README.md 3.82 KB
Newer Older
liucong's avatar
liucong committed
1
# Unet
liucong's avatar
liucong committed
2

liucong's avatar
liucong committed
3
4
5
6
7
## 论文

U-Net: Convolutional Networks for Biomedical Image Segmentation

- https://arxiv.org/abs/1505.04597
liucong's avatar
liucong committed
8
9
10

## 模型结构

liucong's avatar
liucong committed
11
UNet是一种用于图像分割的卷积神经网络(CNN)架构,该模型整体为U型结构。
liucong's avatar
liucong committed
12

liucong's avatar
liucong committed
13
<img src="./Doc/Images/Unet_01.png" style="zoom:80%;" align=middle>
liucong's avatar
liucong committed
14

liucong's avatar
liucong committed
15
## 算法原理
liucong's avatar
liucong committed
16
U-Net 的核心原理如下:
liucong's avatar
liucong committed
17

liucong's avatar
liucong committed
18
19
20
1. **编码器(Contracting Path)**:U-Net 的编码器由卷积层和池化层组成,用于捕捉图像的特征信息并逐渐减小分辨率。这一部分的任务是将输入图像缩小到一个低分辨率的特征图,同时保留有关图像内容的关键特征。
2. **中间层(Bottleneck)**:在编码器和解码器之间,U-Net 包括一个中间层,通常由卷积层组成,用于进一步提取特征信息。
3. **解码器(Expansive Path)**:U-Net 的解码器包括上采样层和卷积层,用于将特征图恢复到原始输入图像的分辨率。解码器的任务是将高级特征与低级特征相结合,以便生成分割结果。这一部分的结构与编码器相对称。
liucong's avatar
liucong committed
21

liucong's avatar
liucong committed
22
23
<img src="./Doc/Images/Unet_04.png" style="zoom:80%;" align=middle>

liucong's avatar
liucong committed
24
25
## 环境配置

liucong's avatar
liucong committed
26
### Docker(方法一)
liucong's avatar
liucong committed
27
28
29
30
31

拉取镜像:

```
docker pull image.sourcefind.cn:5000/dcu/admin/base/migraphx:4.0.0-centos7.6-dtk23.04.1-py38-latest
32
33
```

liucong's avatar
liucong committed
34
35
36
37
38
39
40
41
42
创建并启动容器:

```
docker run --shm-size 16g --network=host --name=unet_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/unet_migraphx:/home/unet_migraphx -it <Your Image ID> /bin/bash

# 激活dtk
source /opt/dtk/env.sh
```

liucong's avatar
liucong committed
43
44
45
46
47
48
49
50
51
### Dockerfile(方法二)

```
cd ./docker
docker build --no-cache -t unet_migraphx:2.0 .

docker run --shm-size 16g --network=host --name=unet_migraphx --privileged --device=/dev/kfd --device=/dev/dri --group-add video --cap-add=SYS_PTRACE --security-opt seccomp=unconfined -v $PWD/unet_migraphx:/home/unet_migraphx -it <Your Image ID> /bin/bash
```

liucong's avatar
liucong committed
52
53
54
55
56
57
58
59
60
61
62
## 数据集

根据提供的样本数据,进行图像分割。

## 推理

### Python版本推理

下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。

#### 设置环境变量
liucong's avatar
liucong committed
63

liucong's avatar
liucong committed
64
65
66
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
liucong's avatar
liucong committed
67

liucong's avatar
liucong committed
68
#### 运行示例
liucong's avatar
liucong committed
69
70

```Python
liucong's avatar
liucong committed
71
72
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx> 
liucong's avatar
liucong committed
73
74

# 进入示例程序目录
liucong's avatar
liucong committed
75
cd Python/
liucong's avatar
liucong committed
76
77

# 安装依赖
liucong's avatar
liucong committed
78
pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple
liucong's avatar
liucong committed
79

liucong's avatar
liucong committed
80
# 运行示例
liucong's avatar
liucong committed
81
82
83
python Unet.py
```

liucong's avatar
liucong committed
84
### C++版本推理
liucong's avatar
liucong committed
85

liucong's avatar
liucong committed
86
下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
liucong's avatar
liucong committed
87

liucong's avatar
liucong committed
88
#### 安装Opencv依赖
liucong's avatar
liucong committed
89
90

```python
liucong's avatar
liucong committed
91
cd <path_to_unet_migraphx>
92
93
94
95
sh ./3rdParty/InstallOpenCVDependences.sh
```


liucong's avatar
liucong committed
96
#### 安装OpenCV并构建工程
97
98
99
100
101

```
rbuild build -d depend
```

liucong's avatar
liucong committed
102
#### 设置环境变量
103
104
105
106

将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:

```
liucong's avatar
liucong committed
107
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib64/:$LD_LIBRARY_PATH
liucong's avatar
liucong committed
108
109
```

110
111
112
113
114
115
然后执行:

```
source ~/.bashrc
```

liucong's avatar
liucong committed
116
#### 运行示例
117

liucong's avatar
liucong committed
118
```python
liucong's avatar
liucong committed
119
120
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx> 
121

liucong's avatar
liucong committed
122
# 进入build目录
liucong's avatar
liucong committed
123
cd build/
124

liucong's avatar
liucong committed
125
126
# 执行示例程序
./Unet
liucong's avatar
liucong committed
127
128
```

liucong's avatar
liucong committed
129
130
131
132
133
134
135
136
137
138
139
## result

### Python版本

python程序运行结束后,会在当前目录中生成分割图像。

<img src="./Doc/Images/Unet_03.jpg" style="zoom:100%;" align=middle>

### C++版本

C++程序运行结束后,会在build目录生成分割图像。
liucong's avatar
liucong committed
140

liucong's avatar
liucong committed
141
<img src="./Doc/Images/Unet_02.jpg" style="zoom:100%;" align=middle>
liucong's avatar
liucong committed
142

liucong's avatar
liucong committed
143
144
145
146
### 精度



liucong's avatar
liucong committed
147
148
149
150
151
152
153
154
## 应用场景

### 算法类别

`图像分割`

### 热点应用行业

liucong's avatar
liucong committed
155
`制造`,`交通`,`医疗`
liucong's avatar
liucong committed
156

liucong's avatar
liucong committed
157
## 源码仓库及问题反馈
liucong's avatar
liucong committed
158
159
160

https://developer.hpccube.com/codes/modelzoo/unet_migraphx

liucong's avatar
liucong committed
161
## 参考资料
liucong's avatar
liucong committed
162
163
164

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/develop/examples/vision/python_unet