README.md 3.42 KB
Newer Older
liucong's avatar
liucong committed
1
# Convolutional Networks for Biomedical Image Segmentation(Unet)
liucong's avatar
liucong committed
2
3
4
5
6
7
8

## 模型介绍
语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。其中,Unet模型是最常用、最简单的一种分割模型,它简单、高效、易懂、容易构建、可以从小数据集中训练,具有较好的分割效果。

## 模型结构
U-net模型整体为U型结构,主要分为三部分:下采样、上采样以及跳跃连接。首先,在左半部分进行编码阶段,通过卷积和下采样降低图像尺寸,提取一些浅层特征。其次,在右半部分进行解码阶段,通过卷积和上采样来获取一些深层次的特征。其中卷积采用无填充方式来保证结果都是基于没有缺失上下文特征得到的,因此每次经过卷积后,图像的大小会减小。最后,通过concat的方式,将编码阶段获得的feature map同解码阶段获得的feature map结合在一起,得到更加精细的细节,从而根据feature map进行预测分割。

liucong's avatar
liucong committed
9
10
## Python版本推理

liucong's avatar
liucong committed
11
下面介绍如何运行python代码示例,Python示例的详细说明见Doc目录下的Tutorial_Python.md。
liucong's avatar
liucong committed
12

liucong's avatar
liucong committed
13
### 下载镜像
liucong's avatar
liucong committed
14

liucong's avatar
liucong committed
15
在光源中下载MIGraphX镜像: 
liucong's avatar
liucong committed
16

17
18
19
20
```python
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```

liucong's avatar
liucong committed
21
### 设置Python环境变量
liucong's avatar
liucong committed
22

liucong's avatar
liucong committed
23
24
25
```
export PYTHONPATH=/opt/dtk/lib:$PYTHONPATH
```
liucong's avatar
liucong committed
26

liucong's avatar
liucong committed
27
### 安装依赖
liucong's avatar
liucong committed
28
29

```Python
liucong's avatar
liucong committed
30
31
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx> 
liucong's avatar
liucong committed
32
33

# 进入示例程序目录
liucong's avatar
liucong committed
34
cd Python/
liucong's avatar
liucong committed
35
36
37
38
39

# 安装依赖
pip install -r requirements.txt
```

liucong's avatar
liucong committed
40
41
42
### 运行示例

在Python目录下执行如下命令运行该示例程序:
liucong's avatar
liucong committed
43
44
45
46
47
48
49
50
51
52
53

```python
python Unet.py
```

会在当前目录中生成分割图像

<img src="./Doc/Images/Unet_03.jpg" style="zoom:100%;" align=middle>

## C++版本推理

liucong's avatar
liucong committed
54
下面介绍如何运行C++代码示例,C++示例的详细说明见Doc目录下的Tutorial_Cpp.md。
liucong's avatar
liucong committed
55

liucong's avatar
liucong committed
56
57
58
59
60
61
62
### 下载镜像

在光源中下载MIGraphX镜像: 

```
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
```
liucong's avatar
liucong committed
63

64
### 安装Opencv依赖
liucong's avatar
liucong committed
65
66

```python
liucong's avatar
liucong committed
67
cd <path_to_unet_migraphx>
68
69
70
71
72
sh ./3rdParty/InstallOpenCVDependences.sh
```

### 修改CMakeLists.txt

liucong's avatar
liucong committed
73
74
如果使用ubuntu系统,需要修改CMakeLists.txt中依赖库路径:
将"${CMAKE_CURRENT_SOURCE_DIR}/depend/lib64/"修改为"${CMAKE_CURRENT_SOURCE_DIR}/depend/lib/"
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89


### 安装OpenCV并构建工程

```
rbuild build -d depend
```

### 设置环境变量

将依赖库依赖加入环境变量LD_LIBRARY_PATH,在~/.bashrc中添加如下语句:

**Centos**:

```
liucong's avatar
liucong committed
90
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib64/:$LD_LIBRARY_PATH
liucong's avatar
liucong committed
91
92
```

93
94
95
**Ubuntu**:

```
liucong's avatar
liucong committed
96
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib/:$LD_LIBRARY_PATH
97
98
99
100
101
102
103
104
```

然后执行:

```
source ~/.bashrc
```

liucong's avatar
liucong committed
105
### 运行示例
106

liucong's avatar
liucong committed
107
```python
liucong's avatar
liucong committed
108
109
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx> 
110

liucong's avatar
liucong committed
111
# 进入build目录
112
113
cd ./build/

liucong's avatar
liucong committed
114
115
# 执行示例程序
./Unet
liucong's avatar
liucong committed
116
117
```

liucong's avatar
liucong committed
118
会在当前目录中生成分割图像。
liucong's avatar
liucong committed
119

liucong's avatar
liucong committed
120
<img src="./Doc/Images/Unet_02.jpg" style="zoom:100%;" align=middle>
liucong's avatar
liucong committed
121
122
123
124
125
126
127
128
129

## 历史版本

https://developer.hpccube.com/codes/modelzoo/unet_migraphx

## 参考资料

https://github.com/ROCmSoftwarePlatform/AMDMIGraphX/tree/develop/examples/vision/python_unet