MODEL_ZOO.md 16.9 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
# Benchmark and Model Zoo

## Environment

### Hardware

- 8 NVIDIA Tesla V100 GPUs
- Intel Xeon 4114 CPU @ 2.20GHz

### Software environment

Kai Chen's avatar
Kai Chen committed
12
- Python 3.6 / 3.7
Kai Chen's avatar
Kai Chen committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
- PyTorch 0.4.1
- CUDA 9.0.176
- CUDNN 7.0.4
- NCCL 2.1.15


## Common settings

- All baselines were trained using 8 GPU with a batch size of 16 (2 images per GPU).
- All models were trained on `coco_2017_train`, and tested on the `coco_2017_val`.
- We use distributed training and BN layer stats are fixed.
- We adopt the same training schedules as Detectron. 1x indicates 12 epochs and 2x indicates 24 epochs, which corresponds to slightly less iterations than Detectron and the difference can be ignored.
- All pytorch-style pretrained backbones on ImageNet are from PyTorch model zoo.
- We report the training GPU memory as the maximum value of `torch.cuda.max_memory_cached()`
for all 8 GPUs. Note that this value is usually less than what `nvidia-smi` shows, but
closer to the actual requirements.
Kai Chen's avatar
Kai Chen committed
29
30
31
32
- We report the inference time as the overall time including data loading,
network forwarding and post processing.
- The training memory and time of 2x schedule is simply copied from 1x.
It should be very close to the actual memory and time.
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38
39
40


## Baselines

We released RPN, Faster R-CNN and Mask R-CNN models in the first version. More models with different backbones will be added to the model zoo.

### RPN

Kai Chen's avatar
Kai Chen committed
41
42
43
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | AR1000 | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 4.5      | 0.379               | 14.4           | 58.2   | -        |
Kai Chen's avatar
Kai Chen committed
44
45
46
47
48
| R-50-FPN | pytorch | 1x      | 4.8      | 0.407               | 14.5           | 57.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_1x_20181010-4a9c0712.pth) |
| R-50-FPN | pytorch | 2x      | 4.8      | 0.407               | 14.5           | 57.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r50_fpn_2x_20181010-88a4a471.pth) |
| R-101-FPN | caffe   | 1x      | 7.4      | 0.513               | 11.1           | 59.4   | -        |
| R-101-FPN | pytorch | 1x      | 8.0      | 0.552               | 11.1           | 58.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_1x_20181129-f50da4bd.pth) |
| R-101-FPN | pytorch | 2x      | 8.0      | 0.552               | 11.1           | 59.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/rpn_r101_fpn_2x_20181129-e42c6c9a.pth) |
Kai Chen's avatar
Kai Chen committed
49
50
51

### Faster R-CNN

Kai Chen's avatar
Kai Chen committed
52
53
54
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 4.9      | 0.525               | 10.0           | 36.7   | -        |
Kai Chen's avatar
Kai Chen committed
55
56
57
58
59
| R-50-FPN | pytorch | 1x      | 5.1      | 0.554               | 9.9            | 36.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_1x_20181010-3d1b3351.pth) |
| R-50-FPN | pytorch | 2x      | 5.1      | 0.554               | 9.9            | 37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r50_fpn_2x_20181010-443129e1.pth) |
| R-101-FPN | caffe   | 1x      | 7.4      | 0.663               | 8.4           | 38.8   | -        |
| R-101-FPN | pytorch | 1x      | 8.0      | 0.698               | 8.3           | 38.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_1x_20181129-d1468807.pth) |
| R-101-FPN | pytorch | 2x      | 8.0      | 0.698               | 8.3           | 39.4   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/faster_rcnn_r101_fpn_2x_20181129-73e7ade7.pth) |
Kai Chen's avatar
Kai Chen committed
60
61
62

### Mask R-CNN

Kai Chen's avatar
Kai Chen committed
63
64
65
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe   | 1x      | 5.9      | 0.658               | 7.7            | 37.5   | 34.4    | -        |
Kai Chen's avatar
Kai Chen committed
66
67
68
69
70
| R-50-FPN | pytorch | 1x      | 5.8      | 0.690               | 7.7            | 37.3   | 34.2    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_1x_20181010-069fa190.pth) |
| R-50-FPN | pytorch | 2x      | 5.8      | 0.690               | 7.7            | 38.6   | 35.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r50_fpn_2x_20181010-41d35c05.pth) |
| R-101-FPN | caffe   | 1x      | 8.8      | 0.791               | 7.0            | 39.9   | 36.1    | -        |
| R-101-FPN | pytorch | 1x      | 9.1      | 0.825               | 6.7            | 39.4   | 35.9    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_1x_20181129-34ad1961.pth) |
| R-101-FPN | pytorch | 2x      | 9.1      | 0.825               | 6.7            | 40.4   | 36.6    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/mask_rcnn_r101_fpn_2x_20181129-a254bdfc.pth) |
Kai Chen's avatar
Kai Chen committed
71

Kai Chen's avatar
Kai Chen committed
72
### Fast R-CNN (with pre-computed proposals)
Kai Chen's avatar
Kai Chen committed
73

Kai Chen's avatar
Kai Chen committed
74
75
| Backbone | Style   | Type   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
Kai Chen's avatar
Kai Chen committed
76
77
78
79
80
81
82
83
84
85
86
87
| R-50-FPN | caffe   | Faster | 1x      | 3.5      | 0.348               | 14.6           | 36.6   | -       | -        |
| R-50-FPN | pytorch | Faster | 1x      | 4.0      | 0.375               | 14.5           | 35.8   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_1x_20181010-08160859.pth) |
| R-50-FPN | pytorch | Faster | 2x      | 4.0      | 0.375               | 14.5           | 37.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r50_fpn_2x_20181010-d263ada5.pth) |
| R-101-FPN| caffe   | Faster | 1x      | 7.1      | 0.484               | 11.9           | 38.4   | -       | -        |
| R-101-FPN| pytorch | Faster | 1x      | 7.6      | 0.540               | 11.8           | 38.1   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_1x_20181129-ffaa2eb0.pth) |
| R-101-FPN| pytorch | Faster | 2x      | 7.6      | 0.540               | 11.8           | 38.8   | -       | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_rcnn_r101_fpn_2x_20181129-9dba92ce.pth) |
| R-50-FPN | caffe   | Mask   | 1x      | 5.4      | 0.473               | 10.7           | 37.3   | 34.5    | -        |
| R-50-FPN | pytorch | Mask   | 1x      | 5.3      | 0.504               | 10.6           | 36.8   | 34.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_1x_20181010-e030a38f.pth) |
| R-50-FPN | pytorch | Mask   | 2x      | 5.3      | 0.504               | 10.6           | 37.9   | 34.8    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r50_fpn_2x_20181010-5048cb03.pth) |
| R-101-FPN| caffe   | Mask   | 1x      | 8.6      | 0.607               | 9.5            | 39.4   | 36.1    | -        |
| R-101-FPN| pytorch | Mask   | 1x      | 9.0      | 0.656               | 9.3            | 38.9   | 35.8    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_1x_20181129-2273fa9b.pth) |
| R-101-FPN| pytorch | Mask   | 2x      | 9.0      | 0.656               | 9.3            | 39.9   | 36.4    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/fast_mask_rcnn_r101_fpn_2x_20181129-bf63ec5e.pth) |
Kai Chen's avatar
Kai Chen committed
88

Kai Chen's avatar
Kai Chen committed
89
### RetinaNet
Kai Chen's avatar
Kai Chen committed
90

Kai Chen's avatar
Kai Chen committed
91
| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
Kai Chen's avatar
Kai Chen committed
92
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
Kai Chen's avatar
Kai Chen committed
93
94
95
| R-50-FPN | caffe   | 1x      | 6.7      | 0.468               | 9.4            | 35.8   | -        |
| R-50-FPN | pytorch | 1x      | 6.9      | 0.496               | 9.1            | 35.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_1x_20181125-3d3c2142.pth) |
| R-50-FPN | pytorch | 2x      | 6.9      | 0.496               | 9.1            | 36.5   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r50_fpn_2x_20181125-e0dbec97.pth) |
Kai Chen's avatar
Kai Chen committed
96
97
98
| R-101-FPN | caffe   | 1x      | 9.2      | 0.614               | 8.2            | 37.8   | -        |
| R-101-FPN | pytorch | 1x      | 9.6      | 0.643               | 8.1            | 37.7   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_1x_20181129-f738a02f.pth) |
| R-101-FPN | pytorch | 2x      | 9.6      | 0.643               | 8.1            | 38.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/retinanet_r101_fpn_2x_20181129-f654534b.pth) |
Kai Chen's avatar
Kai Chen committed
99

Kai Chen's avatar
Kai Chen committed
100
101
102
103
104
### Cascade R-CNN

| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:--------:|
| R-50-FPN | caffe   | 1x      | 5.0      | 0.592               | 8.1            | 40.3   | -        |
Kai Chen's avatar
Kai Chen committed
105
106
| R-50-FPN | pytorch | 1x      | 5.5      | 0.622               | 8.0            | 40.3   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_1x_20181123-b1987c4a.pth) |
| R-50-FPN | pytorch | 20e     | 5.5      | 0.622               | 8.0            | 41.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r50_fpn_20e_20181123-db483a09.pth) |
Kai Chen's avatar
Kai Chen committed
107
108
109
| R-101-FPN | caffe   | 1x      | 8.5      | 0.731               | 7.0            | 42.2   | -        |
| R-101-FPN | pytorch | 1x      | 8.7      | 0.766               | 6.9            | 42.1   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_1x_20181129-d64ebac7.pth) |
| R-101-FPN | pytorch | 20e     | 8.7      | 0.766               | 6.9            | 42.6   | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_rcnn_r101_fpn_20e_20181129-b46dcede.pth) |
Kai Chen's avatar
Kai Chen committed
110
111
112
113
114
115

### Cascade Mask R-CNN

| Backbone | Style   | Lr schd | Mem (GB) | Train time (s/iter) | Inf time (fps) | box AP | mask AP | Download |
|:--------:|:-------:|:-------:|:--------:|:-------------------:|:--------------:|:------:|:-------:|:--------:|
| R-50-FPN | caffe   | 1x      | 7.5      | 0.880               | 5.8            | 41.0   | 35.6    | -        |
Kai Chen's avatar
Kai Chen committed
116
117
| R-50-FPN | pytorch | 1x      | 7.6      | 0.910               | 5.7            | 41.3   | 35.7    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_1x_20181123-88b170c9.pth) |
| R-50-FPN | pytorch | 20e     | 7.6      | 0.910               | 5.7            | 42.4   | 36.6    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r50_fpn_20e_20181123-6e0c9713.pth) |
Kai Chen's avatar
Kai Chen committed
118
119
120
| R-101-FPN | caffe   | 1x      | 10.5     | 1.024               | 5.3            | 43.1   | 37.3    | -        |
| R-101-FPN | pytorch | 1x      | 10.9     | 1.055               | 5.2            | 42.7   | 37.1    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_1x_20181129-64f00602.pth) |
| R-101-FPN | pytorch | 20e     | 10.9     | 1.055               | 5.2            | 43.4   | 37.6    | [model](https://s3.ap-northeast-2.amazonaws.com/open-mmlab/mmdetection/models/cascade_mask_rcnn_r101_fpn_20e_20181129-cb85151d.pth) |
Kai Chen's avatar
Kai Chen committed
121

Kai Chen's avatar
Kai Chen committed
122
123
124
125
126
127
128

## Comparison with Detectron

We compare mmdetection with [Detectron](https://github.com/facebookresearch/Detectron)
and [Detectron.pytorch](https://github.com/roytseng-tw/Detectron.pytorch),
a third-party port of Detectron to Pytorch. The backbone used is R-50-FPN.

Kai Chen's avatar
Kai Chen committed
129
130
131
132
133
134
In general, mmdetection has 3 advantages over Detectron.

- **Higher performance** (especially in terms of mask AP)
- **Faster training speed**
- **Memory efficient**

Kai Chen's avatar
Kai Chen committed
135
136
137
### Performance

Detectron and Detectron.pytorch use caffe-style ResNet as the backbone.
Kai Chen's avatar
Kai Chen committed
138
In order to utilize the PyTorch model zoo, we use pytorch-style ResNet in our experiments.
Kai Chen's avatar
Kai Chen committed
139

Kai Chen's avatar
Kai Chen committed
140
In the meanwhile, we train models with caffe-style ResNet in 1x experiments for comparison.
Kai Chen's avatar
Kai Chen committed
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
We find that pytorch-style ResNet usually converges slower than caffe-style ResNet,
thus leading to slightly lower results in 1x schedule, but the final results
of 2x schedule is higher.

We report results using both caffe-style (weights converted from
[here](https://github.com/facebookresearch/Detectron/blob/master/MODEL_ZOO.md#imagenet-pretrained-models))
and pytorch-style (weights from the official model zoo) ResNet backbone,
indicated as *pytorch-style results* / *caffe-style results*.

<table>
  <tr>
    <th>Type</th>
    <th>Lr schd</th>
    <th>Detectron</th>
    <th>Detectron.pytorch</th>
    <th>mmdetection</th>
  </tr>
  <tr>
    <td rowspan="2">RPN</td>
    <td>1x</td>
    <td>57.2</td>
    <td>-</td>
    <td>57.1 / 58.2</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>-</td>
    <td>-</td>
    <td>57.6 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Faster R-CNN</td>
    <td>1x</td>
    <td>36.7</td>
    <td>37.1</td>
    <td>36.4 / 36.7</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.9</td>
    <td>-</td>
    <td>37.7 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Mask R-CNN</td>
    <td>1x</td>
    <td>37.7 &amp; 33.9</td>
    <td>37.7 &amp; 33.7</td>
    <td>37.3 &amp; 34.2 / 37.5 &amp; 34.4</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>38.6 &amp; 34.5</td>
    <td>-</td>
    <td>38.6 &amp; 35.1 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
  <tr>
    <td rowspan="2">Fast R-CNN</td>
    <td>1x</td>
    <td>36.4</td>
    <td>-</td>
    <td>35.8 / 36.6</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>36.8</td>
    <td>-</td>
    <td>37.1 / -</td>
  </tr>
  <tr>
    <td rowspan="2">Fast R-CNN (w/mask)</td>
    <td>1x</td>
    <td>37.3 &amp; 33.7</td>
    <td>-</td>
    <td>36.8 &amp; 34.1 / 37.3 &amp; 34.5</td>
  </tr>
  <tr>
    <td>2x</td>
    <td>37.7 &amp; 34.0</td>
    <td>-</td>
    <td>37.9 &amp; 34.8 / -</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
223
224
</table>

Kai Chen's avatar
Kai Chen committed
225
### Training Speed
Kai Chen's avatar
Kai Chen committed
226

Kai Chen's avatar
Kai Chen committed
227
The training speed is measure with s/iter. The lower, the better.
Kai Chen's avatar
Kai Chen committed
228
229
230
231
232
233

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100<sup>1</sup>)</th>
    <th>Detectron.pytorch (XP<sup>2</sup>)</th>
Kai Chen's avatar
Kai Chen committed
234
    <th>mmdetection<sup>3</sup> (V100<sup>4</sup> / XP)</th>
Kai Chen's avatar
Kai Chen committed
235
236
237
238
239
  </tr>
  <tr>
    <td>RPN</td>
    <td>0.416</td>
    <td>-</td>
Kai Chen's avatar
Kai Chen committed
240
    <td>0.407 / 0.413</td>
Kai Chen's avatar
Kai Chen committed
241
242
243
244
245
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>0.544</td>
    <td>1.015</td>
Kai Chen's avatar
Kai Chen committed
246
    <td>0.554 / 0.579</td>
Kai Chen's avatar
Kai Chen committed
247
248
249
250
251
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>0.889</td>
    <td>1.435</td>
Kai Chen's avatar
Kai Chen committed
252
    <td>0.690 / 0.732</td>
Kai Chen's avatar
Kai Chen committed
253
  </tr>
Kai Chen's avatar
Kai Chen committed
254
255
256
257
258
259
260
261
262
263
264
265
  <tr>
    <td>Fast R-CNN</td>
    <td>0.285</td>
    <td>-</td>
    <td>0.375 / 0.398</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>0.377</td>
    <td>-</td>
    <td>0.504 / 0.574</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
266
267
268
269
270
271
272
273
274
275
276
</table>

\*1. Detectron reports the speed on Facebook's Big Basin servers (P100),
on our V100 servers it is slower so we use the official reported values.

\*2. Detectron.pytorch does not report the runtime and we encountered some issue to
run it on V100, so we report the speed on TITAN XP.

\*3. The speed of pytorch-style ResNet is approximately 5% slower than caffe-style,
and we report the pytorch-style results here.

Kai Chen's avatar
Kai Chen committed
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
\*4. We also run the models on a DGX-1 server (P100) and the speed is almost the same as our V100 servers.

### Inference Speed

The inference speed is measured with fps (img/s) on a single GPU. The higher, the better.

<table>
  <tr>
    <th>Type</th>
    <th>Detectron (P100)</th>
    <th>Detectron.pytorch (XP)</th>
    <th>mmdetection (V100 / XP)</th>
  </tr>
  <tr>
    <td>RPN</td>
    <td>12.5</td>
    <td>-</td>
    <td>14.5 / 15.4</td>
  </tr>
  <tr>
    <td>Faster R-CNN</td>
    <td>10.3</td>
    <td></td>
    <td>9.9 / 9.8</td>
  </tr>
  <tr>
    <td>Mask R-CNN</td>
    <td>8.5</td>
    <td></td>
    <td>7.7 / 7.4</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
308
309
310
311
312
313
314
315
316
317
318
319
  <tr>
    <td>Fast R-CNN</td>
    <td>12.5</td>
    <td></td>
    <td>14.5 / 14.1</td>
  </tr>
  <tr>
    <td>Fast R-CNN (w/mask)</td>
    <td>9.9</td>
    <td></td>
    <td>10.6 / 10.3</td>
  </tr>
Kai Chen's avatar
Kai Chen committed
320
321
</table>

Kai Chen's avatar
Kai Chen committed
322
323
324
325
326
327
328
329
330
331
### Training memory

We perform various tests and there is no doubt that mmdetection is more memory
efficient than Detectron, and the main cause is the deep learning framework itself, not our efforts.
Besides, Caffe2 and PyTorch have different apis to obtain memory usage
whose implementation is not exactly the same.

`nvidia-smi` shows a larger memory usage for both detectron and mmdetection, e.g.,
we observe a much higher memory usage when we train Mask R-CNN with 2 images per GPU using detectron (10.6G) and mmdetection (9.3G), which is obviously more than actually required.

Kai Chen's avatar
Kai Chen committed
332
> With mmdetection, we can train R-50 FPN Mask R-CNN with **4** images per GPU (TITAN XP, 12G),
Kai Chen's avatar
Kai Chen committed
333
which is a promising result.