Commit 82baf0df authored by liucong's avatar liucong
Browse files

修改readme

parent 27383185
# Convolutional Networks for Biomedical Image Segmentation(U-Net)
# Convolutional Networks for Biomedical Image Segmentation(Unet)
## 模型介绍
语义分割(Semantic Segmentation)是图像处理和机器视觉一个重要分支。与分类任务不同,语义分割需要判断图像每个像素点的类别,进行精确分割。语义分割目前在自动驾驶、自动抠图、医疗影像等领域有着比较广泛的应用。其中,Unet模型是最常用、最简单的一种分割模型,它简单、高效、易懂、容易构建、可以从小数据集中训练,具有较好的分割效果。
......@@ -12,7 +12,7 @@ U-net模型整体为U型结构,主要分为三部分:下采样、上采样
### 拉取镜像
在光源可拉取推理的docker镜像,U-net模型推理的镜像如下:
在光源可拉取推理的docker镜像,Unet模型推理的镜像如下:
```python
docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0.0-dtk22.10.1
......@@ -25,8 +25,8 @@ docker pull image.sourcefind.cn:5000/dcu/admin/base/custom:ort1.14.0_migraphx3.0
2.安装依赖:
```Python
# 进入migraphx samples工程根目录
cd <path_to_migraphx_samples>
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx>
# 进入示例程序目录
cd ./Python/
......@@ -54,7 +54,7 @@ python Unet.py
### 安装Opencv依赖
```python
cd <path_to_migraphx_samples>
cd <path_to_unet_migraphx>
sh ./3rdParty/InstallOpenCVDependences.sh
```
......@@ -79,13 +79,13 @@ rbuild build -d depend
**Centos**:
```
export LD_LIBRARY_PATH=<path_to_migraphx_samples>/depend/lib64/:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib64/:$LD_LIBRARY_PATH
```
**Ubuntu**:
```
export LD_LIBRARY_PATH=<path_to_migraphx_samples>/depend/lib/:$LD_LIBRARY_PATH
export LD_LIBRARY_PATH=<path_to_unet_migraphx>/depend/lib/:$LD_LIBRARY_PATH
```
然后执行:
......@@ -99,8 +99,8 @@ source ~/.bashrc
运行Unet示例程序,具体执行如下命令:
```python
# 进入migraphx samples工程根目录
cd <path_to_migraphx_samples>
# 进入unet migraphx工程根目录
cd <path_to_unet_migraphx>
# 进入build目录
cd ./build/
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment