cascade_rcnn.py 15.4 KB
Newer Older
1
2
from __future__ import division

Kai Chen's avatar
Kai Chen committed
3
4
5
6
7
8
import torch
import torch.nn as nn

from .base import BaseDetector
from .test_mixins import RPNTestMixin
from .. import builder
Kai Chen's avatar
Kai Chen committed
9
from ..registry import DETECTORS
10
from mmdet.core import (build_assigner, bbox2roi, bbox2result, build_sampler,
Kai Chen's avatar
Kai Chen committed
11
12
13
                        merge_aug_masks)


Kai Chen's avatar
Kai Chen committed
14
@DETECTORS.register_module
Kai Chen's avatar
Kai Chen committed
15
16
17
18
19
20
class CascadeRCNN(BaseDetector, RPNTestMixin):

    def __init__(self,
                 num_stages,
                 backbone,
                 neck=None,
myownskyW7's avatar
myownskyW7 committed
21
                 shared_head=None,
Kai Chen's avatar
Kai Chen committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
                 rpn_head=None,
                 bbox_roi_extractor=None,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        super(CascadeRCNN, self).__init__()

        self.num_stages = num_stages
        self.backbone = builder.build_backbone(backbone)

        if neck is not None:
            self.neck = builder.build_neck(neck)

        if rpn_head is not None:
Kai Chen's avatar
Kai Chen committed
41
            self.rpn_head = builder.build_head(rpn_head)
Kai Chen's avatar
Kai Chen committed
42

myownskyW7's avatar
myownskyW7 committed
43
44
45
        if shared_head is not None:
            self.shared_head = builder.build_shared_head(shared_head)

Kai Chen's avatar
Kai Chen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
        if bbox_head is not None:
            self.bbox_roi_extractor = nn.ModuleList()
            self.bbox_head = nn.ModuleList()
            if not isinstance(bbox_roi_extractor, list):
                bbox_roi_extractor = [
                    bbox_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(bbox_head, list):
                bbox_head = [bbox_head for _ in range(num_stages)]
            assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
            for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
                self.bbox_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
Kai Chen's avatar
Kai Chen committed
59
                self.bbox_head.append(builder.build_head(head))
Kai Chen's avatar
Kai Chen committed
60
61
62
63
64

        if mask_head is not None:
            self.mask_head = nn.ModuleList()
            if not isinstance(mask_head, list):
                mask_head = [mask_head for _ in range(num_stages)]
myownskyW7's avatar
myownskyW7 committed
65
66
            assert len(mask_head) == self.num_stages
            for head in mask_head:
Kai Chen's avatar
Kai Chen committed
67
                self.mask_head.append(builder.build_head(head))
myownskyW7's avatar
myownskyW7 committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            if mask_roi_extractor is not None:
                self.share_roi_extractor = False
                self.mask_roi_extractor = nn.ModuleList()
                if not isinstance(mask_roi_extractor, list):
                    mask_roi_extractor = [
                        mask_roi_extractor for _ in range(num_stages)
                    ]
                assert len(mask_roi_extractor) == self.num_stages
                for roi_extractor in mask_roi_extractor:
                    self.mask_roi_extractor.append(
                        builder.build_roi_extractor(roi_extractor))
            else:
                self.share_roi_extractor = True
                self.mask_roi_extractor = self.bbox_roi_extractor
Kai Chen's avatar
Kai Chen committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.init_weights(pretrained=pretrained)

    @property
    def with_rpn(self):
        return hasattr(self, 'rpn_head') and self.rpn_head is not None

    def init_weights(self, pretrained=None):
        super(CascadeRCNN, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_rpn:
            self.rpn_head.init_weights()
myownskyW7's avatar
myownskyW7 committed
103
104
        if self.with_shared_head:
            self.shared_head.init_weights(pretrained=pretrained)
Kai Chen's avatar
Kai Chen committed
105
106
107
108
109
        for i in range(self.num_stages):
            if self.with_bbox:
                self.bbox_roi_extractor[i].init_weights()
                self.bbox_head[i].init_weights()
            if self.with_mask:
myownskyW7's avatar
myownskyW7 committed
110
111
                if not self.share_roi_extractor:
                    self.mask_roi_extractor[i].init_weights()
Kai Chen's avatar
Kai Chen committed
112
113
114
115
116
117
118
119
120
121
122
123
124
                self.mask_head[i].init_weights()

    def extract_feat(self, img):
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_labels,
125
                      gt_bboxes_ignore=None,
Kai Chen's avatar
Kai Chen committed
126
127
128
129
130
131
132
133
134
135
                      gt_masks=None,
                      proposals=None):
        x = self.extract_feat(img)

        losses = dict()

        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
136
137
            rpn_losses = self.rpn_head.loss(
                *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
Kai Chen's avatar
Kai Chen committed
138
139
140
            losses.update(rpn_losses)

            proposal_inputs = rpn_outs + (img_meta, self.test_cfg.rpn)
141
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
Kai Chen's avatar
Kai Chen committed
142
143
144
145
        else:
            proposal_list = proposals

        for i in range(self.num_stages):
146
            self.current_stage = i
Kai Chen's avatar
Kai Chen committed
147
            rcnn_train_cfg = self.train_cfg.rcnn[i]
148
            lw = self.train_cfg.stage_loss_weights[i]
Kai Chen's avatar
Kai Chen committed
149
150

            # assign gts and sample proposals
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
            sampling_results = []
            if self.with_bbox or self.with_mask:
                bbox_assigner = build_assigner(rcnn_train_cfg.assigner)
                bbox_sampler = build_sampler(
                    rcnn_train_cfg.sampler, context=self)
                num_imgs = img.size(0)
                if gt_bboxes_ignore is None:
                    gt_bboxes_ignore = [None for _ in range(num_imgs)]

                for j in range(num_imgs):
                    assign_result = bbox_assigner.assign(
                        proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j],
                        gt_labels[j])
                    sampling_result = bbox_sampler.sample(
                        assign_result,
                        proposal_list[j],
                        gt_bboxes[j],
                        gt_labels[j],
                        feats=[lvl_feat[j][None] for lvl_feat in x])
                    sampling_results.append(sampling_result)
Kai Chen's avatar
Kai Chen committed
171
172
173
174
175
176
177
178

            # bbox head forward and loss
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            rois = bbox2roi([res.bboxes for res in sampling_results])
            bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                            rois)
myownskyW7's avatar
myownskyW7 committed
179
180
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)
Kai Chen's avatar
Kai Chen committed
181
182
183
184
185
186
            cls_score, bbox_pred = bbox_head(bbox_feats)

            bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes,
                                                gt_labels, rcnn_train_cfg)
            loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
            for name, value in loss_bbox.items():
myownskyW7's avatar
myownskyW7 committed
187
188
                losses['s{}.{}'.format(
                    i, name)] = (value * lw if 'loss' in name else value)
Kai Chen's avatar
Kai Chen committed
189
190
191

            # mask head forward and loss
            if self.with_mask:
myownskyW7's avatar
myownskyW7 committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
                if not self.share_roi_extractor:
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    pos_rois = bbox2roi(
                        [res.pos_bboxes for res in sampling_results])
                    mask_feats = mask_roi_extractor(
                        x[:mask_roi_extractor.num_inputs], pos_rois)
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
                else:
                    # reuse positive bbox feats
                    pos_inds = []
                    device = bbox_feats.device
                    for res in sampling_results:
                        pos_inds.append(
                            torch.ones(
                                res.pos_bboxes.shape[0],
                                device=device,
                                dtype=torch.uint8))
                        pos_inds.append(
                            torch.zeros(
                                res.neg_bboxes.shape[0],
                                device=device,
                                dtype=torch.uint8))
                    pos_inds = torch.cat(pos_inds)
                    mask_feats = bbox_feats[pos_inds]
Kai Chen's avatar
Kai Chen committed
217
218
219
220
221
222
223
224
                mask_head = self.mask_head[i]
                mask_pred = mask_head(mask_feats)
                mask_targets = mask_head.get_target(sampling_results, gt_masks,
                                                    rcnn_train_cfg)
                pos_labels = torch.cat(
                    [res.pos_gt_labels for res in sampling_results])
                loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
                for name, value in loss_mask.items():
myownskyW7's avatar
myownskyW7 committed
225
226
                    losses['s{}.{}'.format(
                        i, name)] = (value * lw if 'loss' in name else value)
Kai Chen's avatar
Kai Chen committed
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

            # refine bboxes
            if i < self.num_stages - 1:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                roi_labels = bbox_targets[0]  # bbox_targets is a tuple
                with torch.no_grad():
                    proposal_list = bbox_head.refine_bboxes(
                        rois, roi_labels, bbox_pred, pos_is_gts, img_meta)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
248
249
        ms_bbox_result = {}
        ms_segm_result = {}
Kai Chen's avatar
Kai Chen committed
250
251
252
253
254
255
256
257
258
259
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            bbox_feats = bbox_roi_extractor(
                x[:len(bbox_roi_extractor.featmap_strides)], rois)
myownskyW7's avatar
myownskyW7 committed
260
261
262
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)

Kai Chen's avatar
Kai Chen committed
263
264
265
266
267
268
269
270
271
272
273
            cls_score, bbox_pred = bbox_head(bbox_feats)
            ms_scores.append(cls_score)

            if self.test_cfg.keep_all_stages:
                det_bboxes, det_labels = bbox_head.get_det_bboxes(
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    scale_factor,
                    rescale=rescale,
274
                    cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
275
276
                bbox_result = bbox2result(det_bboxes, det_labels,
                                          bbox_head.num_classes)
277
                ms_bbox_result['stage{}'.format(i)] = bbox_result
Kai Chen's avatar
Kai Chen committed
278
279

                if self.with_mask:
280
281
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_head = self.mask_head[i]
Kai Chen's avatar
Kai Chen committed
282
283
284
285
286
                    if det_bboxes.shape[0] == 0:
                        segm_result = [
                            [] for _ in range(mask_head.num_classes - 1)
                        ]
                    else:
Kai Chen's avatar
bug fix  
Kai Chen committed
287
                        _bboxes = (det_bboxes[:, :4] * scale_factor
Kai Chen's avatar
Kai Chen committed
288
289
                                   if rescale else det_bboxes)
                        mask_rois = bbox2roi([_bboxes])
290
291
292
                        mask_feats = mask_roi_extractor(
                            x[:len(mask_roi_extractor.featmap_strides)],
                            mask_rois)
myownskyW7's avatar
myownskyW7 committed
293
294
                        if self.with_shared_head:
                            mask_feats = self.shared_head(mask_feats, i)
Kai Chen's avatar
Kai Chen committed
295
296
297
298
                        mask_pred = mask_head(mask_feats)
                        segm_result = mask_head.get_seg_masks(
                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
                            ori_shape, scale_factor, rescale)
299
                    ms_segm_result['stage{}'.format(i)] = segm_result
Kai Chen's avatar
Kai Chen committed
300
301
302
303
304
305

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

Kai Chen's avatar
Kai Chen committed
306
        cls_score = sum(ms_scores) / self.num_stages
Kai Chen's avatar
Kai Chen committed
307
308
309
310
311
312
313
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
314
            cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
315
316
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
317
        ms_bbox_result['ensemble'] = bbox_result
Kai Chen's avatar
Kai Chen committed
318
319

        if self.with_mask:
Kai Chen's avatar
Kai Chen committed
320
            if det_bboxes.shape[0] == 0:
Kai Chen's avatar
bug fix  
Kai Chen committed
321
322
323
                segm_result = [
                    [] for _ in range(self.mask_head[-1].num_classes - 1)
                ]
Kai Chen's avatar
Kai Chen committed
324
            else:
Kai Chen's avatar
bug fix  
Kai Chen committed
325
                _bboxes = (det_bboxes[:, :4] * scale_factor
Kai Chen's avatar
Kai Chen committed
326
327
328
329
330
331
332
                           if rescale else det_bboxes)
                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                for i in range(self.num_stages):
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_feats = mask_roi_extractor(
                        x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
myownskyW7's avatar
myownskyW7 committed
333
334
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
Kai Chen's avatar
Kai Chen committed
335
336
337
                    mask_pred = self.mask_head[i](mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
Kai Chen's avatar
bug fix  
Kai Chen committed
338
                                               [img_meta] * self.num_stages,
Kai Chen's avatar
Kai Chen committed
339
340
341
342
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
343
            ms_segm_result['ensemble'] = segm_result
Kai Chen's avatar
Kai Chen committed
344

Kai Chen's avatar
Kai Chen committed
345
346
        if not self.test_cfg.keep_all_stages:
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
347
348
349
350
                results = (ms_bbox_result['ensemble'],
                           ms_segm_result['ensemble'])
            else:
                results = ms_bbox_result['ensemble']
Kai Chen's avatar
Kai Chen committed
351
        else:
Kai Chen's avatar
Kai Chen committed
352
353
354
355
356
357
358
359
360
            if self.with_mask:
                results = {
                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
                    for stage in ms_bbox_result
                }
            else:
                results = ms_bbox_result

        return results
Kai Chen's avatar
Kai Chen committed
361
362
363
364
365
366
367

    def aug_test(self, img, img_meta, proposals=None, rescale=False):
        raise NotImplementedError

    def show_result(self, data, result, img_norm_cfg, **kwargs):
        if self.with_mask:
            ms_bbox_result, ms_segm_result = result
Kai Chen's avatar
Kai Chen committed
368
369
370
            if isinstance(ms_bbox_result, dict):
                result = (ms_bbox_result['ensemble'],
                          ms_segm_result['ensemble'])
Kai Chen's avatar
Kai Chen committed
371
        else:
Kai Chen's avatar
Kai Chen committed
372
373
374
            if isinstance(result, dict):
                result = result['ensemble']
        super(CascadeRCNN, self).show_result(data, result, img_norm_cfg,
375
                                             **kwargs)