cascade_rcnn.py 15.5 KB
Newer Older
1
2
from __future__ import division

Kai Chen's avatar
Kai Chen committed
3
4
5
import torch
import torch.nn as nn

6
7
from mmdet.core import (bbox2result, bbox2roi, build_assigner, build_sampler,
                        merge_aug_masks)
Kai Chen's avatar
Kai Chen committed
8
from .. import builder
Kai Chen's avatar
Kai Chen committed
9
from ..registry import DETECTORS
10
11
from .base import BaseDetector
from .test_mixins import RPNTestMixin
Kai Chen's avatar
Kai Chen committed
12
13


Kai Chen's avatar
Kai Chen committed
14
@DETECTORS.register_module
Kai Chen's avatar
Kai Chen committed
15
16
17
18
19
20
class CascadeRCNN(BaseDetector, RPNTestMixin):

    def __init__(self,
                 num_stages,
                 backbone,
                 neck=None,
myownskyW7's avatar
myownskyW7 committed
21
                 shared_head=None,
Kai Chen's avatar
Kai Chen committed
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
                 rpn_head=None,
                 bbox_roi_extractor=None,
                 bbox_head=None,
                 mask_roi_extractor=None,
                 mask_head=None,
                 train_cfg=None,
                 test_cfg=None,
                 pretrained=None):
        assert bbox_roi_extractor is not None
        assert bbox_head is not None
        super(CascadeRCNN, self).__init__()

        self.num_stages = num_stages
        self.backbone = builder.build_backbone(backbone)

        if neck is not None:
            self.neck = builder.build_neck(neck)

        if rpn_head is not None:
Kai Chen's avatar
Kai Chen committed
41
            self.rpn_head = builder.build_head(rpn_head)
Kai Chen's avatar
Kai Chen committed
42

myownskyW7's avatar
myownskyW7 committed
43
44
45
        if shared_head is not None:
            self.shared_head = builder.build_shared_head(shared_head)

Kai Chen's avatar
Kai Chen committed
46
47
48
49
50
51
52
53
54
55
56
57
58
        if bbox_head is not None:
            self.bbox_roi_extractor = nn.ModuleList()
            self.bbox_head = nn.ModuleList()
            if not isinstance(bbox_roi_extractor, list):
                bbox_roi_extractor = [
                    bbox_roi_extractor for _ in range(num_stages)
                ]
            if not isinstance(bbox_head, list):
                bbox_head = [bbox_head for _ in range(num_stages)]
            assert len(bbox_roi_extractor) == len(bbox_head) == self.num_stages
            for roi_extractor, head in zip(bbox_roi_extractor, bbox_head):
                self.bbox_roi_extractor.append(
                    builder.build_roi_extractor(roi_extractor))
Kai Chen's avatar
Kai Chen committed
59
                self.bbox_head.append(builder.build_head(head))
Kai Chen's avatar
Kai Chen committed
60
61
62
63
64

        if mask_head is not None:
            self.mask_head = nn.ModuleList()
            if not isinstance(mask_head, list):
                mask_head = [mask_head for _ in range(num_stages)]
myownskyW7's avatar
myownskyW7 committed
65
66
            assert len(mask_head) == self.num_stages
            for head in mask_head:
Kai Chen's avatar
Kai Chen committed
67
                self.mask_head.append(builder.build_head(head))
myownskyW7's avatar
myownskyW7 committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
            if mask_roi_extractor is not None:
                self.share_roi_extractor = False
                self.mask_roi_extractor = nn.ModuleList()
                if not isinstance(mask_roi_extractor, list):
                    mask_roi_extractor = [
                        mask_roi_extractor for _ in range(num_stages)
                    ]
                assert len(mask_roi_extractor) == self.num_stages
                for roi_extractor in mask_roi_extractor:
                    self.mask_roi_extractor.append(
                        builder.build_roi_extractor(roi_extractor))
            else:
                self.share_roi_extractor = True
                self.mask_roi_extractor = self.bbox_roi_extractor
Kai Chen's avatar
Kai Chen committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        self.train_cfg = train_cfg
        self.test_cfg = test_cfg

        self.init_weights(pretrained=pretrained)

    @property
    def with_rpn(self):
        return hasattr(self, 'rpn_head') and self.rpn_head is not None

    def init_weights(self, pretrained=None):
        super(CascadeRCNN, self).init_weights(pretrained)
        self.backbone.init_weights(pretrained=pretrained)
        if self.with_neck:
            if isinstance(self.neck, nn.Sequential):
                for m in self.neck:
                    m.init_weights()
            else:
                self.neck.init_weights()
        if self.with_rpn:
            self.rpn_head.init_weights()
myownskyW7's avatar
myownskyW7 committed
103
104
        if self.with_shared_head:
            self.shared_head.init_weights(pretrained=pretrained)
Kai Chen's avatar
Kai Chen committed
105
106
107
108
109
        for i in range(self.num_stages):
            if self.with_bbox:
                self.bbox_roi_extractor[i].init_weights()
                self.bbox_head[i].init_weights()
            if self.with_mask:
myownskyW7's avatar
myownskyW7 committed
110
111
                if not self.share_roi_extractor:
                    self.mask_roi_extractor[i].init_weights()
Kai Chen's avatar
Kai Chen committed
112
113
114
115
116
117
118
119
120
121
122
123
124
                self.mask_head[i].init_weights()

    def extract_feat(self, img):
        x = self.backbone(img)
        if self.with_neck:
            x = self.neck(x)
        return x

    def forward_train(self,
                      img,
                      img_meta,
                      gt_bboxes,
                      gt_labels,
125
                      gt_bboxes_ignore=None,
Kai Chen's avatar
Kai Chen committed
126
127
128
129
130
131
132
133
134
135
                      gt_masks=None,
                      proposals=None):
        x = self.extract_feat(img)

        losses = dict()

        if self.with_rpn:
            rpn_outs = self.rpn_head(x)
            rpn_loss_inputs = rpn_outs + (gt_bboxes, img_meta,
                                          self.train_cfg.rpn)
136
137
            rpn_losses = self.rpn_head.loss(
                *rpn_loss_inputs, gt_bboxes_ignore=gt_bboxes_ignore)
Kai Chen's avatar
Kai Chen committed
138
139
            losses.update(rpn_losses)

140
141
142
            proposal_cfg = self.train_cfg.get('rpn_proposal',
                                              self.test_cfg.rpn)
            proposal_inputs = rpn_outs + (img_meta, proposal_cfg)
143
            proposal_list = self.rpn_head.get_bboxes(*proposal_inputs)
Kai Chen's avatar
Kai Chen committed
144
145
146
147
        else:
            proposal_list = proposals

        for i in range(self.num_stages):
148
            self.current_stage = i
Kai Chen's avatar
Kai Chen committed
149
            rcnn_train_cfg = self.train_cfg.rcnn[i]
150
            lw = self.train_cfg.stage_loss_weights[i]
Kai Chen's avatar
Kai Chen committed
151
152

            # assign gts and sample proposals
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            sampling_results = []
            if self.with_bbox or self.with_mask:
                bbox_assigner = build_assigner(rcnn_train_cfg.assigner)
                bbox_sampler = build_sampler(
                    rcnn_train_cfg.sampler, context=self)
                num_imgs = img.size(0)
                if gt_bboxes_ignore is None:
                    gt_bboxes_ignore = [None for _ in range(num_imgs)]

                for j in range(num_imgs):
                    assign_result = bbox_assigner.assign(
                        proposal_list[j], gt_bboxes[j], gt_bboxes_ignore[j],
                        gt_labels[j])
                    sampling_result = bbox_sampler.sample(
                        assign_result,
                        proposal_list[j],
                        gt_bboxes[j],
                        gt_labels[j],
                        feats=[lvl_feat[j][None] for lvl_feat in x])
                    sampling_results.append(sampling_result)
Kai Chen's avatar
Kai Chen committed
173
174
175
176
177
178
179
180

            # bbox head forward and loss
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            rois = bbox2roi([res.bboxes for res in sampling_results])
            bbox_feats = bbox_roi_extractor(x[:bbox_roi_extractor.num_inputs],
                                            rois)
myownskyW7's avatar
myownskyW7 committed
181
182
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)
Kai Chen's avatar
Kai Chen committed
183
184
185
186
187
188
            cls_score, bbox_pred = bbox_head(bbox_feats)

            bbox_targets = bbox_head.get_target(sampling_results, gt_bboxes,
                                                gt_labels, rcnn_train_cfg)
            loss_bbox = bbox_head.loss(cls_score, bbox_pred, *bbox_targets)
            for name, value in loss_bbox.items():
189
190
                losses['s{}.{}'.format(i, name)] = (
                    value * lw if 'loss' in name else value)
Kai Chen's avatar
Kai Chen committed
191
192
193

            # mask head forward and loss
            if self.with_mask:
myownskyW7's avatar
myownskyW7 committed
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
                if not self.share_roi_extractor:
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    pos_rois = bbox2roi(
                        [res.pos_bboxes for res in sampling_results])
                    mask_feats = mask_roi_extractor(
                        x[:mask_roi_extractor.num_inputs], pos_rois)
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
                else:
                    # reuse positive bbox feats
                    pos_inds = []
                    device = bbox_feats.device
                    for res in sampling_results:
                        pos_inds.append(
                            torch.ones(
                                res.pos_bboxes.shape[0],
                                device=device,
                                dtype=torch.uint8))
                        pos_inds.append(
                            torch.zeros(
                                res.neg_bboxes.shape[0],
                                device=device,
                                dtype=torch.uint8))
                    pos_inds = torch.cat(pos_inds)
                    mask_feats = bbox_feats[pos_inds]
Kai Chen's avatar
Kai Chen committed
219
220
221
222
223
224
225
226
                mask_head = self.mask_head[i]
                mask_pred = mask_head(mask_feats)
                mask_targets = mask_head.get_target(sampling_results, gt_masks,
                                                    rcnn_train_cfg)
                pos_labels = torch.cat(
                    [res.pos_gt_labels for res in sampling_results])
                loss_mask = mask_head.loss(mask_pred, mask_targets, pos_labels)
                for name, value in loss_mask.items():
227
228
                    losses['s{}.{}'.format(i, name)] = (
                        value * lw if 'loss' in name else value)
Kai Chen's avatar
Kai Chen committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249

            # refine bboxes
            if i < self.num_stages - 1:
                pos_is_gts = [res.pos_is_gt for res in sampling_results]
                roi_labels = bbox_targets[0]  # bbox_targets is a tuple
                with torch.no_grad():
                    proposal_list = bbox_head.refine_bboxes(
                        rois, roi_labels, bbox_pred, pos_is_gts, img_meta)

        return losses

    def simple_test(self, img, img_meta, proposals=None, rescale=False):
        x = self.extract_feat(img)
        proposal_list = self.simple_test_rpn(
            x, img_meta, self.test_cfg.rpn) if proposals is None else proposals

        img_shape = img_meta[0]['img_shape']
        ori_shape = img_meta[0]['ori_shape']
        scale_factor = img_meta[0]['scale_factor']

        # "ms" in variable names means multi-stage
250
251
        ms_bbox_result = {}
        ms_segm_result = {}
Kai Chen's avatar
Kai Chen committed
252
253
254
255
256
257
258
259
260
261
        ms_scores = []
        rcnn_test_cfg = self.test_cfg.rcnn

        rois = bbox2roi(proposal_list)
        for i in range(self.num_stages):
            bbox_roi_extractor = self.bbox_roi_extractor[i]
            bbox_head = self.bbox_head[i]

            bbox_feats = bbox_roi_extractor(
                x[:len(bbox_roi_extractor.featmap_strides)], rois)
myownskyW7's avatar
myownskyW7 committed
262
263
264
            if self.with_shared_head:
                bbox_feats = self.shared_head(bbox_feats)

Kai Chen's avatar
Kai Chen committed
265
266
267
268
269
270
271
272
273
274
275
            cls_score, bbox_pred = bbox_head(bbox_feats)
            ms_scores.append(cls_score)

            if self.test_cfg.keep_all_stages:
                det_bboxes, det_labels = bbox_head.get_det_bboxes(
                    rois,
                    cls_score,
                    bbox_pred,
                    img_shape,
                    scale_factor,
                    rescale=rescale,
276
                    cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
277
278
                bbox_result = bbox2result(det_bboxes, det_labels,
                                          bbox_head.num_classes)
279
                ms_bbox_result['stage{}'.format(i)] = bbox_result
Kai Chen's avatar
Kai Chen committed
280
281

                if self.with_mask:
282
283
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_head = self.mask_head[i]
Kai Chen's avatar
Kai Chen committed
284
                    if det_bboxes.shape[0] == 0:
285
286
                        mask_classes = mask_head.num_classes - 1
                        segm_result = [[] for _ in range(mask_classes)]
Kai Chen's avatar
Kai Chen committed
287
                    else:
288
                        _bboxes = (
289
290
                            det_bboxes[:, :4] *
                            scale_factor if rescale else det_bboxes)
Kai Chen's avatar
Kai Chen committed
291
                        mask_rois = bbox2roi([_bboxes])
292
293
294
                        mask_feats = mask_roi_extractor(
                            x[:len(mask_roi_extractor.featmap_strides)],
                            mask_rois)
myownskyW7's avatar
myownskyW7 committed
295
296
                        if self.with_shared_head:
                            mask_feats = self.shared_head(mask_feats, i)
Kai Chen's avatar
Kai Chen committed
297
298
299
300
                        mask_pred = mask_head(mask_feats)
                        segm_result = mask_head.get_seg_masks(
                            mask_pred, _bboxes, det_labels, rcnn_test_cfg,
                            ori_shape, scale_factor, rescale)
301
                    ms_segm_result['stage{}'.format(i)] = segm_result
Kai Chen's avatar
Kai Chen committed
302
303
304
305
306
307

            if i < self.num_stages - 1:
                bbox_label = cls_score.argmax(dim=1)
                rois = bbox_head.regress_by_class(rois, bbox_label, bbox_pred,
                                                  img_meta[0])

Kai Chen's avatar
Kai Chen committed
308
        cls_score = sum(ms_scores) / self.num_stages
Kai Chen's avatar
Kai Chen committed
309
310
311
312
313
314
315
        det_bboxes, det_labels = self.bbox_head[-1].get_det_bboxes(
            rois,
            cls_score,
            bbox_pred,
            img_shape,
            scale_factor,
            rescale=rescale,
316
            cfg=rcnn_test_cfg)
Kai Chen's avatar
Kai Chen committed
317
318
        bbox_result = bbox2result(det_bboxes, det_labels,
                                  self.bbox_head[-1].num_classes)
319
        ms_bbox_result['ensemble'] = bbox_result
Kai Chen's avatar
Kai Chen committed
320
321

        if self.with_mask:
Kai Chen's avatar
Kai Chen committed
322
            if det_bboxes.shape[0] == 0:
323
324
                mask_classes = self.mask_head[-1].num_classes - 1
                segm_result = [[] for _ in range(mask_classes)]
Kai Chen's avatar
Kai Chen committed
325
            else:
326
                _bboxes = (
327
328
                    det_bboxes[:, :4] *
                    scale_factor if rescale else det_bboxes)
Kai Chen's avatar
Kai Chen committed
329
330
331
332
333
334
                mask_rois = bbox2roi([_bboxes])
                aug_masks = []
                for i in range(self.num_stages):
                    mask_roi_extractor = self.mask_roi_extractor[i]
                    mask_feats = mask_roi_extractor(
                        x[:len(mask_roi_extractor.featmap_strides)], mask_rois)
myownskyW7's avatar
myownskyW7 committed
335
336
                    if self.with_shared_head:
                        mask_feats = self.shared_head(mask_feats)
Kai Chen's avatar
Kai Chen committed
337
338
339
                    mask_pred = self.mask_head[i](mask_feats)
                    aug_masks.append(mask_pred.sigmoid().cpu().numpy())
                merged_masks = merge_aug_masks(aug_masks,
Kai Chen's avatar
bug fix  
Kai Chen committed
340
                                               [img_meta] * self.num_stages,
Kai Chen's avatar
Kai Chen committed
341
342
343
344
                                               self.test_cfg.rcnn)
                segm_result = self.mask_head[-1].get_seg_masks(
                    merged_masks, _bboxes, det_labels, rcnn_test_cfg,
                    ori_shape, scale_factor, rescale)
345
            ms_segm_result['ensemble'] = segm_result
Kai Chen's avatar
Kai Chen committed
346

Kai Chen's avatar
Kai Chen committed
347
348
        if not self.test_cfg.keep_all_stages:
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
349
350
351
352
                results = (ms_bbox_result['ensemble'],
                           ms_segm_result['ensemble'])
            else:
                results = ms_bbox_result['ensemble']
Kai Chen's avatar
Kai Chen committed
353
        else:
Kai Chen's avatar
Kai Chen committed
354
355
356
357
358
359
360
361
362
            if self.with_mask:
                results = {
                    stage: (ms_bbox_result[stage], ms_segm_result[stage])
                    for stage in ms_bbox_result
                }
            else:
                results = ms_bbox_result

        return results
Kai Chen's avatar
Kai Chen committed
363
364
365
366
367
368
369

    def aug_test(self, img, img_meta, proposals=None, rescale=False):
        raise NotImplementedError

    def show_result(self, data, result, img_norm_cfg, **kwargs):
        if self.with_mask:
            ms_bbox_result, ms_segm_result = result
Kai Chen's avatar
Kai Chen committed
370
371
372
            if isinstance(ms_bbox_result, dict):
                result = (ms_bbox_result['ensemble'],
                          ms_segm_result['ensemble'])
Kai Chen's avatar
Kai Chen committed
373
        else:
Kai Chen's avatar
Kai Chen committed
374
375
376
            if isinstance(result, dict):
                result = result['ensemble']
        super(CascadeRCNN, self).show_result(data, result, img_norm_cfg,
377
                                             **kwargs)