活dtk
source /opt/dtk/env.sh
liucong's avatar
liucong committed
53
54
```

liucong's avatar
liucong committed
55
56
57
58
59
60
61
62
63
64
65
## 数据集

根据提供的样本数据,进行图像分割。

## 推理

### Python版本推理

下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。

#### 设置环境变量
liucong's avatar
liucong committed
66

liucong's avatar
liucong committed
67
68
69
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
liucong's avatar
liucong committed
70

liucong's avatar
liucong committed
71
#### 运行示例
liucong's avatar
liucong committed
72
73

```Python
liucong's avatar
liucong committed
74
75
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx> 
liucong's avatar
liucong committed
76
77

# 进入示例程序目录
liucong's avatar
liucong committed
78
cd Python/
liucong's avatar
liucong committed
79
80

# 安装依赖
liucong's avatar
liucong committed
81
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
liucong's avatar
liucong committed
82

liucong's avatar
liucong committed
83
# 运行示例
liucong's avatar
liucong committed
84
85
86
python Unet.py
```

liucong's avatar
liucong committed
87
### C++版本推理
liucong's avatar
liucong committed
88

liucong's avatar
liucong committed
89
90
91
92
93
94
95
96
97
98
注意:当使用操作系统不一样时,CMakeList需要做相应的修改:

```
# ubuntu操作系统
${CMAKE_CURRENT_SOURCE_DIR}/depend/lib64/ 修改为 ${CMAKE_CURRENT_SOURCE_DIR}/depend/lib/

# centos操作系统
${CMAKE_CURRENT_SOURCE_DIR}/depend/lib/ 修改为 ${CMAKE_CURRENT_SOURCE_DIR}/depend/lib64/
```

liucong's avatar
liucong committed
99
下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
liucong's avatar
liucong committed
100

liucong's avatar
liucong committed
101
#### 安装Opencv依赖
liucong's avatar
liucong committed
102
103

```python
liucong's avatar
liucong committed
104
cd <path_to_unet_migraphx>
105
106
107
108
sh ./3rdParty/InstallOpenCVDependences.sh
```


liucong's avatar
liucong committed
109
#### 安装OpenCV并构建工程
110
111
112
113
114

```
rbuild build -d depend
```

liucong's avatar
liucong committed
115
#### 设置环境变量
116
117
118

将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:

liucong's avatar
liucong committed
119
120
121
当操作系统是ubuntu系统时:

```
liucong's avatar
liucong committed
122
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib/:$LD_LIBRARY_PATH
liucong's avatar
liucong committed
123
124
125
126
```

当操作系统是centos系统时:

127
```
liucong's avatar
liucong committed
128
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib64/:$LD_LIBRARY_PATH
liucong's avatar
liucong committed
129
130
```

131
132
133
134
135
136
然后执行:

```
source ~/.bashrc
```

liucong's avatar
liucong committed
137
#### 运行示例
138

liucong's avatar
liucong committed
139
```python
liucong's avatar
liucong committed
140
141
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx> 
142

liucong's avatar
liucong committed
143
# 进入build目录
liucong's avatar
liucong committed
144
cd build/
145

liucong's avatar
liucong committed
146
147
# 执行示例程序
./Unet
liucong's avatar
liucong committed
148
149
```

liucong's avatar
liucong committed
150
151
152
153
154
155
156
157
158
159
160
## result

### Python版本

python程序运行结束后,会在当前目录中生成分割图像。

<img src="./Doc/Images/Unet_03.jpg" style="zoom:100%;" align=middle>

### C++版本

C++程序运行结束后,会在build目录生成分割图像。
liucong's avatar
liucong committed
161

liucong's avatar
liucong committed
162
<img src="./Doc/Images/Unet_02.jpg" style="zoom:100%;" align=middle>
liucong's avatar
liucong committed
163

liucong's avatar
liucong committed
164
165
166
167
### 精度



liucong's avatar
liucong committed
168
169
170
171
172
173
174
175
## 应用场景

### 算法类别

`图像分割`

### 热点应用行业

liucong's avatar
liucong committed
176
`制造`,`交通`,`医疗`
liucong's avatar
liucong committed
177

liucong's avatar
liucong committed
178
## 源码仓库及问题反馈
liucong's avatar
liucong committed
179

chenzk's avatar
chenzk committed
180
https://developer.sourcefind.cn/codes/modelzoo/unet_migraphx
liucong's avatar
liucong committed
181

liucong's avatar
liucong committed
182
## 参考资料
liucong's avatar
liucong committed
183
184
185

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/develop/examples/vision/python_unet