cascade_rcnn.py 17 KB
Newer Older
1
2
from __future__ import division

Kai Chen's avatar
Kai Chen committed
3
4
5
import torch
import torch.nn as nn

6
7
from mmdet.core import (bbox2result, bbox2roi, build_assigner, build_sampler,
                        merge_aug_masks)
Kai Chen's avatar
Kai Chen committed
8
from .. import builder
Kai Chen's avatar
Kai Chen committed
9
from ..registry import DETECTORS
10
11
from .base import BaseDetector
from .test_mixins import RPNTestMixin
Kai Chen's avatar
Kai Chen committed
12
13


Kai Chen's avatar
Kai Chen committed
14
@DETECTORS.register_module
Kai Chen's avatar
Kai Chen committed
15
16
17
18
19
20
class CascadeRCNN(BaseDetector, RPNTestMixin):

    def __init__(self,
                 num_stages,
                 backbone,
                 neck=None,
myownskyW7's avatar
myownskyW7 committed
21
                 shared_head=None,
Kai Chen's avatar
Kai Chen committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
                 rpn_head=None,
                 bbox_roi_extractor=None,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        super(CascadeRCNN, self).__init__()

        self.num_stages = num_stages
        self.backbone = builder.build_backbone(backbone)

        if neck is not None:
            self.neck = builder.build_neck(neck)

        if rpn_head is not None:
Kai Chen's avatar
Kai Chen committed
41
            self.rpn_head = builder.build_head(rpn_head)
Kai Chen's avatar
Kai Chen committed
42

myownskyW7's avatar
myownskyW7 committed
43
44
45
        if shared_head is not None:
            self.shared_head = builder.build_shared_head(shared_head)

Kai Chen's avatar
Kai Chen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
        if bbox_head is not None:
            self.bbox_roi_extractor = nn.ModuleList()
            self.bbox_head = nn.ModuleList()
            if not isinstance(bbox_roi_extractor, list):
                bbox_roi_extractor = [
                    bbox_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(bbox_head, list):
                bbox_head = [bbox_head for _ in range(num_stages)]
            assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
            for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
                self.bbox_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
Kai Chen's avatar
Kai Chen committed
59
                self.bbox_head.append(builder.build_head(head))
Kai Chen's avatar
Kai Chen committed
60
61
62
63
64

        if mask_head is not None:
            self.mask_head = nn.ModuleList()
            if not isinstance(mask_head, list):
                mask_head = [mask_head for _ in range(num_stages)]
myownskyW7's avatar
myownskyW7 committed
65
66
            assert len(mask_head) == self.num_stages
            for head in mask_head:
Kai Chen's avatar
Kai Chen committed
67
                self.mask_head.append(builder.build_head(head))
myownskyW7's avatar
myownskyW7 committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            if mask_roi_extractor is not None:
                self.share_roi_extractor = False
                self.mask_roi_extractor = nn.ModuleList()
                if not isinstance(mask_roi_extractor, list):
                    mask_roi_extractor = [
                        mask_roi_extractor for _ in range(num_stages)
                    ]
                assert len(mask_roi_extractor) == self.num_stages
                for roi_extractor in mask_roi_extractor:
                    self.mask_roi_extractor.append(
                        builder.build_roi_extractor(roi_extractor))
            else:
                self.share_roi_extractor = True
                self.mask_roi_extractor = self.bbox_roi_extractor
Kai Chen's avatar
Kai Chen committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.init_weights(pretrained=pretrained)

    @property
    def with_rpn(self):
        return hasattr(self, 'rpn_head') and self.rpn_head is not None

    def init_weights(self, pretrained=None):
        super(CascadeRCNN, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_rpn:
            self.rpn_head.init_weights()
myownskyW7's avatar
myownskyW7 committed
103
104
        if self.with_shared_head:
            self.shared_head.init_weights(pretrained=pretrained)
Kai Chen's avatar
Kai Chen committed
105
106
107
108
109
        for i in range(self.num_stages):
            if self.with_bbox:
                self.bbox_roi_extractor[i].init_weights()
                self.bbox_head[i].init_weights()
            if self.with_mask:
myownskyW7's avatar
myownskyW7 committed
110
111
                if not self.share_roi_extractor:
                    self.mask_roi_extractor[i].init_weights()
Kai Chen's avatar
Kai Chen committed
112
113
114
115
116
117
118
119
                self.mask_head[i].init_weights()

    def extract_feat(self, img):
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

Kai Chen's avatar
Kai Chen committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    def forward_dummy(self, img):
        outs = ()
        # backbone
        x = self.extract_feat(img)
        # rpn
        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            outs = outs + (rpn_outs, )
        proposals = torch.randn(1000, 4).cuda()
        # bbox heads
        rois = bbox2roi([proposals])
        if self.with_bbox:
            for i in range(self.num_stages):
                bbox_feats = self.bbox_roi_extractor[i](
                    x[:self.bbox_roi_extractor[i].num_inputs], rois)
                if self.with_shared_head:
                    bbox_feats = self.shared_head(bbox_feats)
                cls_score, bbox_pred = self.bbox_head[i](bbox_feats)
                outs = outs + (cls_score, bbox_pred)
        # mask heads
        if self.with_mask:
            mask_rois = rois[:100]
            for i in range(self.num_stages):
                mask_feats = self.mask_roi_extractor[i](
                    x[:self.mask_roi_extractor[i].num_inputs], mask_rois)
                if self.with_shared_head:
                    mask_feats = self.shared_head(mask_feats)
                mask_pred = self.mask_head[i](mask_feats)
                outs = outs + (mask_pred, )
        return outs

Kai Chen's avatar
Kai Chen committed
151
152
153
154
155
    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_labels,
156
                      gt_bboxes_ignore=None,
Kai Chen's avatar
Kai Chen committed
157
158
159
160
161
162
163
164
165
166
                      gt_masks=None,
                      proposals=None):
        x = self.extract_feat(img)

        losses = dict()

        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
167
168
            rpn_losses = self.rpn_head.loss(
                *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
Kai Chen's avatar
Kai Chen committed
169
170
            losses.update(rpn_losses)

171
172
173
            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
174
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
Kai Chen's avatar
Kai Chen committed
175
176
177
178
        else:
            proposal_list = proposals

        for i in range(self.num_stages):
179
            self.current_stage = i
Kai Chen's avatar
Kai Chen committed
180
            rcnn_train_cfg = self.train_cfg.rcnn[i]
181
            lw = self.train_cfg.stage_loss_weights[i]
Kai Chen's avatar
Kai Chen committed
182
183

            # assign gts and sample proposals
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
            sampling_results = []
            if self.with_bbox or self.with_mask:
                bbox_assigner = build_assigner(rcnn_train_cfg.assigner)
                bbox_sampler = build_sampler(
                    rcnn_train_cfg.sampler, context=self)
                num_imgs = img.size(0)
                if gt_bboxes_ignore is None:
                    gt_bboxes_ignore = [None for _ in range(num_imgs)]

                for j in range(num_imgs):
                    assign_result = bbox_assigner.assign(
                        proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j],
                        gt_labels[j])
                    sampling_result = bbox_sampler.sample(
                        assign_result,
                        proposal_list[j],
                        gt_bboxes[j],
                        gt_labels[j],
                        feats=[lvl_feat[j][None] for lvl_feat in x])
                    sampling_results.append(sampling_result)
Kai Chen's avatar
Kai Chen committed
204
205
206
207
208
209
210
211

            # bbox head forward and loss
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            rois = bbox2roi([res.bboxes for res in sampling_results])
            bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                            rois)
myownskyW7's avatar
myownskyW7 committed
212
213
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)
Kai Chen's avatar
Kai Chen committed
214
215
216
217
218
219
            cls_score, bbox_pred = bbox_head(bbox_feats)

            bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes,
                                                gt_labels, rcnn_train_cfg)
            loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
            for name, value in loss_bbox.items():
220
221
                losses['s{}.{}'.format(i, name)] = (
                    value * lw if 'loss' in name else value)
Kai Chen's avatar
Kai Chen committed
222
223
224

            # mask head forward and loss
            if self.with_mask:
myownskyW7's avatar
myownskyW7 committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
                if not self.share_roi_extractor:
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    pos_rois = bbox2roi(
                        [res.pos_bboxes for res in sampling_results])
                    mask_feats = mask_roi_extractor(
                        x[:mask_roi_extractor.num_inputs], pos_rois)
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
                else:
                    # reuse positive bbox feats
                    pos_inds = []
                    device = bbox_feats.device
                    for res in sampling_results:
                        pos_inds.append(
                            torch.ones(
                                res.pos_bboxes.shape[0],
                                device=device,
                                dtype=torch.uint8))
                        pos_inds.append(
                            torch.zeros(
                                res.neg_bboxes.shape[0],
                                device=device,
                                dtype=torch.uint8))
                    pos_inds = torch.cat(pos_inds)
                    mask_feats = bbox_feats[pos_inds]
Kai Chen's avatar
Kai Chen committed
250
251
252
253
254
255
256
257
                mask_head = self.mask_head[i]
                mask_pred = mask_head(mask_feats)
                mask_targets = mask_head.get_target(sampling_results, gt_masks,
                                                    rcnn_train_cfg)
                pos_labels = torch.cat(
                    [res.pos_gt_labels for res in sampling_results])
                loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
                for name, value in loss_mask.items():
258
259
                    losses['s{}.{}'.format(i, name)] = (
                        value * lw if 'loss' in name else value)
Kai Chen's avatar
Kai Chen committed
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280

            # refine bboxes
            if i < self.num_stages - 1:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                roi_labels = bbox_targets[0]  # bbox_targets is a tuple
                with torch.no_grad():
                    proposal_list = bbox_head.refine_bboxes(
                        rois, roi_labels, bbox_pred, pos_is_gts, img_meta)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
281
282
        ms_bbox_result = {}
        ms_segm_result = {}
Kai Chen's avatar
Kai Chen committed
283
284
285
286
287
288
289
290
291
292
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            bbox_feats = bbox_roi_extractor(
                x[:len(bbox_roi_extractor.featmap_strides)], rois)
myownskyW7's avatar
myownskyW7 committed
293
294
295
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)

Kai Chen's avatar
Kai Chen committed
296
297
298
299
300
301
302
303
304
305
306
            cls_score, bbox_pred = bbox_head(bbox_feats)
            ms_scores.append(cls_score)

            if self.test_cfg.keep_all_stages:
                det_bboxes, det_labels = bbox_head.get_det_bboxes(
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    scale_factor,
                    rescale=rescale,
307
                    cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
308
309
                bbox_result = bbox2result(det_bboxes, det_labels,
                                          bbox_head.num_classes)
310
                ms_bbox_result['stage{}'.format(i)] = bbox_result
Kai Chen's avatar
Kai Chen committed
311
312

                if self.with_mask:
313
314
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_head = self.mask_head[i]
Kai Chen's avatar
Kai Chen committed
315
                    if det_bboxes.shape[0] == 0:
316
317
                        mask_classes = mask_head.num_classes - 1
                        segm_result = [[] for _ in range(mask_classes)]
Kai Chen's avatar
Kai Chen committed
318
                    else:
319
                        _bboxes = (
320
321
                            det_bboxes[:, :4] *
                            scale_factor if rescale else det_bboxes)
Kai Chen's avatar
Kai Chen committed
322
                        mask_rois = bbox2roi([_bboxes])
323
324
325
                        mask_feats = mask_roi_extractor(
                            x[:len(mask_roi_extractor.featmap_strides)],
                            mask_rois)
myownskyW7's avatar
myownskyW7 committed
326
327
                        if self.with_shared_head:
                            mask_feats = self.shared_head(mask_feats, i)
Kai Chen's avatar
Kai Chen committed
328
329
330
331
                        mask_pred = mask_head(mask_feats)
                        segm_result = mask_head.get_seg_masks(
                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
                            ori_shape, scale_factor, rescale)
332
                    ms_segm_result['stage{}'.format(i)] = segm_result
Kai Chen's avatar
Kai Chen committed
333
334
335
336
337
338

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

Kai Chen's avatar
Kai Chen committed
339
        cls_score = sum(ms_scores) / self.num_stages
Kai Chen's avatar
Kai Chen committed
340
341
342
343
344
345
346
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
347
            cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
348
349
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
350
        ms_bbox_result['ensemble'] = bbox_result
Kai Chen's avatar
Kai Chen committed
351
352

        if self.with_mask:
Kai Chen's avatar
Kai Chen committed
353
            if det_bboxes.shape[0] == 0:
354
355
                mask_classes = self.mask_head[-1].num_classes - 1
                segm_result = [[] for _ in range(mask_classes)]
Kai Chen's avatar
Kai Chen committed
356
            else:
liushuchun's avatar
liushuchun committed
357
358
359
360
361
362
363
364
365
366
                if isinstance(scale_factor, float):  # aspect ratio fixed
                    _bboxes = (
                        det_bboxes[:, :4] *
                        scale_factor if rescale else det_bboxes)
                else:
                    _bboxes = (
                        det_bboxes[:, :4] *
                        torch.from_numpy(scale_factor).to(det_bboxes.device)
                        if rescale else det_bboxes)

Kai Chen's avatar
Kai Chen committed
367
368
369
370
371
372
                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                for i in range(self.num_stages):
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_feats = mask_roi_extractor(
                        x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
myownskyW7's avatar
myownskyW7 committed
373
374
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
Kai Chen's avatar
Kai Chen committed
375
376
377
                    mask_pred = self.mask_head[i](mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
Kai Chen's avatar
bug fix  
Kai Chen committed
378
                                               [img_meta] * self.num_stages,
Kai Chen's avatar
Kai Chen committed
379
380
381
382
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
383
            ms_segm_result['ensemble'] = segm_result
Kai Chen's avatar
Kai Chen committed
384

Kai Chen's avatar
Kai Chen committed
385
386
        if not self.test_cfg.keep_all_stages:
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
387
388
389
390
                results = (ms_bbox_result['ensemble'],
                           ms_segm_result['ensemble'])
            else:
                results = ms_bbox_result['ensemble']
Kai Chen's avatar
Kai Chen committed
391
        else:
Kai Chen's avatar
Kai Chen committed
392
393
394
395
396
397
398
399
400
            if self.with_mask:
                results = {
                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
                    for stage in ms_bbox_result
                }
            else:
                results = ms_bbox_result

        return results
Kai Chen's avatar
Kai Chen committed
401
402
403
404
405
406
407

    def aug_test(self, img, img_meta, proposals=None, rescale=False):
        raise NotImplementedError

    def show_result(self, data, result, img_norm_cfg, **kwargs):
        if self.with_mask:
            ms_bbox_result, ms_segm_result = result
Kai Chen's avatar
Kai Chen committed
408
409
410
            if isinstance(ms_bbox_result, dict):
                result = (ms_bbox_result['ensemble'],
                          ms_segm_result['ensemble'])
Kai Chen's avatar
Kai Chen committed
411
        else:
Kai Chen's avatar
Kai Chen committed
412
413
414
            if isinstance(result, dict):
                result = result['ensemble']
        super(CascadeRCNN, self).show_result(data, result, img_norm_cfg,
415
                                             **kwargs)